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Abstract. This work introduces a geometric mean algorithm for positive def-
inite matrices using generalized eigenvalue problems and Cholesky factoriza-
tion. The geometric mean of a finite set of positive definite matrices minimizes
the sum of square distances to all the matrices where the distance is an affine-
invariant Riemannian metric in the manifold of the symmetric positive definite
matrices SN

++. In order to compute numerical approximations of the geometric
mean several algorithms have been proposed. Some of these algorithms require
the computation of several diagonalizations in each iteration. We show that by
rewriting the iterations in terms of generalized eigenvalue problems, it is pos-
sible to omit some of the diagonalizations at the cost of introducing much less
generalized eigenvalue problems that can be solved using Cholesky factoriza-
tions. We numerically compare the performance of classical methods and the
modified algorithms that use generalized eigenvalue problems. The resulting
method is applied to video analysis using the mean of covariance matrices as
a compact descriptor for actions classification. The proposed mean descriptor
with just 105 scalar values achieved an average accuracy of 75% over a public
action video dataset.
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Resumen. Este trabajo presenta un algoritmo de media geométrica para ma-
trices positivas definidas utilizando problemas de valores propios generalizados
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y la factorización de Cholesky. La media geométrica de un conjunto finito de
matrices positivas definidas minimiza la suma de los cuadrados de las distan-
cias al conjunto de matrices, donde la distancia es una métrica de Riemann
invariante afin en la variedad de matrices definidas positivas simétricas SN

++.
Para calcular aproximaciones numéricas de la media geométrica se proponen
varios algoritmos. Algunos de estos algoritmos requieren el cálculo de varias
diagonalizaciones en cada paso. Mostramos que al reescribir las iteraciones
de estos pasos en términos de un problema de valores propios generalizados,
es posible omitir algunas de las diagonalizaciones a costa de introducir pro-
blemas de valores propios que pueden resolverse utilizando factorizaciones de
Cholesky. Comparamos numéricamente el rendimiento de los métodos clásicos
y los algoritmos modificados que utilizan problemas de valores propios genera-
lizados. El método resultante se aplica al análisis de v́ıdeo utilizando la media
de matrices de covarianza como un descriptor compacto para la clasificación
de acciones. El descriptor medio propuesto con solo 105 valores escalares logró
una precisión promedio del 75% en un conjunto de datos de video.

Palabras y frases clave. Media de covarianza, Reconocimiento de acciones, Ma-
trices simétricas definidas positivas, Autovalores generalizados, Descomposión
de Cholesky.

1. Introduction

The identification of patterns in image and video sequences that correspond
with semantic labels is a common practice in the field of computer vision,
particularly in the context of automatic classification and action recognition.
Algorithms for performing these tasks are complex due to the high-variability
of movements, camera variations, lighting changes, and subjectivity in the de-
scription of actions. Therefore, one important goal in this field is to design and
develop image/video descriptors to address a specific application. The devel-
oped descriptors and methods must be efficient in order to be able to use them
in online applications or on-the-fly action recognition.

The dimension of the descriptor is an important parameter to approach
special problems that need fast computations. Most approaches produce over-
all high-dimensional descriptors, and are not usually used in basic devices or
computers. There are also far too complex and require too much computer
time when we want to make predictions in a short lapse of time. An approach
that has been used to deal with these issues is the use of covariance matrices
to compact spatio-temporal features that can be used to describe the video
[11, 18].

If the video has K frames and each one is described by N features of di-
mension W × H, then, a usual descriptor would have a total dimension of
K × N ×W × H. In contrast, to have a compact descriptor we can compute
the frame covariance matrices that describe how selected features are related
in each frame. These covariance matrices have dimension N ×N . After a check
for a possible regularization, these frame covariance matrices are elements of a
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Riemannian manifold: the space of symmetric positive-definite matrices (SN++).
This manifold has a special geometry structure where we can compute distances
and unique geodesics. Hence we can compute statistics along the manifold to
capture important information in a compact way.

Following several authors and previous articles in this area [19, 10, 3], this
work uses the geometric mean as a statistic and compact descriptor of the set
of frame covariance matrices. As mentioned in [5], the geometric mean of two
symmetric positive definite matrices A and B, has been defined in several ways.
A well-established definition is

A
1
2 (A−

1
2B

1
2A−

1
2 )A

1
2 . (1)

Geometrically, this is the midpoint of the geodesic joining A and B. This obser-
vation motivated Moakher [19] to generalize the definition of geometric mean
for more than two symmetric positive definite matrices based on a Riemannian
metric. It is defined as the unique solution X of the matrix equation

k∑
i=1

log(C−1
i X) = 0. (2)

This definition is similar to the characterization of the geometric mean of real
numbers and in the case k = 2 is the usual geometric mean definition (1).
Therefore the geometric mean of the covariance matrices, {Ci}ki=1 ⊂ SN++ is
the solution of this equation. This can be approximated using the iteration

µt+1 = expµt

(
1

k

k∑
i=1

logµt
(Ci)

)
, (3)

where µ0 is the initial guess and µt+1 is the (t + 1) approximation of the
geometric mean. This iteration solves, in the limit and under some conditions,
the variational problem defining the geometric mean or FrÃ c©chet mean (see
[23, 10, 22]). Nevertheless, the computations required to implement (3) in each
iterations involve the computation of the matrix function logµt

and expµt
. The

computation of these matrix functions, even for symmetric matrices, requires
a computational burden that has to be considered, and an efficient and stable
algorithm has to be implemented. See [12] and references therein.

