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A note about Simpson’s Inequality via
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Una nota sobre la desigualdad de Simpson mediante integrales
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REsuMEN. En este trabajo establecemos una identidad de tipo Simpson y varias

desigualdades de tipo Simpson para operadores integrales pesados generaliza-
dos.
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1. Introduction

Within Mathematical Sciences today, one of the notions that most attracts
the attention of researchers is that of a convex function ([20]). Its theoretical
overlaps and its multiple applications have made it the center of various works
and investigations, with which it has been expanded in multiple directions. In
[18] you can find a broad panorama of this development.

Definition 1.1. The function f : [a,b] — R, is said to be convex, if we have

flo+A-t)y) <tf(zx)+ (A —-1)f(y),

V x,y € [a,b] and t € [0, 1].
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In [15] the author introduces the class of functions (o, m)—convex, as fol-
lows:

The function f : [0,00] — R is said to be («a, m)— convex, where (o, m) €
(0,1] x (0,1], if for each a,b € [0,00) and t € [0, 1], we have:

f(ta+m(1—1)b) <t%f(a) +m(L — )" f(b).

The following inequality is known as Simpson’s integral inequality:

i@ ar (D) ] - L [ o
gl (457) w10 -5

1
<~ f&® _a)*
< a6 = 0)",
(1)

where the mapping f : [a,b] — R is assumed to be four times continuously
differentiable on the interval (a,b) and ||f| s = supTe(ayb)\f(‘l) (1)] < 0.

Many researchers in the field of inequalities of the last few decades have
refined, extended, and obtained new inequalities of the Simpson type for various
classes of convex functions ([2, 3, 5, 6, 7, 10, 12, 13, 15, 19, 21, 23, 24] and
references therein).

To encourage comprehension of the subject, we present the definition of
Riemann-Liouville Fractional Integral (with 0 < a1 < t < ag < 00). The first
is the Classic Riemann-Liouville Fractional Integrals.

Definition 1.2. Let ¢ € Li[ay,as]. Then the Riemann-Liouville Fractional
Integrals of order @ € C, () > 0 are defined by (right and left respectively):

Liole) = g [ @m0 00 2> 2)
and ) an
“Iaz_ o(x) = m/ (t—x)*Lo(t)dt, z < as. (3)

Next we present the Weighted Integral Operators, which will be the basis
of our work.

Definition 1.3. Let f € L([a,b]) and let k be a continuous and positive
function, k : [0,1] — [0, +00), with first order derivatives piecewise continuous
on I. Then the Weighted Fractional Integrals are defined by (right and left

respectively):
i g0 = [ (120) s (@

t—a

and

= [ () st o)
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Remark 1.4. To have a clearer idea of the amplitude of the Definition 1.3,
let’s consider some particular cases of the kernel k’:

(1) Putting k'(t) = 1, we obtain the Classical Riemann Integral.

(2) IfK'(t) = %, then we obtain the Riemann-Liouville Fractional Integral

right, and left can be obtained similarly.

(3) With convenient kernel choices k' we can get the k-Riemann-Liouville
Fractional Integral right and left of ([16]), the right-sided fractional in-
tegrals of a function ¢ with respect to another function h on [a,b] (see
[1]), the right and left integral operator of [8], the right and left sided
generalized fractional integral operators of [22] and the integral operators
of [9] and [11], can also be obtained from above Definition by imposing
similar conditions to k'.

Of course there are other known integral operators, fractional or not, that
can be obtained as particular cases of the previous one, but we leave it to
interested readers.

The main purpose of this paper is to establish several integral inequalities
of Simpson type using the Definition 1.3 of weighted integral.

2. Results

The following result will be fundamental in our work.

Lemma 2.1. Let 0 < m < 1; f : [ma,b] — R be a differentiable function,
a<bwitha€R,b>0.If f € L' ([ma,b]) and k' > 0 then we have:

k() f ) + O [(w—ma)f (m“;w) +(b—w)f (7“02%)}

b—ma

2 bk wH+b\ e ok ma + w
b—ma{(}mf( 2 )+ Tu-f 2

1
= (wma)Q/ k(t)f’ <1tma+ 12+tw) dt
0

2(b—a) 2
w1 _
_ (21’@_3)/0 k() S (12“10 + 12tb> dt. (6)
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Proof. Integrating by parts and changing the variable, we have

