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Abstract. The present paper focus on Lagrangian distributions with complex
phase. We provide an alternative construction of their principal symbol map,
which allows us to compute the principal symbol after clean composition of
Fourier integral operators with complex phase.
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Resumen. El presente art́ıculo se centra en el estudio de las distribuciones
lagrangianas con fase compleja. Proponemos una construcción alternativa del
śımbolo principal, que nos permite calcular el śımbolo principal de la dis-
tribución resultante de la composición de operadores integrales de Fourier con
fase compleja.

Palabras y frases clave. distribuciones Lagrangianas, función de fase compleja,
śımbolo principal.

1. Introduction

Lagrangian distributions and, more generally, Fourier integral operators (FIOs)
provide a powerful framework for the study of systems of partial differential
equations. One can, for instance, represent the solution of certain type of initial
boundary value problem as a Lagrangian distribution. This facilitates the study
of the solution operator by using the theory of FIOs. The need for complex-
valued phase functions comes from dealing with operators with non-real prin-
cipal symbol, as they lead to a Lagrangian distribution with complex phase.
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For this reason, many author have studied Lagrangian distributions and FIOs
with complex phase. One of the most systematic and complete approaches to
the study of such distributions can be found in [5] and [6]. Our work builds
upon these two articles, to provide a detailed description of the principal sym-
bol map. We also focus on the composition of FIOs under the assumption of
clean intersection.

Given a smooth manifold X, we denote by Ω
1
2 (X), or simply by Ω

1
2 , the

half-density bundle over X. The term Lagrangian distribution with complex
phase refers to distributions A ∈ D′(X,Ω 1

2 ), which are microlocally of the
form ∫

eiφ(x,θ)a(x, θ) dθ, (x, θ) ∈ X × Rn, (1)

where the amplitude a : X × Rn → Ω
1
2 is a symbol in the space Smcl , for some

m ∈ R, and the phase function φ is assumed to have non-negative imaginary
part, =φ ≥ 0.

In the real-valued setting, φ is often assumed to be non-degenerate in the
sense of Hörmander (see [2] for details on the real-valued theory). For the
purpose of this paper, we follow the definition of complex-valued non-degenerate
phase function introduced in [5]. It should be noted that for the integral (1) to
be defined in the sense of oscillatory integrals, one only needs to assume that
<φ is a non-degenerate phase function. Indeed the contribution of =φ to the
integral is just an exponentially decreasing factor that does not affect the local
computations. However, by ignoring the contributions of this factor globally,
we are omitting important geometric information. Moreover, by considering
complex-valued phases one obtains a broader class of distributions that can be
used to model the solution of systems of PDEs for which the real-valued theory
falls short. Examples of applications of this theory to systems of PDEs can be
found in [5] Section 8, [8] Chapter XI and [7].

This paper is concerned with the principal symbol of Lagrangian distribu-
tions with complex phase, and the composition of Fourier integral operators
(also with complex phase) under the assumption of clean intersection. Specifi-
cally, our main theorem provides an explicit description of the principal symbol
σm(A) of a Lagrangian distribution A ∈ Imcl (X,Λ,Ω

1
2 ). Here Λ is a positive La-

grangian sub-manifold (see 2.7) of the complexification of the cotangent bundle
of X.

Theorem 1.1. Let A = I(φ, a), with φ(x, θ) a complex-valued non-degenerate

phase function and a(x, θ) ∈ Sm+(n−2N)/4
cl . Then, the principal symbol σm(A)

of A ∈ Imcl (X,Λ,Ω
1
2 ) defines a section of the virtual line bundle L over Λ. In

admissible local coordinates, σm(A) takes the form

σm(A) ∼ ã0

√
dφ ∈ S(m+n/4)(Λ,L ), (2)
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where a0 is the top order term of the asymptotic expansion of a and
√
dφ is the

section defined in 2.16.

Readers familiar with the real-valued theory might recognize the above
description of the principal symbol. However, due to the geometric objects in-
volved in the construction, the meaning of equation (2) differs slightly from the
classical real-valued definition of the principal symbol. When φ is assumed to
be real-valued, Λ ⊂ T ∗X \0 is a Lagrangian manifold that can be parametrized
by the phase function φ, and L is the tensor product of the so-called Maslov
line bundle and the space of half-densities Ω

1
2 . However, this cannot be directly

carried to the complex domain. As mentioned above, we followed the approach
proposed in [5] and [6]. There, the authors use almost analytic extensions to
define Λ as an abstract, complex-valued object called positive Lagrangian man-
ifold, even tough it is not a Lagrangian manifold in the usual sense. In the same
way, L is only a virtual line bundle over Λ. Thus, here S(d)(Λ,L ), d = d1 +d2,
denotes the space of almost analytic functions of the form fs, such that s is a
section of L which homogeneous of degree d1, and f = f(x, θ) is an homoge-
neous function of degree d2 in θ.

It should be noted that working with almost analytic extensions introduces
some errors, and that the constructions are highly technical. For this reason,
the authors in [5] define the principal symbol of a Lagrangian distribution

A ∈ Imcl (X,Λ,Ω
1
2 ) as the pre-image of A under a, rather complicated, bijection

P, between Γm+n/4(Λ,L ), the space of homogeneous sections of L , and the
set of oscillatory integrals (1) with amplitude a equal to some function defined
on CN × Cn and homogeneous of degree m.

To improve this description, we extend to the complex-valued case, the
method presented in [1] to compute the principal symbol in the real-valued
theory. First, the leading order term of the asymptotic expansion gets identified
with the principal symbol of a given Lagrangian distribution. Then, we show
that the resulting expression defines a section of L , which is equivalent to the
section P−1(A) defined in [5]. This improved description allows us to see that,
similar to the real-valued case, the principal symbol map σm fits into a short
exact sequence

0→ Im−1
cl (X,Λ; Ω

1
2 )→ Imcl (X,Λ; Ω

1
2 )

σm−−→ S(m+n/4)(Λ,L )→ 0.

Theorem 1.2. Let A1 ∈ Im1

cl (X×Y,C ′1; Ω
1
2 (X×Y )), A2 ∈ Im2

cl (Y ×Z,C ′2; Ω
1
2

(Y ×Z)) be such that the clean composition B = A1 ◦A2 defines a distribution

in I
m1+m2+e/2
cl (X × Z, (C1 ◦ C2)′; Ω

1
2 (X × Z)). Then,

σ(B)m+e/2 ∼
∫
Cγ

(
ã10ã20(|θ̃|2 + |σ̃|2)

−nY
2

√
dΦ
)
dω′′ ∈ S(m−e/2+n/4)(Λ,L ),
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with m = m1 +m2, n = nX + nZ , e is the excess of the intersection and Cγ is
the compact image of a point γ ∈ (C1 ◦C2)R in (C1R×C2R)∩D. Here a10, a20

are the principal parts of the amplitudes of A1 and A2, respectively.

