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Criterios de estabilidad y deformación en inmersiones con CMC y
frontera libre
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Abstract. Let Σn and Mn+1 be smooth manifolds with smooth boundary.
Given a free boundary constant mean curvature (CMC) immersion ϕ : Σ →
M , we found results related to the existence and uniqueness of a deforma-
tion family of ϕ, {ϕt}t∈I , composed by free boundary CMC immersions. In
addition, we give to some criteria of stability and unstability for this type of
deformations. These results are obtained from properties of the eigenvalues
and eigenfunctions of the Jacobi operator Jϕ associated to ϕ and establishing
conditions for this operator such as Dim(Ker(Jϕ)) = 0, or if Dim(Ker(Jϕ)) = 1
and, for f ∈ Ker(Jϕ), f 6= 0,

∫
Σ
f volϕ∗(g) 6= 0. The deformation family is

unique up to diffeomorphisms.
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Resumen. Sean Σn y Mn+1 variedades suaves con frontera suave. Dada una
inmersión ϕ : Σ → M con curvatura media constante (CMC) y frontera
libre, encontramos resultados relacionados con la existencia y unicidad de una
familia de deformación de ϕ, {ϕt}t∈I compuesta por inmersiones con curvatura
media constante y frontera libre. Adicionalmente, damos algunos criterios de
estabilidad e inestabilidad para este tipo de deformaciones. Estos resultados
son obtenidos a partir de las propiedades de los valores propios y las funciones
propias del operador de Jacobi Jϕ asociado a ϕ, y condiciones de estabilidad
para este operador, tales como, Dim(Ker(Jϕ)) = 0, o si Dim(Ker(Jϕ)) = 1,
para f ∈ Ker(Jϕ), f 6= 0,

∫
Σ
f volϕ∗(g) 6= 0. La familia de deformación es

única, salvo difeomorsmos.

Palabras y frases clave. Hipersuperficies con curvatura media constante y fron-
tera libre, deformación, estabilidad, operador de Jacobi.
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1. Introduction

In different areas of science and technology, the study of the Theory of Opti-
mization and Stability plays a very important role. Therefore, it is necessary to
obtain criteria that allow finding and understanding situations such as energy
conservation, minimization of materials, optimization of resources, etc. In our
context,the term stability refers to the fact that surfaces or hypersurfaces with
constant mean curvature (CMC) must minimize the area of enclosed volume
among all nearby surfaces that enclose the same volume. A CMC hypersurface
is stable if the second variation of area functional is nonnegative.

In calculus of variations there is a class of problems called isoperimetric;
the classical isoperimetric problem consists of finding the minimum area among
all hypersurfaces of a Riemannian manifold enclosing a region with prescribed
volume. We know that solutions to this problem are CMC hypersurfaces. More
precisely, if ϕ : Σ→M is an immersion of an orientable n-dimensional compact
manifold Σ into the (n+1)-dimensional Riemannian manifold M , the condition
that ϕ has constant mean curvature H0 is equivalent to the fact that ϕ is a
critical point of the area functional defined in the space of embeddings of Σ in
M that bound a region of fixed volume (see for instance [3]). The solutions of
the isoperimetric problem correspond to minima of the constrained variational
problem, however, it is interesting to study all critical points of the problem.
One of the interesting questions concerning general CMC hypersurfaces is es-
tablishing the non-degeneracy as constrained critical points. For the case of
free boundary CMC hypersurfaces, we can find an answer of this problem in a
previous article by the author (see [8]).

If ϕt is a smooth variation of ϕ, t ∈ (−ε, ε), ϕ0 = ϕ, such that Vt = V0,
for all t ∈ (−ε, ε), where Vt is the volume of the region bounded by ϕt(Σ), a
standard approach for finding the solution of such a isoperimetric problem is
to look for the critical points of the functional f(t) = At + λVt, At the area of
ϕt, λ = const., which is the classical method of Lagrange multipliers. When
λ = nH0 we have the aforementioned equivalence.

In the case where M is a manifolds with boundary ∂M and Σ is also a
manifold with boundary, the isoperimetric problem can be described as follows.
One wants to minimize the area among all compact hypersurfaces diffeomorphic
to Σ in M with boundary contained in ∂M and whose interior lies in the interior
of M , and which divide M in two regions such that the closure of one of them is
compact and with prescribed volume. The solutions of this problem, called free
boundary CMC hypersurfaces, are the so-called normal CMC hypersurfaces.
Let H0 be denote the value (constant) of the mean curvature of one such
hypersurface. If H0 = 0 then we say that ϕ(Σ) is a orthogonal free boundary
minimal hypersurface. A. Ros and E. Vergasta obtain results on the stability
of solutions of this isoperimetric problem in the case where M is compact and
convex, see [16].
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We prove, using properties of eigenvalues and eigenfunctions of the Jacobi
operator Jϕ of ϕ, which is interpreted as the linearization of the mean cur-
vature function Hϕt at ϕ0 (see Section 2.3), that if Dim(Ker(Jϕ)) = 0, or if
Dim(Ker(Jϕ)) = 1 and, for f ∈ Ker(Jϕ), f 6= 0,

∫
Σ
f volϕ∗(g) 6= 0, ϕ has

a free boundary CMC deformation and this is unique up to diffeomorphism.
Our work is inspired on the article by Miyuki Koiso (see [11]), who studies
the case for CMC surfaces in R3 with fixed boundary. Also, we have used the
results of the work of Bettiol-Piccione-Santoro ([6]) who studies deformations
of hypersurfaces of constant mean curvature of free limit whose Jacobi oper-
ator is degenerate due to symmetries of the environmental space. Our first
perturbation existence theorem, when the eigenvalues of Jϕ0

are non-zero, is
the following:

Theorem 4.2. Let ϕ0 ∈ Cj+1,α(Σ,M) be a free boundary CMC immersion,
with mean curvature H0. Suppose that dim(ker(Jϕ0

)) = 0, that is, the eigenval-

ues of the problem Jϕ0
(f) = λf , f ∈ Cj,α∂ (Σ0), are nonzero. Then, there is a

neighborhood Î of H0 ∈ R and a unique injective C1 mapping, ζ : Î → Cj,α∂ (Σ0),
such that ζ(H0) = 0 and ϕζ(H) is a free boundary CMC immersion with mean
curvature H.

Moreover, if ψ : Σ → M is a free boundary CMC immersion sufficiently
close to ϕ0, in the topology of Cj,α, then ψ must be equal (up to diffeomor-
phisms) to some ϕζ(H).

Now, if Jϕ0
has some eigenvalue equal to zero, then we have the following

result:

Theorem 4.3 Let ϕ0 ∈ Cj+1,α(Σ,M) be a free boundary CMC immersion,
with mean curvature H0. Suppose that:

• dim(ker(Jϕ0
)) = 1. This is, λ = 0 is an eigenvalue of multiplicity 1 for

Jϕ0 , and

•
∫

Σ0
f0 volϕ∗

0(g) 6= 0 for some f0 ∈ ker(Jϕ0
)− {0}.

Then there exist a neighborhood W ⊂ ker(Jϕ0
) of 0 and a unique injective map

C1

(ξ, η) : W −→ (Cj,α∂ (Σ0) ∩ ker(Jϕ0)⊥)× R,

such that (ξ, η)(0) = (0, H0) and such that ϕf+ξ(f) : Σ→M , with f ∈W , is a
free boundary CMC immersion, with mean curvature η(f).