/k: ( +¥ )dt:_maiw [k;(l)f(w)—k(o)f (m“;w)]

S /O 7oL, (1;% + 12”7«”) dt
-2 [rms-ror (M5 |- L (M),

—ma+w (w— ma)2

in the above we use the following fact

! 1— 1
/ k(t)f (tma + Hw) dt
0 2 2
9 w _ matw
- / k' [Z 7ma+2w }f(z)dz
2

w — ma ma+w
2
2 w 2 — ma+w
— / 2
Ryl S k o matw e f(z)dz.
2

Similarly, we have

( we g ) a

oo

Multiplying both sides of (7) and (8) by (L;(;TZ))Q and (2(b )) , respectively, and
subtracting the last from the first, we get

w —ma

e 1) - ooy ()] - s (M)

erb—w [k-(l)f(w) — k(0)f <w;b>} - b—2ma Tui f (w;b>

—ma
_ 2 1 . _1)\2 1 _

After rearranging and simplifying on the left side of the previous equality, the
desired result is obtained. This completes the proof. o

Remark 2.2. If we take k(t) = L~ — 1, we have the Lemma 2.1 of [14].
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Let’s call
skt 2 oy (2522) s (=59
T

From this result, we obtain different Simpson-type inequalities, which are gen-
eralizations of several reported in the literature.

Based on the Lemma 2.1, we can obtain the following inequality.
Theorem 2.3. Let 0 <m < 1; f : [ma,b] = R a differentiable function, a < b

witha € R, b> 0. If f € L' ([ma, b)) is bounded, that is, || f'| ., = sup|f/(t)| <
00, so for w € [ma,b], we have

51« Em L= g [ ko (10)

Proof. If we use the Lemma 2.1 and the absolute value properties, then we
have

|51 = (maw/lk(t)f/ <1tma+12+tw> dt — M

2(b — ma) 2 2(b — ma)
/ Kt (Ht +1b>dt (11)
/Olk(t) (1;t —i—lb)‘dt
< Gt b Dy [y
Thus, we get the desired result. v

Remark 2.4. If we take k(t) = -

£ — 1, we have the Theorem 3.1 of [14].

Theorem 2.5. Let 0 < m < 1; f : [ma,b] = R a differentiable function, a <b
with a € R, b > 0. If f' € L' ([ma,b]), then for w € [ma,b], we have

HESIOYEN (12)
where || f'||, = [o, |f/(z)] dz < oo,
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Proof. If the Lemma 2.1 is used and changing variables, we have

_ AV
f’(l tma+1+tw>‘dt+2(w )

(—ma + w)? 1
151 < /0 k(®) 2 2 (b —ma)
f (Htw + 12_tb> ’ dt

2(b — ma)
/0 k) !
< Lmetw) /w g (mjn;zw) 7 @) e+ 20

(b—ma) Jmatw (b —ma)
v fwtb
[ <w+> I (@) da.
w 2

, (=matw) (w=b)
Since 0 < (b—ima) < 1 and 0 < (b—ma) < 1, then

w m_m—2i-w , WTH’ w;—b_w ,
si< [ k(i )1 @ldes [T k(2 ) I @lde 13
3 2 w

2

w+b

=) [ I @l

b
<k0) [ If (@)l

ma

Therefore, the proof is finished. ™

Remark 2.6. If we take k(t) = L~ — 1, we have the Theorem 3.2 of [14].

Theorem 2.7. Let 0 <m < 1; f : [ma,b] — R a differentiable function, a < b
with a € R, b > 0. If f' € L1 ([ma,b]), with 1 < q,p < oo and % +% =1, so
for w € [ma,b] we have

1

1 >
S| <24 |71, ((bma)/o Ik(t)lpdt> : (14)

where |, = ([, |f'@)|"dz)".
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Proof. Using the Lemma 2.1 and Holder’s inequality we have that
(—ma + w)? /1 , (1=t 1+t (w—b)?
S| < k(t —_— — dt + ——
51 < S [ |7 (g tma + ) ar

> 2(b — ma)
/1k(t) (1"2” +1b>‘dt (15)

< 7:@4;;;’ (/ |k (t |Pdt) </01 f/<12t +% )qdlt);
S (faeors) ([ (3550

Making some proper substitutions
1

s (] k(“'pdty [(;&Z@Z;Q (—mazw L. (x)qd)q
e (w?_b/ww;b 7 <x>|th>;]
_ ( /O 1 k(t)|”dt>‘l’ [<2—lma(b+fi:) ( /w I (@) dt) ; N

+

wa;(bb)_:; ( / F dt) % ] (16)
< ([ wwra)” (220 -ma') [(/w o <x>|%zt> g
(/w 5 <x>th>;]
< (/ k(t)|pdt)p (286 —ma)?) </W:|f' <z>|‘1dt>;.