Since the publication of [5] and [6], other authors have contributed to the
theory. For instance, in [4], the author presents an alternative approach using
complex Lagrangian ideals instead of almost analytic extensions. In [3], the same
author proves necessary and sufficient conditions for an operator of order zero
to be L2 continuous. In [8], one can find a general method for solving complex
eikonal equations, and thus finding the phase function of the solution operators
associated to hyperbolic problems. But, to the best of our knowledge, there is no
explicit formulation of the principal symbol of a Lagrangian distribution with
complex phase in the literature. We were also not able to find any mention of
complex-valued clean phase functions or clean composition. With this paper,
we attempted to fill these gaps in the literature.

The present document is divided into three sections. The first of them con-
sists of an overview of the theory of Lagrangian distributions with complex
phase. There we collect, without proofs, the results from [5] that are neces-
sary to achieve our goals. In the next section, we present our construction of
the principal symbol map (1.1), which is complementary to the one in [5]. In
the last section, we consider the case of clean composition and proof our main
result, Theorem 1.2.

2. Previously known results

In this section, a summary of the theory of Lagrangian distributions with com-
plex phase is presented. Since this theory is broad and technical, we focused
on the definitions and theorems necessary to understand our main results. The
content is completely taken from [5], but some of the statements have been
reformulated to facilitate the reading process. For a complete presentation, the
interested reader can see the original document [5]. For those interested in the
theory due its applications, [8] is a good source. There, a nice exposition of
the theory can be found, however, it does not include the construction of the
principal symbol map.

We begin by clarifying some notation and recalling the almost analytic
machinery. Let ∂z denote the Cauchy-Riemann operator for z = x+ iy ∈ C. If
f is a smooth function in Cn, denote by ∂f and ∂f the operators

∂f =

n∑
j=1

∂zjf dzj and ∂f =

n∑
j=1

∂zjf dz̄j .

Definition 2.1. Let Ω ⊆ Cn be an open set and ΩR := Ω ∩ Rn. We say that:
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(1) f ∈ C∞(Ω) is almost analytic if ∂f vanish to the infinite order near ΩR.
This means that, for all z ∈ Ω, there exist a constant CN > 0 such that

|∂f(z)| ≤ CN |=z|N , ∀N ∈ Z+.

(2) f1, f2 ∈ C∞(Ω) are equivalent if f1 − f2 is almost analytic. In this case,
we write f1 ∼ f2.

(3) An almost analytic extension of a function f ∈ C∞(ΩR), is an almost

analytic function f̃ ∈ C∞(Ω) such that f̃ |ΩR = f .

As the equivalence relation suggests, when working with almost analytic
extensions, we care about the equivalence class, not about any particular rep-
resentative. It may be useful to think about these classes as the germs, in
the sense of algebraic topology, of complex-valued functions functions at real
points.

It is not hard to see that every f ∈ S (R) admits an almost analytic exten-
sion, see for example [9, Theorem 3.6]. In [5], a more general result is proven:
Given a function a ∈ Smcl (Γ), defined in a conic set Γ ⊆ Rn × (RN \ 0), there

exists a unique up to equivalence almost analytic extension ã ∈ Smcl (Γ̃) defined

in Γ̃ ⊆ Cn × (CN \ 0), a complex extension of Γ.

Remark 2.2. Throughout this document, the tilde (̃· or ·∼) denotes an almost
analytic extension of a given object. The notation is used indiscriminately for
functions (f̃), sets (Γ̃), manifolds (M̃) and vector bundles ((T ∗X \ 0)∼).

Definition 2.3. Let Ω ⊆ Cn be an open set and M ⊆ Ω a closed submanifold
of real dimension 2k. We say that M is an almost analytic manifold if for every
real point z0 ∈M , one can find an open neighborhood O of z0 in Ω and almost
analytic functions fk+1, . . . , fn such that, in O,

• M is defined by fk+1 = · · · = fn = 0,

• and the differentials ∂fk+1(z), . . . , ∂fn(z) are linearly independent over
C.

The following theorem gives an useful description of almost analytic mani-
folds. It corresponds to the third statement of a series of equivalent definitions
proved in [5, Theorem 1.4].

Theorem 2.4. Let Ω ⊆ Cn be an open set and M ⊆ Ω an almost analytic
manifold. Then, for every real point z0 ∈ M , one can find a neighborhood
O = O′ × O′′ ⊆ Ck × Cn−k of z0 in M and an almost analytic function h on
O′ such that, for all z = (z′, z′′) ∈ O, z′′ = h(z′).

We also need the notion of equivalent almost analytic manifolds. This equiv-
alence is defined locally, by considering only neighborhoods of real points.
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Definition 2.5. Let M1,M2 ⊆ Ω ⊆ Cn be almost analytic manifolds of the
same dimension with M1R = M2R. Let h1, h2 be the defining functions from
Theorem 2.4. Then, M1 ∼ M2 if any of the following equivalent conditions is
satisfied:

(1) For all compact set K b Ω and N ∈ Z+ there is a constant CN,K > 0
such that,

|h1(x′)− h2(x′)| ≤ CN,K |=h2(x′)|N , (x′, hj(x
′)) ∈ K, x′ ∈ Rk.

(2) For all compact set K b Ω and N ∈ Z+ there is a constant CN,K > 0
such that,

|h1(z′)− h2(z′)| ≤ CN,K |(z′,=h2(z′))|N , (z′, hj(z
′)) ∈ K.

We now consider a key result: a complex-valued version of the so called
stationary phase formula. This is a generalization of the well-known stationary
phase method. For a complete presentation of the usual real-valued method see
[1, Section 1.2].

For the remaining of the section, let F (x, v) be a smooth function of (x, v) ∈
Rn×Rk, defined in a neighborhood of (0, 0). Assume that =F ≥ 0 with equality
only at the origin, and that

∂xF (0, 0) = 0, det(∂2
xF (0, 0)) 6= 0.

Let F̃ (z, ω), z = x + iy, ω ∈ Ck, be an almost analytic extension of F to a
complex neighborhood of (0, 0). Then, it can be shown ([5, Lemma 2.1]) that

the equation ∂zF̃ (z, ω) = 0 defines an almost analytic manifold M of the form
z = Z(v), such that there is exists C > 0 satisfying

=F̃ (z, ω) ≥ C|=z|2, (z, ω) ∈M, v ∈ Rk.

Theorem 2.6. ([5, Theorem 2.3]) Let F and Z be as above. Then, there are
neighborhoods of the origin U ∈ Rn, V ∈ Rk and differential operators Cν,w(D),
which are C∞ functions of w ∈ V , and have order at most 2ν, such that∫

eitF (x,w)ut(x) dx ∼
∞∑
ν=0

t−ν−n/2eitF̃ (Z(w),w) (Cν,w(D)ũt)Z(w), t→ +∞,

(3)

in S
−n/2
cl (V ×R+). Here ut(x) ∈ S0(Rn ×R+) is supported in U ×R+ and the

function (2π)−n/2C0,w is the branch of the square root of
(
det 1

i ∂
2
zF (Z(w), w)

)−1

which continuously deform into 1 under the homotopy

[0, 1] 3 s 7→ 1

i
(1− s)∂2

zF + sI ∈ GL(n,C).