The main contribution of this work is the introduction of two modifica-
tions of the usual computational implementation of (3). The first modification
is obtaining by using a generalized eigenvalues problem (instead of a classical
eigenvalue problem) to compute the logµt

and expµt
maps. The use of gener-

alized eigenvalue problems will help us to reduce the total number of matrix
diagonalization procedures. In the second modification, a Cholesky decompo-
sition is applied to the generalized eigenvalue problems, thereby enabling more
stable computations during the implementation of the generalized eigenvalue
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decomposition. To stress the differences in our implementations we first review
the algorithm in [23] and other existing approaches and then present the novel
methodologies. For the mathematical analysis of the method in [23] we refer to
[6, 27]. We mention that the connection between Cholesky decomposition and
geometric mean of symmetric positive matrices has been used before. See for
instance [17] where they use the Cholesky decomposition to introduce a new
parametrization and metric on the set of positive definite matrices. We also
mention [6] where it is also proposed as well as an iteration that takes advan-
tage of the Cholesky decomposition. In the present work we further explore the
usage of Cholesky factorization to write the iteration and also to compute the
required eigendecompositions in order to compute functions of matrices, see
Theorems 1 and 2 in Section 3.

A first evaluation of the proposed compact method shows competitive ad-
vantages regarding existing previous algorithms concerning the good action
classification due to the compactness and the low dimension of the descriptor.
In Section 4 the proposed and existing algorithms are evaluated in terms of
computing time and overall performance within a classification process. Addi-
tional contributions can be summarized as follows:

• An comprehensive analysis of geometric means [23, 3, 10, 1] is carried out
to propose different computations variations.

• We design a covariance video representation to obtain a very compact
descriptor that serves as input to a machine learning classifier.

• An exhaustive analysis of proposed geometric mean approaches by using
simulated covariance matrices as well as with covariance matrices com-
puted from some video datasets.

• A compact descriptor that can recognize activities in video sequences
using the mean of frame-covariances matrices.

We review important aspects of Riemannian manifolds in Section 2, in par-
ticular, we review the geometry of the symmetric positive-definite matrices.
We also re-visit existing algorithms to compute the geometric mean and some
related variants. In Section 3 we present the proposed algorithms, one using
generalized eigenvalues and another one Cholesky decomposition. In Section 4
we apply the methods in two computational experiments, one with simulated
matrices to compare performance in terms of computation time and another
one using a particular action recognition dataset to compare also the time
and performance in action classification. Finally in Section 5 we include some
concluding remarks.
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2. Riemannian geometry and geometric mean approximation

The space of symmetric positive-definite matrices SN++ is a Riemannian man-
ifold, that is, a smooth manifold with a Riemannian metric. Pennec in [23]
introduces the affine-invariant Riemannian metric for SN++. That is, for all
A,B in the tangent space at P (TPS

N
++), the inner product defined at P is

given by

〈A,B〉P = 〈P− 1
2AP−

1
2 , P−

1
2BP−

1
2 〉.

Here 〈C,D〉 = tr(CTD) is the usual Frobenious matrix inner product. Note that

the affine-invariant metric induces the norm ‖A‖P =
∥∥∥P− 1

2AP−
1
2

∥∥∥, where

also ‖·‖ is the usual Frobenius matrix norm. With the affine-invariant Rie-
mannian metric, SN++ is a geodesically complete Riemannian manifold with
non-positive curvature (see [18, 14]). The manifold SN++ is also simply con-
nected and therefore a Cartan-Hadamard manifold (See chapter XI Theorem
1.2 [14]). This implies that the exponential map expP : TPS

N
++ → SN++ is a

diffeomorphism for all P ∈ SN++. The inverse of the exponential map is the log-
arithm logP : SN++ → TPS

N
++. In this way, for each Q,P ∈ SN++, logP (Q) = V

where V ∈ TPS
N
++ and expP (V ) = Q. Pennec in [23], Moakher in [20] and

Fletcher in [10] introduce different ways to obtain the geodesics in SN++ with
the affine-invariant Riemannian metric. Given Σ ∈ SN++ and the tangent vector
V ∈ TΣS

N
++ we have that the geodesic γV with direction vector V and passing

through γV (0) = Σ is given by γV (t) = Σ
1
2 exp

(
tΣ−

1
2V Σ−

1
2

)
Σ

1
2 . Therefore,

the exponential map based at Σ is given by

expΣ(V ) = Σ
1
2 exp

(
Σ−

1
2V Σ−

1
2

)
Σ

1
2 . (4)