Moreover, if ψ : Σ → M is a free boundary CMC immersion sufficiently
close to ϕ0, in the topology of Cj,α, then Y must be equal (up to diffeomor-
phisms) to some ϕf+ξ(f).

In both cases, we also obtain uniqueness in this perturbation, up to param-
eterizations.
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4 CARLOS WILSON RODRı́GUEZ CÁRDENAS

Now, regarding the stability of the free boundary CMC hypersurfaces, we
obtained the following result, where λ1 < λ2 ≤ ... are the eigenvalues of Jϕ0

(see remark 4.1):

Theorem 5.4. Let ϕ0 : Σ → M be a free boundary CMC immersion. Let λi,
i ≥ 1 be the eigenvalues Jϕ0

.

(1) If λ1 ≥ 0, then ϕ0 is stable.

(2) If λ1 < 0 < λ2, then there is a unique function κ ∈ Cj,α(Σ) such that
J(κ) = 1 and we have that:

(2-a) If
∫

Σ
κ volϕ∗

0(g) ≤ 0, then ϕ0 is stable.

(2-b) If
∫

Σ
κ volϕ∗

0(g) > 0, then ϕ0 is unstable.

(3) If λ1 < 0 = λ2, then we have:

(3-a) If there exist a λ2-eigenfunction f2 such that
∫

Σ
f2 volϕ∗

0(g) 6= 0, then
ϕ0 is unstable.

(3-b) If
∫

Σ
h2 volϕ∗

0(g) = 0 for all λ2-eigenfunction h2, then there exist a

unique function h̄2 ∈ (ker(Jϕ0))⊥ such that J(h̄2) = 1 and

(3-b-i) If
∫

Σ
h̄2 volϕ∗

0(g) ≤ 0, then ϕ0 is stable.

(3-b-ii) If
∫

Σ
h̄2 volϕ∗

0(g) > 0, then ϕ0 is unstable

(4) If λ2 < 0, then ϕ0 is unstable.

For both cases (2) and (3) the calculation of eigenvalues and integrals of
the eigenfunctions can be difficult. In this sense, the following criterion gives us
a geometric interpretation of stability based on the existence of a deformation
family.

Corollary 5.6. Let ϕ : Σ → M be a free boundary CMC immersion of class
Cj+1,α. We assume that λ1 < 0 ≤ λ2. If there exist a deformation ϕt of ϕ,
−ε < t < ε, with ϕ0 = ϕ, such that ϕt is a free boundary CMC immersion
of class Cj,α for all t ∈ (−ε, ε), and such that dHt

dt |t=0 = H ′0 = constant 6= 0,
where Ht is the constant mean curvature of ϕt and Vt is the volume of ϕt, we
have that:

(1) If H ′0V
′
0 ≤ 0, then ϕ is stable,

(2) if H ′0V
′
0 > 0, then ϕ is unstable.

If there is no such deformation, then ϕ is unstable
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2. Preliminaries

Throughout this paper we will consider M as a (n+ 1)-dimensional differential
manifold with smooth boundary ∂M 6= ∅ and Σ as n-dimensional differential
manifold with smooth boundary ∂Σ 6= ∅. In this section we introduce the
concepts of admissibility and orthogonality of hypersurfaces with boundary in
a manifold with smooth boundary, we will give the definition of mean curvature
and free boundary constant mean curvature (CMC) hypersurface.

2.1. Orthogonal submanifolds and mean curvature

Definition 2.1. Let ϕ : Σ → M be an embedding. We identify ϕ with its
image ϕ(Σ) ⊂M . ~η∂M is the outer unit normal field along the boundary of M .
We call ϕ admissible if it satisfies (a) and (b), and normal (orthogonal) if it
also satisfies (c), where:

(a) ϕ(Σ) ∩ ∂M = ϕ(∂Σ),

(b) the normal bundle T (ϕ(Σ))⊥ is orientable,

(c) and for each point p ∈ ϕ(∂Σ), ~η∂M (p) ∈ Tpϕ(Σ),

The admissible hypersurface ϕ(Σ) is said to bound a finite volume if

(d) M \ ϕ(Σ) = Ω1 ∪ Ω2, with Ω1 compact and Ω1 ∩ Ω2 = ∅.

If ϕ : Σ→M is an orthogonal admissible embedding, then ϕ(Σ) it is com-
pact and ϕ(Σ) and ∂M are transverse submanifolds (see Appendix 7, Definition
7.2) In this case, we say that ϕ(Σ) is a orthogonal submanifold of M (see Figure
1).

Figure 1. Orthogonal admissible embedding.

Let g be a C∞-riemannian metric on M and ϕ0 : Σ → M an orthogonal
immersion. Write Σ0 := ϕ0(Σ). We define the second fundamental form on Σ0

as
IIΣ0(X,Y ) := g(∇XY, ~ηΣ0

), (1)
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6 CARLOS WILSON RODRı́GUEZ CÁRDENAS

where ~ηΣ0
is the unit normal vector field to Σ0 in the orientable normal bundle,

∇ is the Levi-Civita connection in M , and X,Y are vector fields in TΣ0.

The mean curvature function HΣ0
: Σ0 → R is defined as the trace of the

second fundamental form IIΣ0 . The mean curvature vector of Σ0 is defined as
~HΣ0 = HΣ0~ηΣ0 . If HΣ0 is constant, Σ0 is called a constant mean curvature
hypersurface (or CMC hypersurface), and if HΣ0 = 0, Σ0 is a minimal hyper-
surface.

2.2. Variational problem

In the theory of variational problems it is known that the hypersurfaces with
CMC of M minimize the area among all hypersurfaces enclosing a fixed volume.
In the case where ∂Σ is allowed to move freely along ∂M , the variational
problem is called free boundary CMC problem. The solutions of this problem
are orthogonal hypersurfaces with CMC which are called free boundary CMC
hypersurfaces. We introduce the following notation:

• Emb∂(Σ,M) is the space of admissible embeddings of Σ in M ,

• Emb∂⊥(Σ,M) ⊂ Emb∂(Σ,M) is the subspace of normal admissible em-
beddings and bounding a finite volume.

We have (see Barbosa-do Carmo [3]) that ϕ0 ∈ Emb∂⊥(Σ,M) have CMC H
if only it if is a critical point of the funtional fH : Emb∂⊥(Σ,M)→ R, defined
by

fH(ϕ) =

∫
Σ

volϕ∗(g) −H
∫

Ω1

volg, (2)

Note that if H = 0 then ϕ0(Σ) has the minimal volume over all hypersurfaces
ϕ(Σ), ϕ ∈ Emb∂(Σ,M). In this case, ϕ0 is said to be a free boundary minimal
hypersurface.