Volumen 57, Número 2, Año 2023



PRINCIPAL SYMBOL FOR LAGRANGIAN DISTRIBUTIONS WITH COMPLEX PHASE 161

2.1. Positive Lagrangian manifolds and complex-valued phase func-
tions

Let M be a real symplectic manifold of dimension 2n, fix a point ρ0 ∈M and
consider a coordinate neighborhood W ⊆ R2n of ρ0. Assuming that Λ ⊆ M̃ is
an almost analytic manifold containing ρ0, the goal is to extend the symplectic
structure of M to M̃ . Note that, given symplectic coordinates (x, ξ) near ρ0 in
M , we can have coordinates in Λ by taking almost analytic extensions (x̃, ξ̃) to

W̃ .

Definition 2.7. The manifold Λ is called positive (almost) Lagrangian if, near
every real point (x0, ξ0), it is equivalent to a manifold of the form

ξ̃ =
∂h

∂x̃
(x̃), x̃ ∈ Cn,

where h is an almost analytic function satisfying =h ≥ 0 on Rn, with equality
at x0.

So far, we have no information on the symplectic form σ. In fact, the man-
ifolds on which σ vanish, represent a special case.

Definition 2.8. An almost analytic manifold Λ ⊆ M̃ , of real dimension 2n, is
called strictly positive Lagrangian if

(1) ΛR is a submanifold of M .

(2) σα|Λα ∼ 0 for all local representatives Λα and all local almost analytic
extensions σα of σ.

(3) i−1σ(v, v) > 0 for all v ∈ Tρ(Λ) \ (Tρ(ΛR))
∼

, ρ ∈ ΛR.

In practice, we will consider M = T ∗X \ 0, for some manifold X, and
Λ ⊆ (T ∗(X) \ 0)

∼
positive Lagrangian. Under these conditions, it can be shown

that Λ is of the form x̃ = H(ξ̃), where H is positive homogeneous of degree 0
with =H(ξ) ≤ 0 for ξ real.

Definition 2.9. A complex-valued function φ(x, θ), smooth in a conic set
V ⊆ Rn × RN \ 0, is called a non-degenerate phase function of positive type if
=φ ≥ 0, dφ 6= 0 and

• φ is homogeneous of degree 1 in θ,

• the differentials
{
d( ∂φ∂θj )

}N
i=1

are linearly independent over C on the real

set
CφR = {(x, θ) ∈ V : φ′θ = 0} .
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Let φ̃(x̃, θ̃) be an almost analytic extension of φ, defined in a conic neigh-
borhood W ⊆ Cn × (CN \ 0) of the real point (x0, θ0) ∈ V . Then the critical
set

Cφ̃ =
{

(x̃, θ̃) ∈W : ∂θ̃φ̃(x̃, θ̃) = 0
}

is a conic almost analytic manifold of dimension 2n. The image Λφ̃ of Cφ̃ under
the map

Cφ̃ 3 (x̃, θ̃) 7→
(
x̃, ∂x̃φ̃(x̃, θ̃)

)
∈ Λφ̃ (4)

is locally, near ρ0 = (x0, φ
′
x(x0, θ0)), a conic positive Lagrangian manifold

of dimension 2n. Moreover the image of Cφ̃R is precisely Λφ̃R. It is important
to mention that Λφ̃R ⊆ Rn × (Rn \ 0) does not need to be a closed Lagrangian
manifold in the usual sense. In some cases, it may not even be a manifold. This
highlights the advantages of allowing complex-valued phase functions over the
usual real-valued theory.

Throughout this document, we should keep in mind that we are dealing
with an equivalent class of almost analytic manifolds, thus it is always possible
to choose a different representative for the class Λφ̃. We refer to this process
as a re-parametrization, because it amounts to finding a new non-degenerate
phase function equivalent to φ̃. In fact, a positive Lagrangian manifold Λ ⊆
(T ∗(X) \ 0)

∼
can always be parametrize by a non-degenerate phase function

of the form
ψ(x, ξ) = x · ξ − g(ξ),

for some almost analytic function g which homogeneous of degree 1 and satisfies
=g(ξ) ≤ 0, for ξ real. Moreover, in the process described above, any other choice
of almost analytic extension φ̃ defines an equivalent almost analytic manifold.
For this reason, we often omit the tilde and simply write Λφ instead of Λφ̃.

2.2. Lagrangian distributions and their principal symbol

Let V ⊆ Rn×RN \0 be a conic open set, φ ∈ C∞(V ) be a complex-valued non-
degenerate phase function, and a ∈ Smcl (Rn ×RN \ 0) be supported in a closed
conic subset of V . We can formally define the distribution A = I(φ, a) ∈ D′(Rn)
by

I(φ, a) =

∫
eiφ(x,θ)a(x, θ) dθ. (5)

Note that the contribution of =φ to the integral is a exponentially decreasing
factor, which does not contribute to the singularities of the distribution. Thus
we get, directly from the real-valued case, a description of the wave front set
of A:

WF (A) ⊆ {(x, φ′x(x, θ)) : (x, θ) ∈ supp(a) ∩ CφR} ⊆ ΛφR. (6)
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Let X be a C∞ paracompact manifold of dimension n and denote by
D′(X; Ω

1
2 ) be the space of 1/2-densities in X. From this point forward, unless

stated otherwise, Λ ⊆ (T ∗(X) \ 0)
∼

denotes a positive Lagrangian manifold.

Definition 2.10 (Lagrangian distributions). A distribution A ∈ D′(X; Ω
1
2 )

belongs to the class of Lagrangian distributions of order m, Imcl (X,Λ; Ω
1
2 ), if

WF (A) ⊆ ΛR and there are functions a ∈ S
m+(n−2N)/4
cl (Rn × RN ) and φ ∈

C∞(Rn × RN ) such that

• for every ρ0 = (x0, ξ0) ∈ ΛR and every choice of local coordinates, A is
microlocally of the form I(φ, a) near ρ0,

• Λ is parametrized by φ, that is Λ ∼ Λφ near ρ0,

• supp(a) is contained in a small conic neighborhood of (x0, θ0) ∈ CφR.

For the global theory pf Lagrangian distributions with complex phase to be
complete, one would have to define the principal symbol of A ∈ Im(X,Λ; Ω

1
2 )

invariantly. In analogy with the real case, one might be tempted to define the
principal symbol as section of the tensor product of the bundle of 1/2-densities
in Λ and the Maslov line bundle. But it turns out that it is impossible to
replicate this construction for complex manifolds in a way that is invariant
under coordinate changes. To avoid this difficulty, the authors in [5] introduce
admissible coordinates and define a virtual line bundle over Λ. This is an in-
tricate construction, so we first introduce the linear situation. The content of
this sub-section is a summary of [5, Section 6].

Let M̃ be the complex extension of a real symplectic vector space M of
dimension 2n, and denote by L− the set of negative definite Lagrangian planes
in M . Let F ⊆M be a fixed real Lagrangian plane and F̃ its complex extension.
We denote by B(F ) the set of all real bases of F .

Definition 2.11 (Admissible basis). Let N ⊆ M̃ be a positive semi-definite
Lagrangian plane. A basis e = {e1, . . . , en} of N is said to be admissible if there
exist a basis f = {f1, . . . , fn} of F and a plane L ∈ L− such that, for each j,
ej is the projection of fj along L. We write

e = E(f, L) = EN (f, L), (f, L) ∈ B(F )× L−

and denote by B(N) the set of all admissible bases for N .