For its inverse map, taking V ∈ SN++ the log map based at Σ is

logΣ(V ) = Σ
1
2 log

(
Σ−

1
2V Σ−

1
2

)
Σ

1
2 . (5)

These functions map matrices between the manifold SN++ and the tangent space
TΣS

N
++, that corresponds to the space of symmetric matrices that we denote

as SN . In expΣ and logΣ, the exp and log are the corresponding functions of
matrices that extend the real exponential and logarithmic functions, see [12].
Another important consequence for Cartan-Hadamard manifolds is that given
two points P,Q in the manifold there exists a unique geodesic that joins P and
Q and its length is the geodesic distance between P and Q, see [18, 14]. Then,
in the case of the Cartan-Hadamard manifold SN++ with the affine-invariant
metric, the distance is given by,

dist(P,Q) = ‖logP (Q)‖P . (6)
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Note that here logP (Q) ∈ TPSN++ and it is such that expP (logP (Q)) = Q. Then
we can write,

dist(P,Q) = ||logP (Q)||P

= ||P 1
2 log

(
P−

1
2QP−

1
2

)
P

1
2 ||P

= ||log
(
P−

1
2QP−

1
2

)
||

=

√
tr

(
log
(
P−

1
2QP−

1
2

)2
)
.

(7)

Now, with this distance, similar to the variational characterization of the mean
in real numbers, the geometric mean of {Ci}ki=1 ⊂ SN++ is defined as the solution
of the variational formulation

arg min
X∈SN

++

k∑
i=1

dist(X,Ci)
2

= arg min
X∈SN

++

ρ(X), (8)

where ρ(X) = 1
2k

∑k
i=1 dist(X,Ci)

2
. Moakher in [19] dealing with the same

distance, establishes an equivalent formulation by setting the non linear ma-
trix formulation (2). Moakher also proves the unique solution of the equation.
The unique solution have been referred as ”Riemannian geometric mean” [19],
”Fréchet mean” [23] or ”geometric mean” [6]. Taking {Ci}ki=1 ⊂ SN++, Pennec in
[23] proposes a Newton gradient descent algorithm to calculate this geometric
mean. We can see that

∇ρ(X) = −1

k

k∑
i=1

logX(Ci), (9)

and then the gradient descent algorithm obtained in [23] is written as

µt+1 = expµt

(
1

k

k∑
i=1

logµt
(Ci)

)
, (10)

where µ0 is the initial guess and µt+1 is the (t + 1) approximation of the
geometric mean. There exist different approximations to implement geometric
mean. In next subsections we are going to review existing algorithms to compute
the mean.
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2.1. Gradient descent algorithm

Pennec in [23] proposed the algorithm showed in (10). In order to motivate this
algorithm we first write,

µt+1 = expµt

(
1

k

k∑
i=1

logµt
(Ci)

)

= µt
1
2 exp

(
1

k

k∑
i=1

log(µt
− 1

2Ciµt
− 1

2 )

)
µt

1
2 .

(11)

We can then implement the computation of the last expression, as expressed
in Algorithm 1.

Algorithm 1 Gradient descent algorithm proposed by Pennec in [23] to com-
pute the geometric mean of the matrices {Ci}ki=1 ⊂ SN++.

µ0 {Any, e.g., µ0 = 1
k

∑k
i=1 Ci}

δ {Maximum number of iterations}
t = 0
repeat
Xt = On×n {Zero matrix}
Qµt , Dµt {Eigenvectors and eigenvalues of µt }
µt

1
2 = QµtD

1
2
µtQ

T
µt

µt
− 1

2 = Qµt
D
− 1

2
µt Q

T
µt

for X ∈ {Ci}ki=1 do

Qi, Di {Eigenvectors and eigenvalues of µt
− 1

2Xµt
− 1

2 }
Xt = Xt +Qilog(Di)Q

T
i

end for
Xt = 1

kXt

QXt , DXt {Eigenvector and eigenvalues of Xt}
µt+1 = µt

1
2QXtexp (DXt)QXt

Tµt
1
2

t = t+ 1
until ‖Xt‖ > ε and number of iteration ≤ δ

2.2. Gradient descent: step control

T. Fletcher in [10] based his algorithm in the one developed in (8) using the
gradient (9) to control the step of the gradient descent. Fletcher compares the
norm of the gradient between consecutive iterations and if it increases then the
step is reduced in a half for the next iteration. See Algorithm 2.
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Algorithm 2 Gradient descent with step control proposed by Fletcher in [10]
to compute the geometric mean of {Ci}ki=1 ⊂ SN++.