2.3. Jacobi operator

Let ϕ0 ∈ Emb∂⊥(Σ,M), Σ0 = ϕ0(Σ). Cj(Σ0) is the set of functions f : Σ0 → R
with continuous derivatives to j order, where j could be infinite. The second-
order linear differential operator Jϕ0

: Cj(Σ0) → Cj−2(Σ0), j ≥ 2, defined
by

Jϕ0
(f) := ∆Σ0

f −
(
||IIΣ0 ||2HS + Ricg(ηΣ0

, ηΣ0
)
)
f, (3)

is called the Jacobi operator. Here, ∆Σ0
is the (nonnegative) laplacian of (Σ0, γ),

||IIΣ0 ||2HS is the square of Hilbert-Schmidt norm (see Appendix 7, Definition
7.3 ) of the second fundamental form of ϕ0 and Ricg the Ricci tensor associated
with g. A Jacobi scalar field along of ϕ0 is a smooth function f ∈ Cj(Σ0) such
that Jϕ0(f) = 0.
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We consider a smooth variation of ϕ0 as follows:

Φ : Σ× (−ε, ε)→M, ε > 0, (4)

such that Φ(Σ, s) = ϕs(Σ) = Σs ⊂ M , ϕs ∈ Emb∂(Σ,M) with CMC Hs.
Let Φs0 = ∂

∂s

∣∣
s=0

Φ be the corresponding variational vector field. Then ξ0 =
g(Φs0 , ~ηΣ0) satisfies

d

ds

∣∣∣
s=0

Hs = ∆Σ0ξ0 −
(
||IIΣ0 ||2HS + Ricg(ηΣ0 , ηΣ0)

)
ξ0 = Jϕ0(ξ0), (5)

Then Jϕ0
represents the second variation d2fH(ϕ0) of fH at the critical point

ϕ0, with respect to the L2 inner product.

Remark 2.2. Note that ξ0 is a Jacobi field exactly when d
ds

∣∣∣
s=0

Hs = 0.

The proof of the following lemma is found in Rodŕıguez [8], Lemma 2.2.

Lemma 2.3. If each ϕs is normal, that is ϕs ∈ Emb∂⊥(Σ,M), with CMC,
then ξ0 satisfies the so-called linearized free boundary condition

g(∇ξ0, ~η∂M ) + II∂M (~ηΣ0
, ~ηΣ0

)ξ0 = 0, (6)

where ∇ξ0 is the g-gradient of ξ0 in Σ0.

2.4. Regularity

As we are interested in proving the existence of deformations by normal ad-
missible hypersurfaces from a free boundary CMC hypersurface, this in a small
enough neighborhood in the space of the admissible embeddings, it is necessary
to establish a certain regularity condition for these embeddings. To establish
this it is necessary that the Jacobi operator has the condition of being Fredholm
with a certain index (see Appendix 7, Definition 7.5). This property is obtained
if a regularity condition of type Hölder Cj,α (see Appendix 7, Definition 7.4) is
established,with j ≥ 2 and some α ∈ (0, 1). We can endow space of functions
defined from Σ to R, Cj,α(Σ), with regularity Cj,α, with the norm

‖f‖Cj,α = ‖f‖Cj + max
|β|=j

∣∣Dβf
∣∣
C0,α , (7)

where β ranges over multi-indices and

‖f‖Cj = max
|β|≤j

sup
x∈Σ

∣∣Dβf(x)
∣∣ , |Df |C0,α = sup

x 6=y∈TΣ

|Df(x)−Df(y)|
||x− y||α

.

It is well-known that Cj,α(Σ) endowed with this norm is a (nonseparable)
Banach space1.

1Will be called Cj-Whitney type Banach space to sub-space Cj,α(Σ) endowed with the
metric 7, with the property that the ‖ · ‖Cj,α -convergence of a sequence implies convergence
in the weak Whitney Cj-topology, see [5] and [7]. For definition and properties of Whitney
Cj-topology see [17]
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We define the space

Cj,α∂ (Σ0) := {f ∈ Cj,α(Σ0) : g
(
∇f, η∂M

)
+ II∂M

(
~nΣ0 , ~nΣ0

)
f = 0}. (8)

The restriction of Jϕ0
Jϕ0

: Cj,α∂ (Σ) → Cj−2(Σ) is a Fredholm operator of
index zero (see [15, section 2]).

Remark 2.4. When the operator fH defined in (2) is considered on the space
of Cj,α-embeddings, the Jacobi operator acts on the corresponding tangent
space at ϕ0, which can be identified with Cj,α∂ (Σ0) (see Proposition 2.8).

Since Jϕ0
is the representation of the second variation of the area functional,

we can define the following.

Definition 2.5. The embedding ϕ0 ∈ Emb∂⊥(Σ,M) with g-CMC is called
non-degenerate if Jϕ0

∣∣
Cj,α∂ (Σ)

is an isomorphism of Banach spaces, i.e. ker Jϕ0
∩

Cj,α∂ (Σ) = ∅.

2.5. The smooth structure of the set of orthogonal embeddings

The appropriate setup for studying the set of submanifolds of a diffeomorphism
type is obtained by considering the notion of unparameterized embeddings. Un-
parameterized embeddings are the elements of the quotient space generated by
right group action of diffeomorphisms on the space of embeddings of Σ into M .
The area and volume functional are invariant by this action.

Definition 2.6. Two embeddings ϕ1 and ϕ2 from Σ in M will be equivalent
if there exists a diffeomorphism φ : Σ → Σ such that ϕ2 = ϕ1 ◦ φ, i.e., if they
are different parametrizations of the same submanifold of M diffeomorphic to
Σ. For ϕ ∈ Emb(Σ,M), we denote by [ϕ] the class of all embedding that are
equivalent to ϕ. We say that [ϕ] is a unparametrized embedding of Σ in M .

Definition 2.7. We define the following sets:

• E(Σ,M) := {[ϕ] : ϕ is a embedding of order Cj,α},

• E∂(Σ,M) := {[ϕ] ∈ E(Σ,M) : ϕ(Σ) ∩ ∂M = ϕ(∂Σ)},

• Let g, as before, be a C∞-riemannian metric in M ,

E⊥∂,g(Σ,M) := {[ϕ] ∈ E∂(Σ,M) : ϕ is g − orthogonal}.

There is a smooth Banach manifold structure, of infinite dimension, for a
sufficiently small neighborhood of [ϕ0] ∈ E⊥∂,g(Σ,M) in some suitable topology.

Proposition 2.8. [6, Proposition 4.1] Let Σ be a compact manifold with boun-
dary and ϕ0 be an admissible smooth normal embedding. Let U ⊂ E⊥∂,g(Σ,M)
be a sufficiently small neighborhood of [ϕ0], then U can be identified with an
infinite-dimensional smooth submanifold N of the Banach space Cj,α(Σ), with
0 ∈ N corresponding to [ϕ0], such that T0N = Cj,α∂ (Σ) (see 8).
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By Proposition 2.8 we have a bijection f 7→ ϕf from a suitable neighborhood
U of 0 ∈ Cj,α(Σ0) to a neighborhood V of ϕ0 ∈ Cj,α(Σ,M) defined by

ϕf (p) := expϕ0(p)

(
f(p)~nΣ0

(p)
)
, (9)

where exp is the exponential map over Σ0 associated with g.

3. Analytical preliminaries

Following the same notation, Σn and Mn+1 will be smooth manifolds, with
smooth boundaries ∂Σ and ∂M respectively. Let g be a C∞-riemannian metric
in M , ϕ0 : Σ → M an free boundary CMC immersion and H0 the mean
curvature of ϕ0. Let ~nΣ0

be the unit normal vector field to Σ0 = ϕ0(Σ) in the
orientable normal bundle and ~n∂M the unit normal vector field to ∂M . Also
let Cj,α∂ (Σ0) be the space of functions Cj,α that complies with the linearized

free boundary condition g(∇f, ~n∂M ) + II∂M (~nΣ0
, ~nΣ0

)f = 0, defined in (8). We
have that Cj,α∂ (Σ0) ⊂ L2(Σ0).