Proposition 2.12. The set B(N) is the union of two disjoint arcwise-connected
subsets. Two admissible bases e = E(f, L), e′ = E(f ′, L′) belong to the same
set if and only if f, f ′ ∈ B(F ) have the same orientation. Moreover, there exists
a unique function s = sN : B(N)×B(N)→ C\0 with the following properties

(1) For all compact set K ⊆ B(F )×L−, s(e, e′) restricted to EN (K)×EN (K)
is a continuous function of e, e′ and N .
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(2) If e, e′, e′′ ∈ B(N), then s(e, e′)s(e′, e′′) = s(e, e′′).

(3) If e, e′ have the same L ∈ L−, then s(e, e′) > 0.

(4) s2(e, e′) = ±e/e′ with the plus sing precisely when f, f ′ have the same
orientation. Here,

e/e′ = e1 ∧ · · · ∧ en/e′1 ∧ · · · ∧ e′n, e = E(f, L), e′ = E(f ′, L′) ∈ B(N).

Consider now a positive Lagrangian manifold Λ ⊆ (T ∗(X) \ 0)
∼

and ρ ∈ ΛR.
Then, M = Tρ(T

∗X) and N = Tρ(Λ) satisfy the conditions of Definition 2.11.
Namely, Tρ(T

∗X) is a symplectic vector space and Tρ(Λ) ⊂ Tρ(T
∗X) is a

positive semi-definite Lagrangian plane. Taking F ⊆ M as the tangent space
to the fiber, we can define B(Tρ(Λ)) as above.

Keeping in mind the previous notation, we now define admissible coordinate
systems on Λ. Denote by ETρ(Λ)(S) the set of all admissible bases e = E(f, L)
of Tρ(Λ) with (f, L) ∈ S ⊆ B(F )× L−.

Definition 2.13 (Admissible coordinate systems). Let λ = {λ1, . . . , λn} be
almost analytic functions on Λ, defined in some complex neighborhood Uλ of
a real point. We say that λ1, . . . , λn are admissible coordinates on Λ if

(1) The differentials dλ1, . . . , dλn are linearly independent over C at real
points.

(2) δλ = {δλ1, . . . , δλn} belongs locally to ETρ(Λ)(K) with ρ ∈ Uλ ∩ ΛR, for
some compact set K ⊆ B(F ) × L−. Here δλ is the dual basis of dλ in
Tρ(Λ)∗.

We refer to the neighborhoods Uλ as admissible coordinate systems.

One can show that it is always possible to find admissible coordinates locally,
however, this construction is not unique. It is precisely this property what
allows us to define the almost analytic version of the Maslov line bundle. At
this point, we are only missing a description of the transition functions between
two coordinate systems Uλ and Uµ. Thanks to Proposition 2.12, we know that

• s(δλ, δµ) is continuous in Uλ ∩ Uµ ∩ ΛR.

• s2 = ±dµ
dλ

= ±det

[(
∂µj
∂λk

)
j,k

]
, where ∂µj/∂λk is defined by

dµj =
∑
k

(
∂µj
∂λk

)
dλk +

∑
k

(
∂µj

∂λk

)
dλk.

Volumen 57, Número 2, Año 2023



PRINCIPAL SYMBOL FOR LAGRANGIAN DISTRIBUTIONS WITH COMPLEX PHASE 165

Consider now an almost analytic extension S of s(δλ, δµ), defined in a small
complex neighborhood of Uλ∩Uµ∩ΛR in Λ. Thanks to the previous properties,
S can be chosen to satisfy

(Sλ,µ)
2 ∼ ±dµ

dλ
, (7)

Sλ,λ ∼ 1, Sλ,µSµ,ω ∼ Sλ,ω. (8)

Additionally, the functions Sλ,µ are continuous under small perturbations of
λ, µ for which δλ, δµ stay in the same component of ETρ(Λ)(K). Therefore,
the functions Sλ,µ are the ideal choice of transition functions in the new almost
analytic Maslov line bundle.

Definition 2.14. The virtual line bundle L → Λ is defined as the family of
admissible coordinate systems Uλ on Λ with transition functions Sλ,µ. A section
f ∈ Γ(Λ,L ) is an almost analytic function on Λ such that, the restriction to
each Uλ satisfy

fλ ∼ Sλ,µfµ.

The space of homogeneous section of degree m is denote by Γm(Λ,L ).

Remark 2.15. Given t ∈ R+, denote by t : Λ → Λ the multiplication by t
in the second coordinate. Then, if λ = {λ1, . . . , λn} are admissible coordinates
near tρ ∈ ΛR, the pullback

t∗λ = {λ1 ◦ t, . . . , λn ◦ t}

defines admissible coordinates near ρ. The following facts are important when
considering homogeneous sections of L :

(1) By definition, every section f ∈ Γ(Λ,L ) satisfies

ft∗λ ∼ tn/2fλ.

(2) A section f ∈ Γ(Λ,L ) is homogeneous of degree m if for all ρ ∈ ΛR, all
t ∈ R+ and all coordinates λ near tρ it holds

ft∗λ ∼ tmt∗(fλ), near ρ.

A particularly important homogeneous section is the one determined by a
phase function φ. The following lemma is a crucial step in defining the principal
symbol of a distribution in Imcl (X,Λ; Ω

1
2 ).

Lemma 2.16. Let φ(x, θ) be a non-degenerate phase function that parametrizes
Λ near ρ0 ∈ ΛR. Then, there is a section

√
dφ ∈ ΓN/2(Λ,L ), defined by

(
√
dφ)τ ∼

[
det

1

i

(
φ̃′′xx − ψ̃′′xx φ̃′′xθ

φ̃′′θx φ̃′′θθ

)]−1/2

, (9)
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where τ = ξ̃ − ψ̃′x̃ is an admissible coordinate system on Λ, and ψ ∈ C∞(Rn)

satisfy ψ̃′′xx < 0. The branch of the square root is chosen as in Theorem 2.6.

This Lemma can be found in [5], as part of the proof of Theorem 6.4.

We now recall the definition of Fourier integral operator with complex phase.
Let X, Y be paracompact C∞ manifolds of dimension nX , nY respectively. As
with the real case, if C ⊆ (T ∗X \ 0)

∼×(T ∗Y \ 0)
∼

is an arbitrary submanifold,
we denote by C ′ the manifold

{(x, y, ξ,−η) : (x, ξ, y, η) ∈ C} ⊆ (T ∗(X × Y ) \ 0)
∼
.

Definition 2.17. The submanifold C ⊆ ((T ∗X \ 0)× (T ∗Y \ 0))
∼

is a (strictly)
positive canonical relation, if C ′ ⊆ (T ∗(X × Y ) \ 0)

∼
is a closed conic (strictly)

positive Lagrangian manifold and CR ∈ (T ∗X \ 0)× (T ∗Y \ 0).