µ0 {Any, e.g., µ0 = 1
k

∑k
i=1 Ci}

δ {Maximum number of iterations}
τ = 1 {Initial step }
t = 0
repeat
Xt = On×n {Zero matrix}
Qµt

, Dµt
{Eigenvectors and eigenvalues of µt }

µt
1
2 = Qµt

D
1
2
µtQ

T
µt

µt
− 1

2 = Qµt
D
− 1

2
µt Q

T
µt

for X ∈ {Ci}ki=1 do

Qi, Di {Eigenvectors and eigenvalues of µt
− 1

2Xµt
− 1

2 }
Xt = Xt +Qilog(Di)Q

T
i

end for
Xt = 1

kXt

Gt = µt
1
2Xtµt

1
2 {Gradient}

QXt
, DXt

{Eigenvector and eigenvalues of τXt}
µt+1 = µt

1
2QXtexp (DXt)QXt

Tµt
1
2

if 1 ≤ t and ‖Gt‖ > ‖Gt−1‖ then
τ = τ

2 , Gt = Gt−1

end if
t = t+ 1

until ‖Xt‖ > ε and number of iteration ≤ δ
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2.3. Log-Euclidean metric

Arsigny et al. [1] introduce a new family of metrics called “Log-Euclidean” that
overcomes computational limitations of the affine-invariant metric and has been
used as a fast compute alternative for different image applications [16]. This
metrics comes from defining a Euclidean structure on SN++ via its Lie algebra or
tangent space SN . With the norm associated to its metric the distance between
A,B ∈ SN++ is

distle(A,B) = ‖log(A)− log(B)‖Id . (12)

With this structure the arithmetic operations between symmetric positive def-
inite matrices are simple and faster to compute than corresponding operations
with the affine-invariant metric proposed by Pennec in [23]. According to The-
orem 3.13 of [1] the Fréchet mean (8) of {Ci}ki=1 using the distance defined in
(12) is

arg min
X∈SN

++

1

k

k∑
i=1

distle(X,Ci)
2

= arg min
X∈SN

++

1

k

k∑
i=1

‖log(X)− log(Ci)‖Id
2

= exp

(
1

k

k∑
i=1

log(Ci)

)
.

(13)

In the last step we used that the first order condition of this optimization prob-
lem is given by 1

k

∑k
i=1 (log(C)− log(Ci)) = 0. See the method in Algorithm

3.

Algorithm 3 Log-Euclidean mean proposed by Arsigny et. al in [1] to compute
the mean of the matrices {Ci}ki=1 ⊂ SN++.

X0 = On×n {Zero matrix}
for X ∈ {Ci}ki=1 do
Qi, Di {Eigenvectors and eigenvalues of X }
X0 = X0 +Qilog(Di)Q

T
i

end for
X0 = 1

kX0

QX0 , DX0 {Eigenvector and eigenvalues of X0}
µ = QX0exp(DX0)QX0

T

2.4. Barachant algorithm

Alexandre Barachant in [4] compute the geometric mean using τ to control
the step of the gradient descent and as a stopping criteria. The step decreases
progressively; however, as the magnitude of the gradient increases, the step size
decreases at a more rapid pace, see [2, 3]. We present the method in Algorithm
4.
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Algorithm 4 Method proposed by Alexandre Barachant in an applied Rieman-
nian library “PyRiemann” [4] to compute the geometric mean of the matrices
{Ci}ki=1 ⊂ SN++.

µ0 {Any, e.g., µ0 = 1
k

∑k
i=1 Ci}

δ {Maximum number of iterations}
τ = 1
ρ >> 0
t = 0
repeat
Xt = On×n{Zero matrix}
Qµt , Dµt {Eigenvectors and eigenvalues of µt }
µt

1
2 = QµtDµt

1
2Qµt

T

µt
− 1

2 = QµtDµt
− 1

2Qµt
T

for X ∈ {Ci}ki=1 do

Qi, Di {Eigenvectors and eigenvalues of µt
− 1

2Xµt
− 1

2 }
Xt = Xt +Qilog(Di)Q

T
i

end for
Xt = 1

kXt

QXt
, DXt

{Eigenvector and eigenvalues of τXt}
h = τ‖Xt‖
µt+1 = µt

1
2QXt

exp (DXt
)QXt

Tµt
1
2

if h < ρ then
τ = 0.95τ
ρ = h

else
τ = 0.5τ

end if
t = t+ 1

until ‖Xt‖ > ε and τ > ε and number of iteration ≤ δ

3. Proposed geometric mean

The previous algorithms made their modifications based on the gradient de-
scent algorithm procedure. This work conducts an exhaustive algebraic analysis
of the algorithm and shows various algebraic properties to applicable to the cal-
culation of the mean. From this analysis we managed to make less and stable
operations. The first proposed modification is using generalized eigenvalues and
the second one is using Cholesky decomposition.

3.1. Generalized eigenvalues approach

We use some results from [12] where computation of functions of matrices is
studied. Let f be a real function defined in the spectrum of A, so we can
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consider f(A). See [12] for the equivalent definitions of f(A). If A = ZDZ−1,
where Z is a non-singular (square) matrix, we can compute f(A)

f(A) = Zf(D)Z−1 = Zdiag(f(λi))Z
−1. (14)

In particular, when A is symmetric, its eigenvalues are real and A is diagonal-
izable. More precisely, we can factor A as A = QDQT where D = diag(λi) is a
diagonal matrix with the eigenvalues of A and the columns of the orthogonal
matrix Q are the corresponding eigenvectors. Additionally for A ∈ SN++, the
eigenvalues are positive real numbers. We have the following result.