The following lemma shows that there exists a family of orthogonal hyper-
surfaces in a suitable neighborhood of ϕ0.

Lemma 3.1. Let Σ0 = ϕ0(Σ) be a free boundary CMC hypersurface and
f̄ ∈ Cj,α∂ (Σ0). Then, there is a differentiable map o : (−ε, ε)→ Cj,α(Σ0), with
o(t)
t −−−→t→0

0, such that ϕt : Σ0 →M , defined by

ϕt(p) := expϕ0(p)

(
[tf̄(p) + o(t)(p)]~nΣ0

(p)
)
,

is orthogonal (in the sense of definition 2.1 (c))

Proof. By Proposition 2.8 there is a bijective correspondence between a neigh-
borhood U ⊂ E⊥∂ (Σ,M) of [ϕ0] and a infinite-dimensional smooth submani-
fold N of the Banach space Cj,α(Σ), with 0 ∈ N corresponding to [ϕ0] and
T0N = Cj,α∂ (Σ). So, there is a diffeomorphism, given by the Inverse Mapping
Theorem (see 7.6), between U and a neighborhood V ⊂ T0N of 0, such that
ϕt 7→ tf̄ . On the other hand, expϕ0

also generates a diffeomorphism between
U and some neighborhood V ′ ⊂ T0N , such that ϕt 7→ tḡt, with g0 = 0 and
g′0 = f̄ . Since V and V ′ are diffeomorphic we have gt = tf̄ + o(t), where o(t) is

differentiable and o(t)
t → 0 if t→ 0. �X

Remember that the restriction of the Jacobi operator, (which we defined
by the formula Jϕ0

(f) := ∆Σ0
f −

(
||IIΣ0 ||2HS +Ricg(~nΣ0

, ~nΣ0
)
)
f), to the closed

subspace Cj,α∂ (Σ0) is a Fredholm operator of index zero that takes values in
Cj−2,α(Σ0).

To simplify the notation we set

J = Jϕ0
: Cj,α∂ (Σ0)→ Cj−2,α(Σ0).
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Let E = Ker(J) and E⊥ the orthogonal of E in L2(Σ).

By definition ∆Σ0
f = Div(−∇f) and if V is a vector field, then Div(V ) =

∇·V . Now, if h is a scalar field we have Div(hV ) = ∇h ·V +hDiv(V ). On the
other hand by the Gauss theorem (divergence theorem)∫

Σ

Div(hV ) dΣ =

∫
∂Σ

hV · ~nΣ d∂Σ

Proposition 3.2. J is symmetric with the L2(Σ0) inner product.

Proof. From the definition of Jϕ0
we see that it is sufficient to prove that ∆Σ0

is symmetric. Let f, h ∈ Cj,α∂ (Σ0). Then, by the divergence theorem∫
Σ0

∆Σ0(f)h dΣ0 =

∫
Σ0

Div(−∇f)h dΣ0

=−
∫

Σ0

∇f · ∇h dΣ0
−
∫
∂Σ0

h
( ∂f

∂~n∂M

)
d∂Σ0

=−
∫

Σ0

∇f · ∇h dΣ0
−
∫
∂Σ0

h
(
g(∇f, ~n∂M )

)
d∂Σ0

=−
∫

Σ0

∇f · ∇h dΣ0
+

∫
∂Σ0

h
(
fII∂M (~nΣ0

, ~nΣ0
)
)
d∂Σ0

=−
∫

Σ0

∇h · ∇f dΣ0
+

∫
∂Σ0

f
(
hII∂M (~nΣ0

, ~nΣ0
)
)
d∂Σ0

=

∫
Σ0

∆Σ0(h)f dΣ0

�X

Lemma 3.3. Let λ be a real number. Let

J(f)− λf = h (10)

a equation, where h ∈ Cj−2,α(Σ0). Then (10) has a solution in the following
cases:

(a) If λ is not an eigenvalue of J , then (10) has a unique solution in Cj,α∂ (Σ0)
for all h ∈ Cj−2,α(Σ0)

(b) If λ is an eigenvalue of J , Eλ ⊂ Cj,α∂ (Σ0) is the eigenspace associated to

λ and E⊥λ ⊂ L2(Σ0) ∩ Cj,α∂ (Σ0) the orthogonal space to Eλ, then (10)

have solution in Cj,α∂ (Σ0) if and only if h ∈ E⊥λ , this is,∫
Σ0

hσ volϕ∗
0(g) = 0,

for all σ ∈ Eλ.
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STABILITY AND DEFORMATION CRITERIA IN FREE BOUNDARY CMC IMMERSIONS11

Proof. For (a), we have that J is a Fredholm operator of index zero. Then so
is the operator (J − λ) : Cj,α∂ (Σ0) → Cj−2,α(Σ0) (as a sum of Fredholm and
compact operators). If λ is not an eigenvalue then (J−λ) is injective and hence
also surjective (Codim(J − λ) = 0).

For (b), let h ∈ Cj−2,α(Σ0) be such that h = J(f) − λ(f) for some f ∈
Cj,α∂ (Σ0) and let σ ∈ Eλ. Then,∫

Σ0

hσ volϕ∗
0(g) =

∫
Σ0

(J(f)− λf)σ volϕ∗
0(g)

=

∫
Σ0

J(f)σ − λσf volϕ∗
0(g)

=

∫
Σ0

J(f)σ − J(σ)f volϕ∗
0(g)

= 0.

The equality holds because J is symmetric (by proposition 3.2). Therefore
Im(J − λ) ⊂ E⊥λ .

Again, as (J − λ) is Fredholm of index zero, Im(J − λ) is closed and

Codim(Im(J − λ)) = Dim(Ker(J − λ)) = Dim(Eλ),

and since Im(J − λ) ⊂ E⊥λ , then Im(J − λ) = E⊥λ . �X

4. Existence and uniqueness of CMC deformations

Since the existence of deformations, which we deal with in this section, and the
stability criteria, which are presented in section 5, depend on the eigenvalues
of the Jacobi operator, it is important to note the following:

Remark 4.1. In the problem (11), the eigenvalues of J(f) = λf are a count-
able set (Smale, [[18, lemma 1]), such that λ1 < λ2 ≤ ..., with λi → ∞ if
i → ∞. Each eigenfunction is in Cj+1,α

∂ (Σ) ( Gilbarg-Trudinger, [9, Theorem
8.13], and Ladyzhenskaya-Ural’tseva, [13, Chap. 3, Theorem 12.1]). And we can
choose an orthonormal basis B = {fi} for L2(Σ) where each fi is associated to
λi. The first eigenvalue λ1, which has a special role in the spectral theory of J ,
is always simple, i.e., of multiplicity 1, and the λ1-eigenfunction are positive.
Let fk be a (non zero) eigenfunction corresponding to the eigenvalue λk, for
some k ≥ 1. The connected components of the set Σ \ f−1

k (0) are called the
nodal domains of fk. Then, the number of nodal domains of fk is less than
or equal to k; this is known as Courant’s nodal domain theorem (see [2]).

Next, we present our first perturbation theorem. Here we assume that the
kernel of the Jacobi operator is trivial. The perturbation obtained is unique,
up to parameterizations.
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12 CARLOS WILSON RODRı́GUEZ CÁRDENAS

Theorem 4.2. Let ϕ0 ∈ Cj+1,α(Σ,M) be a free boundary CMC immersion,
with mean curvature H0. Suppose that Dim(E) = 0, that is, the eigenvalues of
problem {

J(f) = λf

f ∈ Cj,α∂ (Σ0)
(11)

are nonzero. Then, there is a neighborhood Î of H0 ∈ R and a unique injective
C1 mapping, ζ : Î → Cj,α∂ (Σ0), such that ζ(H0) = 0 and ϕζ(H) is a free
boundary CMC immersion with mean curvature H.