And thus, we have obtained the desired inequality. o

Q=

=

Remark 2.8. if we take k(t) =

% we have the Theorem 3.3 of [14].

Theorem 2.9. Let 0 < m < 1; ma, i] — R a differentiable function,

0 <a <b such that f' € L! ([ma —]) If |f'|* is a (o,m) — convex function,

[
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with (a,m) € (0,1)% for 1 < q with % + % =1, so for w € [ma,b] we have
si< ([ |k<t>”dt>’l’ [(gg‘ifngz (g \r@r+  an
a1 _ a
W) ]
(/ o)’ [ ) (e 1 0+
]

Proof. Continuing from the equation (15) and using the fact that |f/|? is
(o, m)-convex, we obtain (17). o]

_m
2¢(a+1)

Corollary 2.10. Considering the Theorem 2.9 we have the following cases:

(1) Putting w = ma we have

IS| < b—2ma (/01 k()P dt)é .
<22:(a1+11)|f'(ma)lq+2a(;”+1) I (i) th>q'

(2) Putting w = ™% we have

2= ([ ara)’

[(2"1—1 (ma—i—b)q
2%(a+1 2

([ e

(

51 <

+ ¥t |f (a)|th> ]

bma

ga— 1 _
2« a—|—1

N m
2¢(a+ 1)

(ma2+ b) a
<t |k<t>|”dt)p (5rs) 17

2(Famn) (5] ()
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(3) Putting w = b, we have

51< = m(/ k(1) Ipdt);(MIf()lq 22:(1+1)f() )é
(19)

Corollary 2.11. Combining the inequalities (18) and (19) follows

e oo (5] 2 ()

b—ma

+ w0 [k(—l)f(w)_k(o)f (w;bﬂ - b_2m b‘]k+f<w;b>"

b—ma

Theorem 2.12. Let 0 <m < 1; f: [ma i] — R a differentiable function,
0<a<bsuch that f € L' ([ma —])
with (o, m) € (0,1)% for 1 < p with * 5+

1< Gt ([ o)

HW(;Mqu’(a)H {m]

+ 2((1:—_:”32) (/01 |k(—t)" dt) ’

el b () o] v

Proof. Using the Lemma 2.1 and that |f’| is (o, m)-convex, we have

If |f'| is a (a,m) — convex function,

%—1 so for w € [ma,b] we have

=

' (w)I]

51 Gt / | (g tma s ) (20)
+ ((b_b)) 1 A (Ht +b>’dt
g%ﬁjj [( N mir @+ () 1 ol a
St [ (2 (I (2 e
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Then

51 et o) (/01|k<t>|”dt); H/ (?)qadtrmm)u
() dtr 7 <w>|]
gy ([ weora) [ (527 o] ol ()]
[ (3] ]

Let’s notice that

1 qa atl1
1+t 24 -1
[ () e ot o
0 2 202 (qa + 1)
and ) .
-\ 1
— dt= ————. 22
/0 ( 2 > 20 (qa +1) 22)
In this way, we obtain the desired inequality. o

Remark 2.13. If we take k(t) = %

£, we have the Theorem 3.7 of [14].

Corollary 2.14. If we take w = %er in Theorem 2.12 we have the following
inequality

b—ma 1 p v 1 0 ’ 210 —1 ‘
<5 ([ 0] () i 2 ()
, [ ma+b
r(*57)]
1 (b
“(amgrn) ()l

3. Conclusions

In this note we obtain new inequalities of the Simpson type, with different
notions of convexity, using weighted integrals. The results obtained contain
several known ones reported in the literature.

On the other hand, the results obtained can be generalized using the recently
defined convex (h,m)-modified functions (see [4] and [17]).
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Taking into account the Remark 1.4 the results obtained opens up new

possibilities for future work, to which several fractional integrals can be used
to establish new specific fractional integral inequalities.
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