Theorem 3.1 (Corollary 1.34 of [12]). Let A,B ∈ Cn×n and let f be defined
in the spectrum of AB and BA. Then

Af(BA) = f(AB)A.

We apply this result, and several others recalled below, to the definition of
expΣ and logΣ in (4) and (5), respectively. We present these results for general
functions f and it can be used in particular for the exponential and logarithm
Riemannian maps. In general, given Σ ∈ SN++, we define the matrix function
fΣ : SN → SN (or fΣ : SN++ → SN ), named matrix function f based in Σ, by

fΣ(V ) = Σ
1
2 f(Σ−

1
2V Σ−

1
2 )Σ

1
2 ,

where V ∈ SN (V ∈ SN++ resp.).

The efficient computation of fΣ is not straight forward. Using Theorem 1
we can find several equivalent ways to write fΣ(V ) for a symmetric matrix V .

Corollary 3.2. Assume that Σ ∈ SN++ and V ∈ SN . We have

fΣ(V ) = Σf(Σ−1V ) = f(V Σ−1)Σ. (15)

Proof. Taking B = Σ−
1
2V and A = Σ−

1
2 in Theorem 3.1, we get

Σ−
1
2 f(Σ−

1
2V Σ−

1
2 ) = f(Σ−

1
2 Σ−

1
2V )Σ−

1
2

and therefore

fΣ(V ) = Σ
1
2 f(Σ−

1
2CΣ−

1
2 )Σ

1
2

= Σ

[
f(Σ−

1
2 Σ−

1
2V )Σ−

1
2

]
Σ

1
2 = Σf(Σ−1V ).

Analogously we obtain the second equality of (15) by taking A = Σ
1
2 and

B = Σ−
1
2V Σ−1. �X

Revista Colombiana de Matemáticas
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Given Σ ∈ SN++ and V ∈ SN , we can consider the generalized eigenvalue
problem V φ = λΣφ that in matrix form is written as

Σ−1V = QDQ−1, (16)

where D is the diagonal matrix of generalized eigenvectors, that is, D =
diag(λi)

n
i=1. It is known that the eigenvectors are orthogonal in the inner prod-

uct 〈u, v〉Σ = vTΣu generated by Σ, that is, QTΣQ = Id. Note that we have

Σ−1V = QDQTΣ, (17)

or

Σ−
1
2V Σ−

1
2 = Σ

1
2QDQTΣ

1
2 . (18)

Taking Ψ = Σ
1
2Q we have

Σ−
1
2V Σ−

1
2 = ΨDΨ−1. (19)

From (16) and (19) note that the eigenvalues of Σ−1V and Σ−
1
2V Σ−

1
2 are the

same. Applying this on (19) we have

f
(

Σ−
1
2V Σ−

1
2

)
= Ψf(D)Ψ−1, (20)

and therefore,

fΣ(V ) = Σ
1
2 f
(

Σ−
1
2V Σ−

1
2

)
Σ

1
2 = ΣQf(D)QTΣ. (21)

This shows that fΣ(V ) can be computed by using the generalized eigenvalue
problem Σ−1V .

Theorem 3.3. The generalized eigenvalues of fΣ(V ) with respect to Σ are of
the form f(λi) where λi is a generalized eigenvalue of V with respect to Σ.

Proof. The eigenvalues of fΣ(V ) with respect Σ are the eigenvalues of Σ-1fΣ(V ),
but using (15) of Corollary 3.2 we get

Σ−1fΣ(V ) = f(Σ−1V ) = f(QDQ−1) = Qf(D)Q−1.

Then, the eigenvalues of Σ−1fΣ(V ) are of the form form f(D) where D is a
diagonal matrix with the eigenvalues of V with respect Σ. �X

We can apply these results to rewrite (10). Let µ,C ∈ SN++. Note that if we
put f(r) = log(r) we have

logµ(C) = fµ(C) = µQ log(D)QTµ
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where Q and D are given by µ−1C = QDQTµ or µ−
1
2Cµ−

1
2 = µ

1
2QDQTµ

1
2 .

Analogously

expµ(C) = µQ exp(D)QTµ.

We can rewrite (10) in the form,

µt+1 = expµt

(
1

k

k∑
i=1

logµt
(Ci)

)

= expµt

(
1

k

k∑
i=1

µtQilog(Di)Q
T
i µt

)

= expµt

(
µt

[
1

k

k∑
i=1

Qilog(Di)Q
T
i

]
µt

)
.