Moreover, if ψ : Σ → M is a free boundary CMC immersion sufficiently
close to ϕ0, in the topology of Cj,α, then ψ must be equal (up to diffeomor-
phisms) to some ϕζ(H).

Proof. Let U be a suitably small neighborhood of 0 ∈ Cj,α∂ (Σ0) such that ϕf
is orthogonal to M for each f ∈ U (see Lemma 3.1).

We define the map

F : U × R −→ Cj−2,α(Σ0)

(f,H) 7→ F (f,H) = H −Hf ,

where Hf is the mean curvature of ϕf . Then we have that

i) F (0, H0) = 0 and

ii) ϕf has CMC if and only if F (f,H) = 0 for some H ∈ R.

Now,
∂F

∂f
(0, H0) : Cj,α∂ (Σ0)→ Cj−2,α(Σ0)

is given by
∂F

∂f
(0, H0)(h) = J(h).

Let us see that if 0 is not an eigenvalue of J(f) = λf then ∂F
∂f (0, H0) is bijective.

Injectivity is immediate because Dim(KerJ) = Dim(E) = 0. Now, applying
part (a) of Lemma 3.3 with λ = 0, surjectivity is obtained.

Thus, the conditions for applying the Implicit Mapping Theorem (see Ap-
pendix 7, Theorem 7.7) are satisfied for F . Then there is a neighborhood Î of
H0 and a map ζ : Î → U such that ζ(H0) = 0 and F (ζ(H), H) = 0. So ϕζ(H)

is a free boundary CMC immersion with mean curvature H. �X

A second result on existence of perturbations is given below. Here we assume
that the Jacobi operator kernel is generated by a single non-zero function in
Cj+1,α
∂ (Σ). Again, we get uniqueness up to parameterizations.
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Theorem 4.3. Let ϕ0 ∈ Cj+1,α(Σ,M) be a free boundary CMC immersion,
with mean curvature H0. Suppose that:

(1) Dim(E) = 1. This is, λ = 0 is an eigenvalue of multiplicity 1 for the
problem (11), and

(2)
∫

Σ0
f0 volϕ∗

0(g) 6= 0 for some f0 ∈ E − {0}.

Then there exist a neighborhood W ⊂ E of 0 and a unique injective C1 map

(ξ, η) : W −→ (Cj,α∂ (Σ0) ∩ E⊥)× R,

such that (ξ, η)(0) = (0, H0) and such that ϕf+ξ(f) : Σ → M , with f ∈ W , is
an free boundary CMC immersion, with mean curvature η(f).

Moreover, if ψ : Σ → M is an free boundary CMC immersion sufficiently
close to ϕ0, in the topology of Cj,α, then ψ must be equal (up to diffeomor-
phisms) to some ϕf+ξ(f).

Remark 4.4. Since there is a biunivocal relation between a subset of the space
of functions Cj,α∂ (Σ0) and a subset of the embeddings E⊥∂,g(Σ0,M), as shown in
proposition 2.8, it is clear that the subscript f + ξ(f) corresponds to a function
in Cj,α∂ (Σ0), according to the definition of (ξ, η), which is a linear combination
between the Jacobi field f and an orthogonal function to the kernel of J that
generates a unique hypersurface ϕf+ξ(f) that has constant mean curvature
η(f).

Proof. We take F : U × R −→ Cj−2,α(Σ0), defined as F (f,H) = H −Hf , as
in the proof of Theorem 4.2. We have then:

i) F (0, H0) = 0 and

ii) ϕf have CMC if and only if F (f,H) = 0 for some H ∈ R.

Now we define the following map:

F̄ : (U ∩ E)× (U ∩ E⊥)× R −→ Cj−2,α(Σ0)

(f1, f2, H) 7−→ F̄ (f1, f2, H) = F (f1 + f2, H).

Thus,
F̄ (0, 0, H0) = 0.

Let us see that

∂F̄

∂(f2, H)
(0, 0, H) : (Cj,α∂ (Σ0) ∩ E⊥)× R −→ Cj−2,α(Σ0)

is bijective.
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14 CARLOS WILSON RODRı́GUEZ CÁRDENAS

We have that

∂F̄

∂(f2, H)
(0, 0, H)(f,H) = H − J(f)

and

Ker(
∂F̄

∂(f2, H)
(0, 0, H)) = {(f,H) : H − J(f) = 0}

i.e. if (f2, H) ∈ Ker( ∂F̄
∂(f2,H) (0, 0, H)), then J(f2) = H. Let f0 ∈ E. Then, by

(b) in Lemma 3.3 we have

H

∫
Σ0

f0 volϕ∗
0(g) = 0,

which implies that H = 0, i.e., f2 ∈ E. But f2 ∈ E⊥, so f2 = 0. Therefore,
Ker( ∂F̄

∂(f2,H) (0, 0, H)) = {(0, 0)} and we have injectivity.

To prove surjectivity, we take h ∈ Cj−2,α(Σ0) and set

H =

∫
Σ0
hf0 volϕ∗

0(g)∫
Σ0
f0 volϕ∗

0(g)

.

Again by (b) in Lemma 3.3 there exist f ∈ Cj,α∂ (Σ0) such that

J(f) = h−H.

Now, we decompose f = f1 + f2 in such a way that f1 ∈ E, f2 ∈ E⊥. So,

J(f2) = h−H.

Then,

h = H − J(f2) =
∂F̄

∂(f2, H)
(0, 0, H)(f2, H).

Now we can use The Implicit Mapping Theorem in F̄ : (U ∩E)× (U ∩E⊥)×
R −→ Cj−2,α(Σ0). Then, there exists a neighborhood W ⊂ E ∩ U of 0 and a
map

(ξ, η) : W −→ (U ∩ E⊥)× R,

such that
(ξ, η)(0) = (0, H0)

and such that, for all f ∈W ,

0 = ψ(f, (ξ, η)(f)) = ψ(f, ξ(f), η(f)) = φ(f + ξ(f), η(f)).

Thus, ϕf+ξ(f) have CMC η(f). If W is suitable small then (ξ, η) is unique. �X
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5. Stability Criteria

Let ϕt : Σ → M be a variation of ϕ0, −ε < t < ε, such that ϕt is a free
boundary CMC immersion. Let A(t) and V (t) be the area and volume of ϕt
respectively. We will say that ϕt is volume-preserving if V (t) = V (0) for all
t ∈ (−ε, ε). Remember that ϕt have CMC Ht if only if it is a critical point of
funtional

f(t) = A(t)−HtV (t) =

∫
Σ

volϕ∗
t (g) −Ht

∫
Ωt

volg,

where Ωt is the volume enclosed by ϕt. Let ξt = g(∂ϕt∂t , ~nΣt), then we have (see
[1, Appendix])

A′(t) =

∫
Σ

Htξt volϕ∗
t (g).

Then,

A′′(0) =

∫
Σ

J(ξ0)ξ0 volϕ∗
0(g).

Also,

V ′(t) =

∫
Σ

ξt volϕ∗
t (g).