Here closed means that C ′R is a closed set of T ∗(X × Y ) \ 0. Finally, we
recall the definition of Fourier integral operator with complex phase.

Definition 2.18. An operator A : C∞0 (Y ; Ω
1
2 )→ D′(X; Ω

1
2 ) is called a Fourier

integral operator with complex phase if its distributional kernel KA belongs to
the class of Lagrangian distributions Imcl (X × Y,Λ; Ω

1
2 ), where the closed conic

positive Lagrangian manifold Λ ⊆ (T ∗(X × Y ) \ 0)
∼

satisfies C ′ = Λ for some

C ⊆ ((T ∗X \ 0)× (T ∗Y \ 0))
∼

. We write A ∈ Imcl (X × Y,C; Ω
1
2 ).

It follows form the real case that, whenever C is a canonical relation, the
operator A maps

C∞0 (Y ; Ω
1
2 )→ C∞(X; Ω

1
2 ).

Moreover, A can be extended to a continuous operator from E ′(Y ; Ω
1
2 ) to

D′(X; Ω
1
2 ).

3. The principal symbol map

The following construction shows how the complex-valued stationary phase for-
mula can be used to provide an explicit description of the principal symbol of
a Lagrangian distribution with complex phase. In particular, given a distribu-
tion A ∈ Imcl (X,Λ; Ω

1
2 ), which is microlocally of the form I(φ, a) near some real

point ρ, we are able to see the relation between the amplitude a and the action
of the map P defined in [5, Theorem 6.4].

We follow the ideas from [1] for the real-valued case and adapt them to the
complex domain. Namely, we use the asymptotic expansion in Theorem 2.6 to
provide a local description of the principals symbol. Later, we show that this
description is equivalent to the definition provided in [5].

Lemma 3.1. Let φ ∈ C∞(Rn × (RN \ 0)) be a non-degenerate phase function
and (x0, θ0) ∈ CφR fixed. If ψ ∈ C∞(Rn) is real valued and

ψ(x0) = 0, ψ′x(x0) = φ′x(x0, θ0), ψ′′xx < 0.
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Then, the function F (x, θ) = φ(x, θ)− ψ(x) satisfies the assumptions of Theo-
rem 2.6 around (x0, θ0).

Proof. It is clear that F (x, θ) is smooth with =F ≥ 0. From the definition of
CφR, one sees that =F (x0, θ0) = 0. Thus, we only need to show that

∂xF (x0, θ0) = 0, det(∂2
xF (x0, θ0)) 6= 0.

A short computation shows that

∂xF (x0, θ0) = φ′x(x0, θ0)− ψ′x(x0) = 0, ∂2
xF =

(
φ′′xx − ψ′′xx φ′′xθ

φ′′θx φ′′θθ

)
.

This matrix is the same one in the definition of
√
dφ (Lemma 2.16). Then, the

result follows by the same arguments, see [5], Theorem 6.4. �X

Let X be a smooth manifold of dimension n and consider a distribution
A ∈ Imcl (X,Λ; Ω

1
2 ), which is of the form I(φ, a) microlocally near ρ0 = (x0, ξ0),

for ξ0 = (x0, φ
′
x(x0, θ0)), where φ is a non-degenerate phase function and

a(x, θ) ∈ Sm+(n−2N)/4
cl (Rn × (RN \ 0)). Let u ∈ C∞c be supported in a neigh-

borhood of (x0, θ0) and ψ be as in the previous lemma. We want to un-
derstand the asymptotic behaviour of I := (I(φ, a), v)L2 , as t → ∞, with
v(x) = e−itψ(x)u(x). By definition,

(I(φ, a), v)L2 =

∫
eiφ(x,θ)a(x, θ)e−itψ(x)u(x) dxdθ

=

∫
ei[φ(x,θ)−tψ(x)]a(x, θ)u(x) dxdθ.

After the change of variables θ = tη, we obtain

I = tN
∫
eitF (x,η)ut(x, η) dη dx,

with F = φ−ψ and ut = a(x, tη)u(x). Thanks to the previous lemma, we know
that the complex-valued stationary formula can be applied here. Thus we get
from Theorem 2.6,

e−itF̃ (Z(η̃),θ̃)I ∼
∞∑
ν=0

t−ν−(n+N)/2 (Cν,η(D)ũt)Z(η̃),

where x = Z(η̃) is the almost analytic manifold described by ∂xF̃ (x̃, η̃) = 0.
We can now describe the principal symbol of A as the map that assigns to
each ψ the top order term of the asymptotic expansion of I. From the proof of
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Theorem 2.6, we know that C0,w(D) = (2π)
n+N

2

√
dφ. We now use this to write

the principal symbol map explicitly

TA : ψ 7→ (2π)
n+N

2 ã0(Z(η̃), η̃)ũ(Z(η̃))
√
dφ, (10)

where
√
dφ ∈ ΓN/2(Λ,L ) and a0, the highest order term in the asymptotic

sum of a, is and homogeneous function of degree m + (n − 2N)/4 in η. The
final step is to relate this expression with the definition of the principal symbol
given in [5]. Or, equivalent, we prove our main result Theorem 1.1, which is
stated again bellow.

Let s ∈ Γd1(L ,Λ) and b an homogeneous function of degree d2 in θ. In the
rest of the document, we denote by S(d)(Λ,L ), with d = d1 + d2, the space of
almost analytic functions f ∼ bs.

Theorem 3.2. Let A = I(φ, a), with φ(x, θ) a non-degenerate phase function

and a(x, θ) ∈ Sm+(n−2N)/4
cl . Then, the principal symbol of A ∈ Imcl (X,Λ,Ω

1
2 ) is

equivalent to the homogeneous section

σm(A) ∼ ã0

√
dφ ∈ S(m+n/4)(Λ,L ), (11)

where a0 is the top order term of the asymptotic expansion of a.

Proof. Let be P be the bijection defined [5, Theorem 6.4]. The result would
follow after showing that, TA(ψ) ∼ P−1(A) as sections of L . But first, we need
to verify that TA(ψ) ∈ Γm+n/4(Λ,L ).

It is not hard to see that almost analytic homogeneous functions define
homogeneous sections of L . Indeed, let g be an almost analytic function in Λ,
homogeneous of degree m in ξ. We know that for each ρ ∈ ΛR, it is possible to
find and admissible coordinate system Uλ, locally near ρ. Then, we can define a
function f such that fλ = g|Uλ , which is, by definition, a section of L . Consider
now ρ = (x, ξ) ∈ ΛR fixed and let t ∈ R+. Then, near tρ, points in Λ are of the
form (x, tξ) . Let λ = {λ1, . . . , λn} and µ =

(
t−1
)∗
λ be admissible coordinates

near ρ and tρ, respectively. Explicitly, for each j = 1, . . . , n,

µj(x, tξ) =
(
λj ◦ t−1

)
(x, tξ) = λj(x, ξ).

Then, near ρ, we have
(
t−1
)∗

(fλ)(x, ξ) ∼ f
(
x, 1

t ξ
)
∼ t−n/2fλ(x, ξ) and

f(t−1)∗λ ∼ f(x, tξ) = tmf(x, ξ)

= tn/2t−n/2tmf(x, ξ) ∼ tm−n/2fλ(x, ξ) ∼ tm
(
t−1
)∗

(fλ) .

