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Quasiconvex functions on regular trees

Funciones cuasi-convexas en arboles regulares
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Abstract. We introduce a definition of a quasiconvex function on an infinite
directed regular tree that depends on what we understand by a segment on the
tree. Our definition is based on thinking on segments as subtrees with the root
as the midpoint of the segment and extends a previous notion of convexity on
a tree. A convex set in the tree is then a subset such that it contains every
midpoint of every segment with terminal nodes in the set. Then, a quasiconvex
function is a real map on the tree such that every level set is a convex set.
For this concept of quasiconvex functions on a tree, we show that given a
continuous boundary datum, there exists a unique quasiconvex envelope on
the tree, and we characterize the equation that this envelope satisfies. It turns
out that this equation is a mean value property that involves a median among
values of the function on successors of a given vertex. We also relate the
quasiconvex envelope of a function defined inside the tree to the solution of
an obstacle problem for this characteristic equation.
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Resumen. Se introduce una definición de función cuasiconvexa en el árbol
regular dirigido e infinito, que depende de lo que se entienda por segmento en
el árbol. Nuestra definición se basa en pensar segmentos como subárboles con
la ráız como el punto medio del segmento, lo que extiende una noción previa
de convexidad en un árbol. Un conjunto convexo en el árbol es entonces un
subconjunto tal que contiene cada punto medio de cada segmento con nodos
terminales en el conjunto. Entonces, una función cuasiconvexa es una función
real en el árbol tal que cada conjunto de nivel es convexo. Para este concepto
de funciones cuasiconvexas en un árbol, se muestra que dado un dato de

1

DOI: https://doi.org/10.15446/recolma.v58n1.117431



2 L. M. DEL PEZZO, N. FREVENZA AND J. D. ROSSI

borde continuo, existe una única envolvente cuasiconvexa en el árbol, y se
caracteriza la ecuación que satisface esta envolvente. La ecuación resultante es
una propiedad de valor medio que involucra una mediana entre los valores de la
función en los sucesores de un vértice dado. También se relaciona la envolvente
cuasiconvexa de una función definida dentro del árbol con la solución de un
problema de obstáculo para esta ecuación caracteŕıstica.

Palabras y frases clave. cuasiconvexidad, envolventes, árboles.

1. Introduction

Our main goal in this paper is to study quasiconvex functions on a regular
directed tree. Let us start this introduction recalling the well-known definitions
of convexity and quasiconvexity in the Euclidean space. A function u : S → R
defined on a convex subset S ⊂ RN is called convex if for all x, y ∈ S and any
λ ∈ [0, 1], we have

u(λx+ (1− λ)y) ≤ λu(x) + (1− λ)u(y).

That is, the value of the function at a point in the segment that joins x and
y y is less than or equal to the convex combination between the values at the
extrema. An alternative way of stating convexity is to say that u is convex on
S if the epigraph of u on S is a convex set on RN+1. We refer to [26] for a
general reference on convex structures.

A notion weaker than convexity is quasiconvexity. A function u : S → R
defined on a convex subset S of the Euclidean space is called quasiconvex if for
all x, y ∈ S and any λ ∈ [0, 1], we have

u(λx+ (1− λ)y) ≤ max {u(x), u(y)} .

An alternative geometric way of defining a quasiconvex function u is to require
that each sublevel set Sα(u) = {x ∈ S : u(x) ≤ α} is a convex set. See [10] and
citations therein for an overview.

One problem with convexity is that whether or not a function is convex
depends on the numbers which the function assigns to its level sets, not just
on the shape of these level sets. The problem with this is that a monotone
transformation of a convex function need not be convex. That is, if u is convex
and g : R 7→ R is increasing then g ◦ u may fail to be convex. For instance,
f(x) = x2 is convex and g(x) = arctan(x) is increasing but g◦f(x) is not convex.
However, the weaker condition, quasiconvexity, maintains this quality under
monotonic transformations. Moreover, every monotonic transformation of a
convex function is quasiconvex (although it is not true that every quasiconvex
function can be written as a monotonic transformation of a convex function).

Quasiconvex functions have applications in mathematical analysis, opti-
mization, game theory, and economics. In nonlinear optimization, quasiconvex
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programming studies iterative methods that converge to a minimum (if one ex-
ists) for quasiconvex functions. Quasiconvex programming is a generalization of
convex programming. See [14] for an application to queueing theory on indus-
trial organization. In microeconomics, quasiconcave (−u with u quasiconvex)
utility functions imply that consumers have convex preferences, that is, the
diversification of goods is preferred to the concentration on one of these. Qua-
siconvex functions are important also in game theory and general equilibrium
theory; in particular, in Sion’s theorem that asserts when we can interchange
an infimum with a supremum, see [16, 24].

There is also a Partial Differential Equations (PDEs) approach for quasi-
convex functions, see [2, 3, 4]. In fact, a function u in the Euclidean space is
quasiconvex if and only if it is a viscosity subsolution to

L(u)(x) := min
v : |v|=1,

⟨v,∇u(x)⟩=0

⟨D2u(x)v, v⟩ = 0. (1)

Moreover, the quasiconvex envelope of a boundary datum inside a domain is
a solution to (1) and the quasiconvex envelope of a given function g inside
the domain (defined as the largest quasiconvex function that is below g in the
domain) is the solution to the obstacle problem (from above) for the operator L.

When one wants to expand the notion of convexity or quasiconvexity to an
ambient space beyond the Euclidean setting the key is to introduce what is a
segment in our space and, once this is done, to understand what a midpoint in
the segment is. For extensions of convexity for graphs and lattices we refer to
[1, 6, 7, 11, 12, 13, 18, 19, 20, 23] and references therein.