Definition 5.1. A free boundary CMC immersion ϕ : Σ → M is said to be
stable if only if A′′(0)(f) ≥ 0, for all f ∈ Cj,α∂ (Σ) such that

∫
Σ
fvolϕ∗

t (g) = 0.
When ϕ is not stable, it is said to be unstable.

For the proof of our stability criteria we need the following Smale’s Lemma.

Lemma 5.2. [18, lemma 4][Smale Lemma]

a) Let H be the prehilbert space Hk0(E) with the inner product 〈, 〉L and BL
quadratic form on H, BL(h) = BL(h, h). Then BL has a minimum λ1 at
f1 on the unit sphere S of H and on {f1, ..., fq−1}⊥ ∩S has its minimum
value λq and fq.

b) Let d(v) be the minimum of BL on V ⊥∩S, where V is a finite dimensional
subspace of H. Then

λn = maxdimV <nd(V ).

Remark 5.3. As stated in remark 4.1, by Smale’s Lemma 1 (Smale, [[18,
lemma 1]), there exists an orthonormal basis B = {fi} for L2(Σ), with each fi
associated to the respective eigenvalue λi of J . Furthermore, these eigenvalues
satisfy the inequality λ1 < λ2 ≤ ..., with λi →∞ as i→∞. Now, in Lemma 5.2
(which corresponds to Smale’s Lemma 4, ([18, lemma 4][Smale Lemma])), the
way to generate these proper values of J is described. In this case, we defined
the quadratic form

I(f) =

∫
Σ

J(f)f volϕ∗
0(g) (12)
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16 CARLOS WILSON RODRı́GUEZ CÁRDENAS

and this is applied to functions of norm 1.

Thus, we can write our first stability criterion in the following way:

Theorem 5.4. Let ϕ0 : Σ → M be a free boundary CMC immersion. Let λi,
i ≥ 1 be the eigenvalues Jϕ0

.

(1) If λ1 ≥ 0, then ϕ0 is stable.

(2) If λ1 < 0 < λ2, then there is a unique function κ ∈ Cj,α(Σ) such that
J(κ) = 1 and we have that:

(2-a) If
∫

Σ
κ volϕ∗

0(g) ≤ 0, then ϕ0 is stable.

(2-b) If
∫

Σ
κ volϕ∗

0(g) > 0, then ϕ0 is unstable.

(3) If λ1 < 0 = λ2, then we have:

(3-a) If there exist a λ2-eigenfunction f2 such that
∫

Σ
f2 volϕ∗

0(g) 6= 0, then
ϕ0 is unstable.

(3-b) If
∫

Σ
h2 volϕ∗

0(g) = 0 for all λ2-eigenfunction h2, then there exist a

unique function h̄2 ∈ (ker(Jϕ0
))⊥ such that J(h̄2) = 1 and

(3-b-i) If
∫

Σ
h̄2 volϕ∗

0(g) ≤ 0, then ϕ0 is stable.

(3-b-ii) If
∫

Σ
h̄2 volϕ∗

0(g) > 0, then ϕ0 is unstable

(4) If λ2 < 0, then ϕ0 is unstable.

Proof. By Lemma 5.2 we have that:

λ1 = I(f1) =

∫
Σ

J(f1)f1 volϕ∗
0(g) = min

{
I(f) :f ∈ Cj,α∂ (Σ) and (13)∫

Σ

f2 volϕ∗
0(g) = 1

}
,

λi = I(fi) =

∫
Σ

J(fi)fi volϕ∗
0(g) = min

{
I(f) : f ∈ Cj,α∂ (Σ), (14)∫

Σ

f2 volϕ∗
0(g) = 1, and

∫
Σ

ffk volϕ∗
0(g) = 0, fork ∈ {1, ..., i− 1}

}
,

i = 2, 3, ....

So, if λ1 ≥ 0 we have (I).

Now we assume that λ1 < 0. We know that f1 does not change sign (see
Remark 4.1), then ∫

Σ

f1 volϕ∗
0(g) 6= 0.
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For κ ∈ Cj+1,α
∂ (Σ), let

a = −
∫

Σ
κ volϕ∗

0(g)∫
Σ
f1 volϕ∗

0(g)

, and ξ = af1 + κ.

Then,∫
Σ

ξ volϕ∗
0(g) =

∫
Σ

af1 + κ volϕ∗
0(g)

=

∫
Σ

−
∫

Σ
κ volϕ∗

0(g)f1 + κ
∫

Σ
f1 volϕ∗

0(g)∫
Σ
f1 volϕ∗

0(g)

=
1∫

Σ
f1 volϕ∗

0(g)

[
−
∫

Σ

κ volϕ∗
0(g)

∫
Σ

f1 volϕ∗
0(g)

+

∫
Σ

κ volϕ∗
0(g)

∫
Σ

f1 volϕ∗
0(g)

]
= 0

By Lemma 3.3-(a) (with λ = 0 and h = 1) there exists κ ∈ Cj+1,α
∂ (Σ) such

that J(κ) = 1. Using the symmetry of J we have:

I(ξ) =

∫
Σ

ξJ(ξ) volϕ∗
0(g) =

∫
Σ

(af1 + κ)J(af1 + κ) volϕ∗
0(g)

=

∫
Σ

[
a2f1J(f1) + af1J(κ) + aκJ(f1) + κJ(κ)

]
volϕ∗

0(g)

= a2λ1

∫
Σ

f2
1 volϕ∗

0(g) + 2a

∫
Σ

f1J(κ) volϕ∗
0(g)

+ a

∫
Σ

[
κJ(f1)− f1J(κ)

]
volϕ∗

0(g) +

∫
Σ

κ volϕ∗
0(g)

= a2λ1 + 2a

∫
Σ

f1J(κ) volϕ∗
0(g) +

∫
Σ

κ volϕ∗
0(g)

= a2λ1 −
∫

Σ

κ volϕ∗
0(g).

Since λ1 < 0, then I(ξ) < 0 if
∫

Σ
κ volϕ∗

0(g) > 0. Thus, (2-b) is satisfied.

Now, if κ = f2, f2 ∈ Eλ2
, then

I(ξ) = a2λ1

∫
Σ

f2
1 volϕ∗

0(g) + 2a

∫
Σ

f1J(f2) volϕ∗
0(g)

+ a

∫
Σ

[
f2J(f1)− f1J(f2)

]
volϕ∗

0(g) +

∫
Σ

f2J(f2) volϕ∗
0(g)

= a2λ1

∫
Σ

f2
1 volϕ∗

0(g) + 2aλ2

∫
Σ

f1f2 volϕ∗
0(g) + λ2

∫
Σ

f2
2 volϕ∗

0(g)

= λ1

(
∫

Σ
f2 volϕ∗

0(g))
2

(
∫

Σ
f1 volϕ∗

0(g))2
+ λ2,
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therefore if
∫

Σ
f2 volϕ∗

0(g) 6= 0 and λ2 = 0, then I(ξ) < 0, so we have (3-a), e.i.,
ϕ0 is unstable. If λ2 < 0, (4) is fulfilled.

To proof (2-a), we define:

E1 = {af1 : a ∈ R}, E⊥1 =
{
f ∈ Cj+1,α

∂ (Σ) :

∫
Σ

f1f volϕ∗
0(g) = 0

}
.

Again by Lemma 3.3 -(a), there is a function κ ∈ Cj+1,α
∂ (Σ) such that J(κ) = 1.