(22)

where the matrix of generalized eigenvectors Qi and the diagonal matrix of
generalized eigenvalues Di, are given by µ−1

t Ci = QiDiQ
T
i µt. Let us denote

J = µt

[
1
k

∑k
i=1Qilog(Di)Q

T
i

]
µt, then µt = expµt

(J). To compute expµt
(J)

we need the eigenvectors Q and eigenvalues D of µt
−1J and in this way (22) is

µt+1 = expµt
(J)

= µtQexp (D)QTµt.
(23)

Where µt
−1J = QDQTµt. Using the generalized eigenvalue expression (22) we

can save several matrix operations and obtain the same results as in Pennec’s
method in Algorithm 1. Below is the method implemented in the experiments.
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Algorithm 5 With the calculations made in (22) and (23) we present an
algorithm using generalized eigenvalues to calculate the mean of the matrices
{Ci}ki=1 ⊂ SN++.

µ0 {Any, e.g., µ0 = 1
k

∑k
i=1 Ci}

δ {Maximum number of iterations}
t = 0
repeat
Xt = On×n {Zero matrix}
for X ∈ {Ci}ki=1 do
Qi, Di {Generalized eigenvector and eigenvalues of µt

−1X }
Xt = Xt +Qilog(Di)Q

T
i

end for
Xt = 1

kXt

J = µtXtµt
Q, D {Eigenvector and eigenvalues of Xtµt}
µi+1 = µtQexp (D)QTµt
t = t+ 1

until ‖J‖ > ε and number of iteration ≤ δ

3.2. Cholesky decomposition

Now we use Cholesky factorization applied to the generalized eigenvalue de-
composition. We come back to the general case of a real function f . For a
positive-definite matrix Σ recall that fΣ(V ) = ΣQf(D)QTΣ where Q and D
correspond to the generalized eigenvectors and eigenvalues of V with respect
to Σ. We use Cholesky factorization Σ = RTR, where R is an upper triangular
matrix. We have V Q = ΣQD, that is V R−1RQ = RTRQD. Taking ψ = RQ
we have R−TV R−1ψ = ψD. We see that ψ solves the eigenvalue problem as-
sociated to the matrix W = R−TV R−1 (see [12]). Note that the eigenvalues of
this problem are the same of initial problem Σ−1V . From all this we have

fΣ(V ) = ΣQf(D)QTΣ = RTRR−1ψf(D)ψTR−TRTR = RTψf(D)ψTR.

Applying this to (10) we have

µt+1 = expµt

(
1

k

k∑
i=1

RTψilog(Di)ψ
T
i R

)
, (24)

where ψi and Di are the eigenvectors and eigenvalues of the eigenvalue problem
associated to Vi = R−TCiR

−1. Denoting J = 1
k

∑k
i=1ψilog(D)ψTi , now (24) is

µt+1 = expµt
(RTJR) = RTψ′exp(D′)ψ′

T
R, (25)
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where ψ′ and D′ are the eigenvectors and eigenvalues of the eigenvalue problem
associated to V ′ = R−T (RTJR)R−1 = J . Note that with this Cholesky factor-
ization we change the k generalized eigenvalue problems in the for buckle for
k (classical) eigenvalue problems. We present the method in Algorithm 6.

Algorithm 6 With the calculations made in (24) and (25) we present an algo-
rithm using the Cholesky decomposition to compute the mean of the matrices
{Ci}ki=1 ⊂ SN++.

µ0 {Any, e.g., µ0 = 1
k

∑k
i=1 Ci}

δ {Maximum number of iterations}
t = 0
repeat
Xt = On×n {Zero matrix}
R {Upper triangular Cholesky of µt}
RT {Transpose of R}
R−1 {Solution of XR = Id}
R−T {Transpose of R−1}
for X ∈ {Ci}ki=1 do
X = R−TXR−1

Qi, Di {Eigenvalues and eigenvectors of X}
Xt = Xt +Qi log(Di)Q

T
i

end for
Xt = 1

kXt

J = RTXtR
Q,D {Eigenvalues and eigenvectors of Xt}
µt+1 = RTQ exp(D)QTR
t = t+ 1

until ‖J‖ > ε and number of iteration ≤ δ

4. Evaluation and results

The proposed modifications of the classical algorithm was evaluated in terms of
computation, efficiency and its respective performance as video descriptor into
a task of computer action recognition. For that, we design two experiments:
using simulated matrices and using human action videos dataset.

Experiment 1: Simulated matrices. Using simulated matrices we mea-
sure the time to compute the mean by each algorithm varying the size and the
number of matrices, we also measure the number of iterations that each algo-
rithm needs to compute the mean. We use a set of random symmetric positive
definite matrices with different sizes to evaluate the proposed approach [21].