Which, by definition, means that f ∈ Γm(Λ,L ). This, together with the local
identification of Cφ and Λ ∼ Λφ, allow us to interpret ã0 and ũ as elements of
Γm+(n−2N)/4(Λ,L ) and Γ0(Λ,L ), respectively. Then, it follows that the right
hand side of (10) defines an homogeneous section of degree m+ n/4.
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Recall that a distribution A ∈ Imcl is locally given by an oscillatory integral

A = I(φ, a) =

∫
eiφ(x,η)a(x, η) dη,

where a ∈ Sm+(n−2N)/4
cl . We can assume, without loss of generality, that P(s) =

I(φ, b0) where b0 is the top-order term of the asymptotic sum of some b ∈
S
m+(n−2N)/4
cl and s is some section in ΓN/2(Λ,L ). Thus, it remains to show

that P ◦ TA is the identity in the set of oscillatory integrals I(φ, b0), with b0 as
above.

The action of P, tells us that if s ∼ b
√
dφ ∈ Γm+n/4(Λ,L ), then P(s) =

I(φ, b) with b an extension of b to Cn×CN . Then, taking s = TA(ψ) ∼ ã0ũ
√
dφ,

we have P(s) = I(φ, b) with b = ã0ũ. Since this is valid for any u ∈ C∞c and
any almost analytic extensions, we conclude that

P(s) ∼ I(φ, ã0).

Or, equivalently, P(TA(ψ)) ∼ I(φ, ã0), where a0 is the highest order term
of the amplitude a in the local representation A = I(φ, a), which concludes the
proof. �X

It is now easy to see that the principal symbol map fits into a short exact
sequence. First note that σm maps

σm : Imcl (X,Λ; Ω
1
2 )→ S(m+n/4)(Λ,L ). (12)

Moreover, the fact that P is bijective, implies that σm is surjective. Thus,
similarly to the real-valued case, the map σm fits into a short exact sequence

0→ Im−1
cl (X,Λ; Ω

1
2 )→ Imcl (X,Λ; Ω

1
2 )

σm−−→ S(m+n/4)(Λ,L )→ 0.

4. Clean composition

As mentioned before, for the calculus of FIOs to be complete,one needs to
provide conditions for the composition to stay in the class. In [5], the case of
transverse composition was considered. We wish to relax this condition, so we
consider the case of clean composition. To do so, we first need to introduce a
more general type of phase function that we were not able to find in the existing
literature, even though it is a natural generalization of the non-degenerate case.

Definition 4.1. A complex-valued function φ(x, θ), smooth in a conic set
V ⊂ Rn × RN \ 0, is called clean phase function of positive type if =φ ≥ 0,
dφ 6= 0 and

• φ is homogeneous of of degree 1 in θ,
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• there exist M ≤ N , such that M of the differentials
{
d( ∂φ∂θj )

}N
j=1

are

linearly independent over C on

CφR = {(x, θ) ∈ V : φ′θ = 0} .

The number e = N −M is called the excess of φ.

It is possible to re-organize the variables so that θ can be splited as (θ′, θ′′) ∈
RM × Re, where the differentials

{
d(∂φ/∂θ′j)

}M
j=1

are the ones satisfying the

definition. We will sometimes refer to θ′′ as the excess variables. As usual, we
denote by Λφ the manifold{(

x̃, ∂x̃φ̃(x̃, θ̃)
)
∈ Cn × CN \ 0: (x̃, θ̃) ∈ Cφ̃

}
,

for some almost analytic extension φ̃ of φ to a complex extension of V . One
can easily verify that Λφ is a positive Lagrangian manifold of real dimension
2n. As such, it can be parameterized by a non-degenerate phase function,

ψ̃(x̃, ξ̃) = x̃ξ̃ − g(ξ̃), (x̃, ξ̃) ∈ Cn × (Cn \ 0) (13)

for some almost analytic function g with =g ≤ 0 at ξ ∈ Rn \ 0. Denoting by ψ

the restriction of ψ̃ to the real domain, we see that Λφ and Λψ are equivalent in
the sense of almost analytic manifolds. This equivalence allows us to associate
distributions in Imcl with a microlocal representation I(φ, a), where φ is a clean
phase function instead of a non-degenerate one.

Proposition 4.2. Let φ(x, θ) ∈ C∞(Rn × (RN \ 0)) be a clean phase function
of excess e. Then, for a ∈ Sm+(n−2N)/4(Rn× (RN \ 0)), the oscillatory integral
I(φ, a) defines a Fourier distribution of order m+ e/2.

Proof. Fix a point (x0, θ0) ∈ CφR and let ξ0 = φ′x(x0, θ0). We know that,
near (x0, ξ0), the almost analytic manifold Λ ∼ Λφ is equivalent to a manifold
Λψ, with ψ the non-degenerate phase function (13). We wish to follow the
construction in [5, Theorem 4.2] to show that there exist an amplitude b ∈
Sm+(n−2N ′)/4(Rn×(RN ′ \0)), N ′ = n, such that the oscillatory integrals I(φ, a)
and I(ψ, b) are microlocally equivalent near (x0, ξ0). Which implies that I(φ, a)
defines a Fourier distribution.

The construction is based on the proof of the complex-valued stationary
phase formula (Theorem 2.6). There, it was possible to apply the result with
respect to the variables (x, θ), because the phase functions were assumed to be
non-degenerate. This is no longer true for a clean phase function φ. Instead,
we need to consider θ = (θ′, θ′′) ∈ (RM × Re) \ 0, and

I(φ, a) ∼
∫ (∫

eiφ(x,θ′,θ′′)a(x, θ′, θ′′) dθ′
)
dθ′′. (14)
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Since the differentials
{
d(∂φ/∂θ′j)

}
are linearly independent over C at real

points, we can apply the stationary phase formula to the inner integral in
(14). The rest of the argument in [5, Theorem 4.2] applies without further
modification. The desired conclusion follows after integrating out the excess
variables θ′′.

Finally, note that applying the stationary formula in e variables less, in-
creases the order of the distribution by e/2. Indeed, the asymptotic sum (3)
would belong to S−(n+N)/2+e/2 instead of S−(n+N)/2, as it was the case in
[5]. �X

Since the construction that leads to our description of the principal symbol
is also based on the stationary phase formula, equation (11) applies only to the
inner integral in (14). In other words, the principal symbol of the distribution
A = I(φ, a) above should be given by the integral, with respect to θ′′ , of the
principal symbol of the inner distribution. But, for this to be correctly defined,
we first need to modify the definition of

√
dφ.

Lemma 4.3. Let φ(x, θ) be a clean phase function with excess e that parame-
terizes Λ. Then, there is a section

√
dφ ∈ Γ(N−e)/2(L ,Λ), defined by

(
√
dφ)τ ∼

[
det

1

i

(
φ̃′′xx − ψ̃′′xx φ̃′′xθ′

φ̃′′θ′x φ̃′′θ′θ′

)]−1/2

, (15)

where θ′′ are the excess variables in the splitting θ = (θ′, θ′′). Here τ , ψ and
the branch of the square root are chosen as in Lemma 2.16.