If
∫

Σ
κ volϕ∗

0(g) ≤ 0, then

I(κ) =

∫
Σ

κJ(κ) volϕ∗
0(g) =

∫
Σ

κ volϕ∗
0(g) ≤ 0.

As

λ2 = I(f2) = min
{
I(f) : f ∈ Cj,α∂ (Σ) ∩ E⊥1 ,

∫
Σ

f2 volϕ∗
0(g) = 1

}
and λ2 > 0, we have that κ /∈ E⊥1 . Therefore, for any ξ ∈ Cj,α∂ (Σ), where∫

Σ
ξ volϕ∗

0(g) = 0, we can write ξ = bκ+ w, b ∈ R, w ∈ E⊥1 . So,

I(ξ) =

∫
Σ

ξJ(ξ) volϕ∗
0(g) =

∫
Σ

(bκ+ w)[bJ(κ) + J(w)] volϕ∗
0(g)

=

∫
Σ

[
b2κJ(κ) + bwJ(κ) + bκJ(w) + wJ(w)

]
volϕ∗

0(g)

= b2
∫

Σ

κ volϕ∗
0(g) + 2b

∫
Σ

wJ(κ) volϕ∗
0(g)

+ b

∫
Σ

κJ(w)− wJ(κ) volϕ∗
0(g) + I(w)

= b2
∫

Σ

κ volϕ∗
0(g) + 2b

∫
Σ

w volϕ∗
0(g) + I(w)

= −b2
∫

Σ

κJ(κ) volϕ∗
0(g) + 2b

∫
Σ

(bκ+ w) volϕ∗
0(g) + I(w)

= −b2I(κ) + I(w)

≥ 0.

Thus, ϕ0 is stable.

Now, under the hypotheses of (3-b), λ2 = 0 and
∫

Σ
h2 volϕ∗

0(g) = 0 for all
λ2-eigenfunctions h2. Let E0 be the eigenspace associated with λ2 = 0, then
E = Ker(J) = E0. By Lemma 3.3-(b) (with h = 1 and λ = 0) there exist a
unique function h̄2 ∈ E⊥ ∩ Cj+1,α

∂ (Σ) such that J(h̄2) = 1. So,

(i) If
∫

Σ
h̄2 volϕ∗

0(g) = 0,

I(h̄2) =

∫
Σ

h̄2J(h̄2) volϕ∗
0(g) =

∫
Σ

h̄2 volϕ∗
0(g) = 0 = λ2.
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Assuming that h̄2 ∈ E⊥1 and since

λ2 = I(f2) = min
{
I(f) : f ∈ Cj,α∂ (Σ) ∩ E⊥1 ,

∫
Σ

f2 volϕ∗
0(g) = 1

}
,

then h̄2 is a λ2-function, e.i., J(h̄2) = 0. This is a contradiction. Therefore,
h̄2 /∈ E⊥1 , So, stability is proved as in (2-a). Similary, if

∫
Σ
h̄2 volϕ∗

0(g) < 0,
stability is also proved as in (2-a).

(ii) If
∫

Σ
h̄2 volϕ∗

0(g) > 0, then the proof is the same as for (2-b). Thus, ϕ0 is
unstable.

�X

The following proposition shows that when the operator Jϕ0
has an eigen-

value equal to zero, this is equivalent to the fact that the function of mean
curvatures Ht, for a free boundary CMC immersions variation, has a critical
point at t = 0.

Proposition 5.5. If {ϕt}−ε<t<ε, is a perturbation of ϕ0, such that ϕt : M → Σ
is a Cj,α free boundary CMC immersion, and dHt

dt |t=0 = H ′0 = 0, where Ht is
the constant mean curvature of ϕt, then some eigenvalue λi of Jϕ0

must vanish.

Conversely, if some eigenvalue λi of Jϕ0
vanishes, and some λj-eigenfuntion

fi satisfies
∫

Σ
fi volϕ∗

0(g) 6= 0, then for every free boundary CMC perturbation
ϕt of ϕ0 we have H ′0 = 0.

Proof. Let ξ0 = g(∂ϕt∂t |t=0, ~nΣ0). We have that J(ξ0) := Jϕ0(ξ0) = H ′0. If
H ′0 = 0, then ξ0 ∈ Ker(J), ξ0 6= 0. Thus, there is some eigenvalue λi = 0.

Conversely, if λi = 0 and fi is a λi-eigenfunction such that
∫

Σ
fi volϕ∗

0(g) =

〈1, fi〉L2(Σ) 6= 0, then 1 /∈ (Ker(J))⊥. Therefore, the only constant function in
the image of J must be 0. Given any free boundary CMC perturbation ϕt of
ϕ0 and ξ0 = g(∂ϕt∂t |t=0, ~nΣo), as J(ξ0) = H ′0 is a constant function in Im(J) we

must have H ′0 = 0. �X

The second stability criteria is given in the following corollary. It’s possible
to check the positivity of the first eigenvalue or the negativity of the second
eigenvalue in Theorem 5.4. However, for cases (2) and (3) the calculation of
the eigenvalues can be quite difficult2. In this sense, the following criterion
facilitates the understanding of the geometric meaning for these cases and it is
based on the existence of families of 1-parameter deformations.

2The difficulty in calculating these eigenvalues starts from the very definition of the Jacobi
operator that involves the calculation of the Laplacian of f and the Hilbert-Schmidt norm
of the second fundamental form of Σ0 that is defined from the Levi-Civita connection. In
addition, the calculation of the integrals can be uncertain.
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Corollary 5.6. Let ϕ : Σ → M a free boundary CMC immersion of class
Cj+1,α. We assume that λ1 < 0 ≤ λ2. If there exists a deformation ϕt of ϕ,
−ε < t < ε, with ϕ0 = ϕ, such that ϕt is a free boundary CMC immersion
of class Cj,α for all t ∈ (−ε, ε), and such that dHt

dt |t=0 = H ′0 = constant 6= 0,
where Ht is the constant mean curvature of ϕt and Vt is the volume of ϕt, then
we have that:

(1) If H ′0V
′
0 ≤ 0, then ϕ is stable;

(2) if H ′0V
′
0 > 0, then ϕ is unstable.

If there is no such deformation, then ϕ is unstable.

Proof. In the case where λ1 < 0 < λ2, by Theorem 4.2 there exists a strictly
monotonous deformation {ϕt}−ε<t<ε, with Ht = t. So, H ′t = 1, in particular
H ′0 = 1. We have that H ′0 = J(ξ0), where ξ0 = g(dϕtdt |t=0, ~nΣ) and V ′0 =∫

Σ
ξ0 volϕ∗

0(g). That way, the conditions of the Theorem 5.4-(2) is fulfilled and
then we have (1) and (2).

Now, if λ1 < 0 = λ2, one of the implications of Proposition 5.5 says that: If
λi = 0, for some i = 1, 2, ..., and, for some fi ∈ Eλi ,

∫
Σ
fi volϕ∗

0(g) 6= 0, then, for
every perturbation {ϕt}t∈I of ϕ0 we have that H ′0 = 0. This is equivalent to: If
λi = 0, for some i = 1, 2, ..., and there is a perturbation {ϕt} of ϕ0 such that
H ′0 6= 0, then, for all fi ∈ Eλi ,

∫
Σ
fi volϕ∗

0(g) = 0. Therefore, since H ′0 = c 6= 0,
c constant, then the conditions for Theorem 5.4-(3-b) are met . So, let’s take
h = 1

c ξ0, we have

J(h) =
1

c
J(ξ0) =

1

c
H ′0 = 1.