Experiment 2: Action recognition. In general, we consider a video D
as sequence of K frames {It}Kt=1 ⊂ RW×H , where each frame can be identified
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Figure 1. Comparison between the time that each algorithm need to calculate the
mean changing the size of the matrices (from 2 × 2 to 512 × 512) with a
tolerance of 10−9.
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by (or associated to) a set of N features
{
F (1), . . . , F (N)

}
⊂ RW×H . For a

compact description we calculate the mean covariance matrix µD of the set of
frame covariance matrices {Ct}Kt=1 ⊂ SN++ where Ct = [Cij ]

N,N
i=1,j=1 and Cij is

the covariance between F (i) and F (j). Therefore each video is described with
a mean covariance matrix. In this work, we utilized the optical flow method
described in [7] to calculate features for each frame. This technique computes
a vector field that represents the motion in each frame, and we termed these
kinematic features as:

Vx, Vy, ‖V ‖ , Tx, Ty, AT , AN , ‖a‖ , Nx, Ny, ax, ay, ‖T ′‖ , ‖N‖

With this features we represent each video with a covariance matrix of dimen-
sion 14×14. That can be rearranged in a vector of dimension 14×15

2 to be input
in an action classifier method. In this work we use the public academic action
recognition dataset UT-Interaction [24]. This dataset have six different ac-
tions classes: “Hand shaking”, “Hugging”, “Kicking”, “Pointing”, “Punching”
and “Pushing”. It has two sets of videos, one recorded with a plane background
and a static camera (Set 1) and another with some camera motions (Set 2).
Each set has 60 videos so there are 10 videos of each class.

4.1. Evaluation over simulated matrices

We know that the size of the covariance matrices depends on the number of
features so in Figure 1 we show two experiments, one with 100 matrices and
other with 200, with a tolerance of 10−9. The graphs present the time that each
algorithm needs to calculate the mean while the size of the matrices changes
from 2× 2 to 512× 512. In this case the generalized eigenvalues approach is a
little bit slower because the computation cost that the generalized eigenvalues
problems carry.

To evaluate the algorithms with regard the length of video sequences we
show three experiments in Figure 2 with matrices of dimension 32× 32, 128×
128, and 512×512, and tolerance of 10−9. The graphs present the time that each
algorithm needs to calculate the mean while the number of matrices changes
from 50 to 200. In this case the generalized eigenvalues approach is a little
bit slower but improve w.r.t Cholesky approach while the size of the matri-
ces increases, this is due to the stability of the computations involved in the
generalized eigenvalues approach.

In Figure 3, for matrices of dimension 32 × 32, 64 × 64 and 128 × 128 we
present the number of iterations that each algorithm needs to calculate the
mean while the number of matrices change from 25 to 200 with a tolerance
of 10−9. It should be noted that the generalized eigenvalues approach has a
considerable better performance on the number of iterations needed to compute
the mean. In all simulations, the Log-Euclidean algorithm is faster and the one
that requires fewer iterations.
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Figure 2. Comparison between the time that each algorithm needs to calculate the
mean changing the number matrices (from 50 to 200) with a tolerance of
10−9. In each subfigure varies the size of the matrices from 32 × 32 to
512 × 512.
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Figure 3. Comparison between the number of iterations that each algorithm needs
to calculate the mean changing the size of the matrices (32 × 32, 64 × 64
and 128 × 128), with tolerance of 10−9.

In Figure 3 we can see that when the number of matrices increases the
number of iterations needed for the algorithms is the same or decreases. The
“PyRiemann” algorithm is the one that needs fewer iterations to converge
after the Log-Euclidean algorithm. Both new algorithms have very close per-
formance being Cholesky factorization faster but generalized eigenvalue take
relative less iterations. It is possible that this is due to the well known good
stability properties of the Cholesky factorization.

4.2. Action recognition: evaluation as video descriptor

In this part, we use the videos of the dataset UT-Interaction and the kinematic
features to represent each frame. Once we describe a video with the covariance
mean calculated with a specific algorithm, we can measure with the accuracy
how successful it is to identify the right action class. The accuracy of the
algorithms on the Set 1 and Set 2 is presented in Table ??.

Accuracies of the algorithms in the video sequences of
the Set 1 and Set 2 of the Dataset UT-Iteraction.

Log Pennec Fletcher PyRiemann Generalized Cholesky

Euclidean eigenvalues

Accuracy Set 1 68.33 % 75 % 73.33 % 73.33 % 75 % 75 %

Accuracy Set 2 49.99% 60% 54.99% 54.99% 60 % 60%

Since there are algorithms whose accuracy is very similar we calculated
other classification measure, the recall, the ratio of well-predicted action videos
of a specific action class. Note that recall is a measure for each class so we
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250 JUAN OLMOS, JUAN GALVIS & FABIO MART́ıNEZ

can take the mean to measure our classifier. The recall of each algorithm is
presented in Table ??

Average recall of the algorithms in the video sequences
of the Set 1 and Set 2 of the Dataset UT-Iteraction.

Log Pennec Fletcher PyRiemann Generalized Cholesky

Euclidean eigenvalues

Recall Set 1 68.33 % 63.33 % 66.66 % 69.99 % 73.33 % 68.33

Recall Set 2 61.66 % 63.33 % 64.99% 68.33% 65 % 63.33 %

To see how compact is the covariance mean as descriptor in Table ?? we
compare the proposed algorithms (that have the same accuracy for both Sets)
and other descriptors of the state of the art.