Proof. Note that, for θ′′ fixed, φ defines a non-degenerate phase function with
respect to the variables (x, θ′). Then, it follows from Lemma 2.16, that

√
dφ

defines a section of L . Since the matrix in (15) is now of dimension (n+N −
e)× (n+N − e), we see that

√
dφ is homogeneous of degree (N − e)/2, which

completes the proof. �X

With this new meaning for
√
dφ, we can apply Theorem 1.1 to the in-

ner integral in equation (14). It follows that ã0

√
dφ defines an element of

S(m−e+n/4)(Λ,L ) but we still need to integrate out the excess variables θ′′.
In principle, this integral may not be defined. Thus, similar to the real case,
we restrict the domain of integration.

Let π : Λφ → Cn be the projection π(x̃, ξ̃) = ξ̃. The composition of π with
the map (4) defines a fiber bundle over Λ with fiber

Cξ̃ =
{

(x̃, θ̃) : ∂θ̃φ̃(x̃, θ̃) = 0, ∂x̃φ̃(x̃, θ̃) = ξ̃
}
.

The fiber Cξ̃ can be interpreted as an almost analytic manifold of dimension 2e,

if the differentials
{
d( ∂φ∂xj )

}n
j=1

are linearly independent at real points. In any
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case, we we can compute
∫
Cξ̃
ã0

√
dφ dθ′′ if we assume that CξR, the restriction

of Cξ̃ to the real domain, is compact.

Definition 4.4. Let φ(x, θ) ∈ C∞(Rn × (RN \ 0)) be a clean phase function

with excess e, such that the set CξR is compact, and a(x, θ) ∈ Sm+(n−2N−2e)/4
cl .

Then, the principal symbol of A ∈ Imcl (X,Λ; Ω
1
2 ) is

σm+e/2(A) =

∫
CξR

ã0

√
dφ dθ′′ ∈ S(m−e+n/4)(Λ,L ). (16)

where A = I(φ, a) and a0 denotes the top order term of the asymptotic expan-
sion of a.

Now let X, Y, Z be paracompact C∞ manifolds of dimension nX , nY , nZ
respectively. Suppose that

A1 ∈ Im1

cl (X × Y,Λ1; Ω
1
2 ) and A2 ∈ Im2

cl (Y × Z,Λ2; Ω
1
2 ),

are properly supported operators, where Cj = Λ′j are positive canonical rela-
tions. Denote by ∆Y the subspace

{(y, y) ∈ Y × Y }.

Set D = T ∗X ×∆T∗Y × T ∗Z and let D̃ be its almost analytic extension. We
consider the following condition

Assumption 1. Suppose that:

(1) The intersection (C1R × C2R) ∩D is clean with excess e.

(2) The natural projection (C1R ×C2R)→ (T ∗X \ 0)× (T ∗Z \ 0) is injective
and proper.

Note that, whenever the excess is equal to zero, the intersection is actually
transverse. In other words, after showing that under Assumption 1, the compo-
sition of Lagrangian distributions stays in the class; the composition theorem
in [5] follows as a particular case.

The following results follow form arguments similar to those in [5, Proposi-
tion 7.1], so we only present the parts where the proofs are different.

Proposition 4.5. Let C1 ∈ (T ∗(X×Y )\0)∼, C2 ∈ (T ∗(Y ×Z\0))∼ be positive
canonical relations satisfying Assumption 1. Then, there exist a manifold (C1 ◦
C2)′, parameterized by a clean phase function Φ, such that (C1 ◦C2)R = (C1R ◦
C2R). The excess of Φ is equal to the excess of the intersection.
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Proof. Since the Λj = C ′j , j = 1, 2, are almost Lagrangian manifolds, there
are coordinates such that, near the real points (x0, ξ0, y0,−η0) ∈ Λ1R = C ′1R
and (y′0, η

′
0, z0, ζ0) ∈ Λ2R = C ′2R, the manifolds are given by the vanishing of

x̃− ∂H1

∂ξ̃
(ξ̃, η̃), ỹ +

∂H1

∂η̃
(ξ̃, η̃); ỹ′ − ∂H2

∂η̃′
(η̃′, ζ̃), z̃ +

∂H2

∂ζ̃
(η̃′, ζ̃).

Moreover, the intersection (C1×C2)∩D̃ is completely describe by the previous
functions and

ỹ = ỹ′ η̃ = η̃′.

Its tangent plane is given by the vanishing of the differentials of all these func-
tions. Clean intersection means that T (C1R × C2R) ∩ TD is described by the
equations

d

(
x− ∂H1

∂ξ
(ξ, η)

)
= 0, d

(
y +

∂H1

∂η
(ξ, η)

)
= 0, d(y − y′) = 0,

d

(
y′ − ∂H2

∂η′
(η′, ζ)

)
= 0, d

(
z +

∂H2

∂ζ
(η′, ζ)

)
= 0, d (η − η′) = 0,

(17)

and has dimension nX +nZ + e, where e is the excess of the intersection. As in
the transversal case, define C1 ◦ C2 as the manifold that satisfy (C1 ◦ C2)R =
(C1R ◦ C2R) where

C1R ◦ C2R = {((x, y, ξ, η), (y′, z, η′, ζ)) ∈ C1R × C2R : y = y′, η + η′ = 0}

can be identified with (C1R × C2R) ∩ D. The main difference is that now the
manifold Λ = (C1 ◦ C2)′ is of dimension nX + nZ + e. Suppose now that Λ1

and Λ2 are parameterized by the regular phase functions

φ1(x, y, ξ, η) = x · ξ − y · η +H1(ξ, η), φ2(y, z, η, ζ) = y · η − z · ζ +H2(η, ζ).

Consider now the function

Φ(x, z, ω) = φ1(x, y, ξ, η) + φ2(y, z, η, ζ), ω = ω(y, ξ, η, ζ),

where ω is some function homogeneous of degree 1. The previous analysis shows
that Φ defines a clean phase function with excess e, because the differentials
d(∂Φ/∂ωj) are exactly those in (17). Then, the excess of the phase function Φ
is

dim Λ− (nX + nZ) = e.

Finally, note that there is a one-to-one correspondence between C1R ◦ C2R
and

CΦR = {((x, y, ξ, η), (y, z, η, ζ)) ∈ Cφ1
× Cφ2

: ∂y(φ1 + φ2) = 0} ,

so the manifold Λ = (C1 ◦ C2)′ can be parameterized by a the clean phase
function Φ. �X
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We now present an extension of the composition theorem to the case of clean
intersection. The proof is omitted because it follows the same arguments as
Theorem 7.3 in [5], but using the canonical transformation given by Proposition
4.5. The order of the distribution follows from Proposition 4.2.

To make our notation consistent with the one used in [5], from now on we
put θ := (ξ, η) and σ := (η, ζ). Then, we consider Φ as a clean phase function
depending on (x, z, y, θ, σ), that is

Φ(x, z, ω) = φ1(x, y, θ) + φ2(y, z, σ), ω = ω(y, θ, σ). (18)

An standard choice for the function ω is ω(y, θ, σ) =
(
y(θ2 + σ2)1/2, θ, σ

)
.