Now, J(h) = 1 if only if h = u + h0, where u ∈ E⊥ ∩ Cj+1,α
∂ (Σ) is the only

one such that J(u) = 1, (by Lemma 3.3-(b)), and h0 ∈ E = Eλ2 . So, if we take
h̄2 = h− h0, and as

∫
Σ
h0 volϕ∗

0(g) = 0, we have

H ′0V
′
0 =H ′0

∫
Σ

ξ0 volϕ∗
0(g) = c

∫
Σ

ξ0 volϕ∗
0(g)

=c2
∫

Σ

1

c
ξ0 volϕ∗

0(g) − c2
∫

Σ

h0 volϕ∗
0(g)

=c2
∫

Σ

(
1

c
ξ0 − h0) volϕ∗

0(g)

=c2
∫

Σ

h̄2 volϕ∗
0(g).

Thus, (1) and (2) are equivalent to (i) and (ii) in the part (3).b) of Theorem
5.4. �X
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6. Example

Among the best known examples of surfaces with CMC are the so called Delau-
nay surfaces, which are surfaces of revolution. Apart from the elementary cases
of plane, spheres and cylinders, there are three classes of Delaunay surfaces,
the catenoids, the unduloids and the nodoids, corresponding to the choice of a
conic as a parabola, an ellipse or a hyperbola, respectively. When a curve rolls,
without slipping, on a fixed curve, each point on the moving curve traces an-
other curve known as a roulette. The generating curves of the Delaunay surfaces
are the roulettes generated by the focus of the parabola, ellipse, and hyperbola
when rolled on a straight line. The roulette associated with the parabola is the
catenary, for the ellipse it is called undulary and that of the hyperbola is called
nodary (see figures 2, 3 and 4).

Figure 2. Roulette-parabola (catenary) and catenoid

Figure 3. Roulette-ellipse (undulary) and unduloid
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Figure 4. Roulette-hyperbola (nodary ) and nodoid

Let us consider connected compact subsets of Delaunay surfaces, such that
for each of which its boundary, if not empty, is one or two circles perpendicular
to the axis of rotation (see figure 5).

Figure 5. Connected compact subsets of Delaunay surfaces

Such subsets can be constrained to be free-boundary CMC surfaces within a
ball in R3, with their boundaries within the boundary of the ball. For example,
except for the plane, the catenoid is the only minimal surface between Delaunay
surfaces, obtained by rotating the catenary

z = c cosh(
x

c
); c > 0 (15)

around the x axis. Let ϕ0 be the parametrization of the catenoid portion gen-
erated by the catenary such that −a ≤ x ≤ a, with a = c cosh(ac ). That is a

free boundary minimal surface inside the ball of radius r =
√
a2 + c2 cosh2(ac )

(see figure 6).
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Figure 6. The catenary and the circle are orthogonal

We have that if the area of the image of the Gaussian function on a minimal
surface is less than 2π, then the first eigenvalue of the Jacobi operator on
the surface is positive, λ1 > 0 (see [3]). So, if we take the portion of the
catenoid small enough, for example by choosing c > 0 such that r = 1, we
have that the eigenvalue of its Jacobi operator is positive, λ1 > 0. Therefore,
by Theorem 4.2, we have that there exists a free boundary CMC family of
surfaces {ϕζ(H)}H∈(−ε,ε), ζ(0) = 0, where ζ(H)) is an injective map and H
is a mean curvature of ϕζ(H). Each ϕζ(H) is a surface of revolution. By the
injectivity of ζ, for H > 0 we have to ϕζ(H) is part of an unduloid and for
H < 0 we have to ϕζ(H) it is part of a nodoid (see [4]). Furthermore, by part
(1) of Theorem 5.4, ϕ0 is stable.

Now, for the case of a portion of an unduloid, if we consider the boundary
circles as the maximum (or minimum) circles of the unduloid, we obtain a
surface orthogonal to orthogonal planes to the axis of rotation (see figure 7).
Among all the possible surfaces with this characteristic, the largest stable piece
is the one that corresponds exactly to a complete period of the generating curve
(see [12]). In this case λ1 < 0 and λ2 = 0. If the limit of the surface are a
maximun circle and a consecutive minimum circle, then λ1 = 0.

Figure 7. The vectors tangent to the curve at the maximum and minimum points
are parallel to the axis of rotation. Figure taken from the website
https://roughan.info/math/roulette/
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7. Appendix A

In this appendix we will give some definitions and important results of Func-
tional Analysis, which were used in this paper.

Definition 7.1. If f : N → M is a smooth map and S ⊂ M is an embedded
submanifold, we say that f is transverse to S if, for every p ∈ f−1(S), Tf(p)M =
Tf(p)S + dfp(TpN).

Definition 7.2. The definition of transversality between a map F : X → Y
and Z ⊂ Y a smooth submanifold, where X and Y are Banach manifolds, is
that presented in the Definition 7.1 but with the additional assumption that
dF−1

x0 (TF (x0)Z) is a complemented subspace of Tx0X , i.e., there is a subspace
V ⊂ Tx0X is such that Tx0X = dF−1

x0 (TF (x0)Z)⊕ V.

Definition 7.3. If A is a bounded operator in a Hilbert space H and {ei : i ∈
I} is an orthonormal bases for H, the Hilbert-Schmidt norm of A is defined as
||A||2HS = Tr(A∗A) =

∑
i∈I ||Aei||2H , where || · ||H is the norm of H.

Definition 7.4. The Hölder space Cj,α(Ω), where Ω is an open subset of some
Euclidean space and j ≥ 0 an integer, consists of those functions on Ω having
continuous derivatives up to order j and such that the j-th partial derivatives
are Hölder continuous with exponent α, where 0 < α ≤ 1. A real valued
function f on n-dimensional Euclidean space is Hölder continuous, when there
are nonnegative real constants c, such that

|f(x)− f(y)| ≤ c||x− y||α

Definition 7.5. A linear continuous operator T : E → F between normed
spaces is Fredholm if Ker T is finite dimensional and Im T is close and finite
codimensional, the index of T is ind T = dim Ker T −dim coker T . A Fredholm
map is a C1 map f : M → N , where M and N are differentiable Banach
manifolds, such that for each x ∈M , the derivative dfx : Tx(M)→ Tf(x)(N) is
a Fredholm operator. The index of f is defined to be the index of dfx for some
x. The definition doesn’t depend on x, see [10].

Theorem 7.6. [14, The Inverse Mapping Theorem, 5.2 ] Let E, F be Banach
spaces, U an open subset of E, and let f : U → F be a Cp-morphism with
p ≥ 1. Assume that for some point x0 ∈ U the derivative f ′(x0) : E → F is a
toplinear isomorphism. Then f is a local Cp-isomorphism at x0.

Theorem 7.7. [14, The Implicit Mapping Theorem, 5.9 ] Let U , V be open sets
in Banach Spaces E, F respectively, and let f : U × V → G be a Cp mapping.
Let (a, b) ∈ U × V , and asuume that D2f(a, b) : F → G is a isomorphism.
Let f(a, b) = 0. Then there exist a continuous map g : U0 → V defined on an
open neighborhood U0 of a such that g(a) = 0 and such that f(x, g(x)) = 0
for all x ∈ U0. If U0 is taken to be a sufficiently small ball, then g is uniquely
determined and is of class Cp.
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