Average accuracies in Set 1 and 2 of UT-Interaction by different descriptors
in the state of the art and proposed algorithms that have the same accuracy:
Generalized eigenvalues and Cholesky. Some approaches depend on np, a num-
ber proportional to the dimension of the frames and is in order of thousands.
Approaches Descriptor Size Set 1 Set 2

Propagative Houg Voting[25] 162×np 93.3 % 91.7%

Daysy 3D [8] 192×np 71.67 % 56.67%

Slimani [9] 22500 40 % 66%

Laptev [15] 41800×np 68 % 65%

Proposed algorithms 105 75% 60%

To compare how the algebraic modifications proposed in our algorithms
affect the time in Table ?? we measure the average time of computing the
mean by the different algorithms.

Average time needed by the different algorithms to calculate the mean
for video from the set 1 and set 2 of the Dataset UT-Iteraction.

Log Pennec Fletcher PyRiemann Generalized Cholesky

Euclidean eigenvalues

Set 1 0.012 s 0.523 s 0.481 s 0.173 s 0.788 s 0.531 s

Set 2 0.012 s 0.568 s 0.499 s 0.199 s 0.691 s 0.562 s

The log-Euclidean metric was adopted as a baseline alternative because of
its faster computational time performance. However, from the accuracy per-
formance of Table ??, it should be noted that this metric approximate the
covariance average more than a geometric mean representation. For both sets,
the proposed algorithms and the Pennec’s algorithm achieved the best accu-
racy: 75% for the set 1 and 60% for the set 2. Calculating the recall we see that
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the generalized eigenvalues approach has the best performance in the set 1 and
in the set 2 the PyRiemann algorithm has the best performance. In real sce-
narios, the numerical composition of features in online action recognition may
vary, and the treatment of covariance may result in numerical inaccuracies. The
use of generalized eigenvalues and Cholesky decomposition in the proposed al-
gorithms generates more stability in the calculation of the mean and therefore
a lower effects of numerical errors. Therefore, this fact can cause the algorithms
to perform well in classification tasks, since it is closer to the only geometric
mean of the set of covariances.

5. Discussion and Conclusions

Using the study of the mean in the manifold of symmetric positive definite
matrices we reviewed and evaluated different algorithms like the one proposed
by Pennec [23], Fletcher et. al [10] and Alexandre Barachant et. al [4]. From
there we proposed two algorithms. The proposal starts with the study of the
calculus of the mean of covariance matrices in this manifold understanding the
mathematical and geometrical background of the problem. The next goal was
to propose a method to do fewer calculations and compare it with others in an
application problem as a compact descriptor for action recognition.

In this work the use of the mean of covariance matrices which is the result
of an optimization problem to find the matrix that is closer to all frame covari-
ance matrices that lie in a Riemannian manifold give us a compact descriptor of
only 105 scalar values to describe all the video. Regarding some other high di-
mensional descriptors, the covariance mean get the same or better performance
in terms of accuracy. Once the optimization problem and mathematical foun-
dations of the geometry of the manifold were understood, we introduced two
algorithms: the generalized eigenvalues algorithm to do fewer calculations and
then the Cholesky decomposition algorithm to do less and simple calculations.

The studied and proposed algorithms were first evaluated with simulated
matrices and then with a set of public videos. In these implementations, the
proposed algorithms take the longest time but present the best accuracy in
both sets: 75% for set 1 and 60% for set 2, also especially the generalized
eigenvalues approach achieved the best recall only in Set 1 this because camera
movement in Set 2 resulted in more complex and sparse matrices. This fact is
associated to complexity of representation on input features that form frame
covariance matrices. These results show the stability of calculations involved
in both proposed algorithms. This can affect the computation time but reach
a numerically better approach to the geometric mean, which is reflected in a
better performance. According to our study the generalized eigenvalues bring
stability and allows a better representation of covariance mean. Nonetheless, a
detailed complexity analysis of the proposed work should be directed on future
works to establish mathematical properties that clarify the advantages of the
approach we proposed.
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Along with the proposed algorithms, we presented other algorithms to com-
pute the mean. These algorithms are known in the state of the art and com-
putational implementations are available to test in other application domains.
Furthermore, these and the proposed algorithms can be used in online classifi-
cation tasks due to their simple calculations. In [13, 26, 28] and the references
therein, several methods and algorithms are presented to compute different
means. These approaches, however, can introduce expensive computational pro-
cedures that limit their usability on specific scenarios. In this work, as initial
exploration of the effects of introducing Cholesky factorization and generalized
eigenvalue problems, we compared our method with selected implementations
since our main focus is the practical application to action recognition. A more
throughout comparison can still be done in future work. Our current work
can be continued in several directions, for instance, other statistics and mea-
sures related to Riemannian manifold structure and covariance matrices can
be incorporated into the classification procedure. Also, it would be interesting
to inquire into the geometry and algebra of the manifold and to explore how
the sparsity of the data can provide additional information and description to
propose novel methods or improve existing ones.
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