Theorem 4.6. Let C1 ⊂ (T ∗(X ×Y ) \ 0)∼, C2 ⊂ (T ∗(Y ×Z) \ 0)∼ be positive
canonical relations satisfying Assumption 1. Suppose that the operators A1 ∈
Im1

cl (X×Y,C ′1; Ω
1
2 ) and A2 ∈ Im2

cl (Y ×Z,C ′2; Ω
1
2 ) are properly supported. Then

A1 ◦A2 ∈ Imcl (X × Z, (C1 ◦ C2)′; Ω
1
2 ), m = m1 +m2 + e/2,

where e is the excess of the intersection.

Assuming that A1 and A2 have local representations I(φ1, a1) and I(φ2, a2),
respectively, one can see that B = A1 ◦ A2 is, modulo C∞, locally given by
I(Φ, b). Where Φ is the clean phase function in equation (18), and the amplitude

b ∈ Sm+(nX+nZ−2N)/4
cl (X × Z × RN \ 0) is of the form

b(x, z, ω) = a1(x, y, θ)a2(y, z, σ)(θ2 + σ2)−nY /2,

with m = m1 +m2 and N = N1 +N2 + nY .

Remark 4.7. For the amplitude b, the estimates of the symbol class Sm
′

cl (X×
Z×RN \0), are taken with respect to (x, z, ω), with ω the homogeneous function
above.

It is then clear that we should be able to write the principal symbol of B in
terms of σ(A1) and σ(A2). The next theorem shows precisely this in the case
of transverse composition.

Theorem 4.8. Let A1 ∈ Im1

cl (X × Y,C ′1; Ω
1
2 ) and A2 ∈ Im2

cl (Y × Z,C ′2; Ω
1
2 )

satisfy Assumption 1 with excess e = 0, and denote by B the composition
A1 ◦A2 ∈ Im1+m2

cl (X × Z, (C1 ◦ C2)′; Ω
1
2 ). Then,

σ(B) ∼ ã10ã20(|θ̃|2 + |σ̃|2)
−nY

2

√
dΦ ∈ Γm+n/4(Λ,L ), (19)

with m = m1 +m2 and n = nX + nZ . Here ã10, ã20 are the principal parts of
the amplitudes of A1 and A2, respectively.
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Proof. Since e = 0, the intersection is transverse and Φ is a non-degenerate
phase function. Then

√
dΦ is defined according to Lemma 2.16. The definition

of the principal symbol applied to B = A1 ◦A2, tells us that

σm(B) ∼ b̃0
√
dΦ, (20)

with b = (a1)(a2)(θ2 + σ2)
−nY

2 the amplitude of B. The difficulty of the proof
lies in verifying that

√
dΦ defines a section in Γ(L ,Λ), for Λ = (C1 ◦ C2)′.

Luckily, all the necessary steps were proved in [5]. First of all, notice that in
general, the square of a section σ ∈ Γ(L ,Λ) defines, up to a sing, an almost
analytic form on Λ of maximal degree. That is

σ2 ∼ ±ω, for some n-form ω.

By construction (see Lemma 2.16) we know that, given a phase function φ,
there is a n-form ω = dφ, moreover

σ2 ∼ ±dφ, for σ =
√
dφ. (21)

On the other hand, the proof of Theorem 7.5 in [5] states that

dφ1 ∧ dφ2 ∼ ±(θ2 + σ2)−nY dΦ ∧ Ω

defines an almost analytic form on Λ = (C1 ◦ C2)′, and that

α2
1 ∧ α2

2 ∼ ±α2 ∧ Ω, for some Ω,

here α1, α2, α are the principal symbols ofA1, A2, andB, respectively. Combing
these two facts with the expressions for α1, α2 according to Theorem 1.1, we
get

α2
1 ∧ α2

2 ∼ ±(ã2
10 dφ1) ∧ (ã2

20 dφ2) ∼ ±(ã10ã20)2 dφ1 ∧ dφ2

∼ ±
(
ã10ã20(θ2 + σ2)−

nY
2

)2

dΦ ∧ Ω,

Then, α2 ∼ ±b20dΦ. From equation (21), we see that α ∼ b0
√
dΦ. The result

follow from equation (20) and the definition of b0. �X

Whenever Assumption 1 is satisfied with e > 0, the principal symbol of the
resulting operator is given as in Definition 4.4, with

√
dΦ defined according

to Lemma 4.3. However, to compute the principal symbol we need further
assumptions. We take advantage of the identification between C1 ◦ C2 and
(C1 × C2) ∩ D̃. Denote by C the positive canonical relation C1 ◦ C2 ⊆ (T ∗X \
0)∼ × (T ∗Z \ 0)∼. Then, the image Cγ of a point γ ∈ CR in (C1R × C2R) ∩D,
defines a fiber of dimension e over γ. We can now prove our second main result,
Theorem 1.2.
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Theorem 4.9. Let A1 ∈ Im1

cl (X × Y,C1; Ω
1
2 ) and A2 ∈ Im2

cl (Y × Z,C2; Ω
1
2 )

satisfy the assumptions of Theorem 4.6, and suppose that, for γ ∈ CR, the set

Cγ is compact. Then, the principal symbol of B = A1 ◦ A2 ∈ I
m+e/2
cl (X ×

Z,C; Ω
1
2 ), m = m1 +m2, is

σm+e/2(B) ∼
∫
Cγ

ã10ã20(θ2 + σ2)
−nY

2

√
dΦ dy′′dθ′′dσ′′ ∈ S(m−e/2+n/4)(Λ,L ),

(22)

with n = nX + nZ and
√
dΦ defined as in Lemma 4.3.

Proof. This is a direct consequence of Theorem 4.8 and Definition 4.4. We only
need to compute the order of homogeneity. Since

√
dΦ is defined according to

Lemma 4.3, it is homogeneous of degree (N − e)/2, with N = nY + N1 + N2

and e the excess of the intersection. Then,

ã10ã20(θ2 + σ2)
−nY

2

√
dΦ ∈ S(m′′)(Λ,L )

for m′′ = m′+(N−e)/2 = m1 +m2−e/2+(nX +nZ)/4. Equation (22) follows
after integration with respect to the excess variables ω′′ = ω′′(y, θ, σ). Note
that, it is possible to organize the variables in a way that ω′′ = (y′′, θ′′, σ′′) ∈ Re,
for some splitting y = (y′, y′′), θ = (θ′, θ′′) and σ = (σ′, σ′′). �X

Remark 4.10. Proposition 4.5 implies that Λ ∼ (C1 ◦ C2)′ is a positive La-
grangian manifold. As such, it can be parametrize by a non-degenerate phase
function. This re-parametrization could potentially save us the difficulty of
working with the excess variables, but formula (22) would no longer be valid.
We need to keep in mind that working with a new phase function changes the
amplitude in the local representation of the distribution. Instead of the previ-
ous formulation of the principal symbol, we would obtain from Theorem 4.8 a
section of L which is equivalent (as section of the virtual line bundle) to the
one presented above.
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