Here we want to set the ambient space to be a regular tree with m−bran-
ching that we will denote by Tm. This refers to a graph with a unique root
and such that every node x is connected with m + 1 nodes, it has exactly m
successors (we denote by S(x) the set of successors) and only one ancestor
(except the root that has only m successors), see the precise definition in the
next section.

In [1] a concept of convexity and quasiconvexity was introduced for a non-
directed tree. In a finite tree, the authors proved that certain operations with
convex and quasiconvex functions preserve the convex or quasiconvex structure.
They also showed that certain functions of importance in the case of finite trees
are convex or quasiconvex. The regular tree is a discrete metric space where
some techniques with analogies to the PDEs approach have been developed.
Recently, in [7] the notion of convexity on Tm was extended as follows: fix
k ∈ {1, . . . ,m} and let Tx

k denote the collection of finite subgraphs of Tm with
a root at x and k−branching (every node that is not a terminal node has exactly
k successors). For B ∈ Tx

k we denote by E(B) the set of terminal nodes of B.
Then, a function u : Tm → R is called k−ary convex or k−convex if for any

Revista Colombiana de Matemáticas
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x ∈ Tm

u(x) ≤
∑

y∈E(B)

1

k|y|−|x|u(y), ∀B ∈ Tx
k.

In this notion of convexity, the subtree B has the role of a segment; the midpoint
is the root of B, and the k−convexity property just says that the value of the
function u at the midpoint is less than or equal to a weighted average of the
values of u at the endpoints. It should be noted that the meaning of segment
depends on k and admit more than two endpoints. For k = 2, this definition
recovers the convex notion of [1].

Here, based on the previously mentioned idea of a segment and a midpoint
in the tree Tm, we introduce a definition of a k−quasiconvex function on Tm.
A k−convex set in the tree C ⊂ Tm is a subset that contains every midpoint of
every segment with terminal nodes in the set, that is, C ⊂ Tm is k−convex if for
every B ∈ Tx

k with E(B) ⊂ C we have that x ∈ C. Then, the natural definition
for k−quasiconvexity runs as follows: a function on the tree u is k−quasiconvex
if every sublevel set Sα(u) = {x : u(x) ≤ α} is a k−convex set in Tm.

First, we prove a characterization of being k−quasiconvex in terms of an
inequality involving only the values of u at the successors of x, that is, as a
local property. A function u is k−quasiconvex on the tree if and only if for
every vertex x ∈ Tm it holds that

u(x) ≤ min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{u(yi)} . (2)

Notice that the right side of (2) is the k−th smallest value among all the
values of u at the set of successors of x, S(x). This characterization shows
that the definition of quasiconvexity of [1] is equivalent to the 2-quasiconvexity
introduced here.

For this notion of k−quasiconvexity on a tree we show that given a boundary
datum f on the boundary of the tree, there exists a unique k−quasiconvex
envelope in Tm (this k−quasiconvex envelope is defined as the supremum of
k−quasiconvex functions that are below f on the boundary of the tree) and
we characterize the equation that this envelope satisfies: the k−quasiconvex
envelope u∗f is the largest solution to

u(x) = min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{u(yi)} (3)

that is below f on ∂Tm. Notice that here we have saturated the inequality
(2). For a bounded boundary datum f, we prove existence and uniqueness for
solutions to the problem (3) and in the case where f is continuous we show
that the solution of (3) attains the datum with continuity. We also establish
an analogy between this equation (3) and the associated equation (1) for the
quasiconvexity in the Euclidean setting in Section 5.
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It turns out that this equation (3) is a mean value property that involves
the k−th order statistic of the values of the function on the successors of a
given vertex. In the particular case of the m−branching directed tree with m
odd and k = m−1

2 , the equation (3) is given by the median operator, that is,
the k−quasiconvex envelope is the largest solution to

u(x) = median {u(y) : y ∈ S(x)} for x ∈ Tm.

In the special cases k = 1 or k = m, the equation (3) reduces to

u(x) = min
y∈S(x)

{u(y)} for k = 1,

u(x) = max
y∈S(x)

{u(y)} for k = m.

Here, we concentrate on the more interesting case k ∈ {2, ...,m− 1}.
We also relate the k−quasiconvex envelope of a function g : Tm → R defined

inside the tree to the solution of an obstacle problem for this characteristic
equation (3).

The paper is organized as follows: in the next section we describe precisely
the ambient space to be the regular tree with m−branching, set the notations
that we are going to use and state the results; while in Section 3 we gather the
proofs; in Section 4 we include as an example some computations and remarks
showing that the quasiconvex envelope is easy to compute when the boundary
datum f is monotone; finally, in Section 5 we look at the equation for the
k−quasiconvex envelope, (3) in the special case k = 2 and compare it with the
equation for the Euclidean case (1).

2. Settings, notations and statements

Given m ∈ N≥2, a tree Tm with regular m−branching is an infinite directed
graph with vertex set defined by the empty set ∅, called the root, and all finite
sequences (a1, a2, . . . , al) with l ∈ N, whose coordinates ai are chosen from
{0, 1, . . . ,m− 1}.

∅

0

0

0 1 2

1

0 1 2

2

0 1 2

1

0

0 1 2

1

0 1 2

2

0 1 2

2

0

0 1 2

1

0 1 2

2

0 1 2

A regular tree with 3−branching.
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The edge structure is defined as follows: each vertex x has m successors,
obtained by adding another coordinate to x. We denote by

S(x) := {(x, i) : i ∈ {0, 1, . . . ,m− 1}}

the set of successors of the vertex x. If x is not the root, then x has a only
an immediate predecessor, which is indicated by x̂. A vertex x ∈ Tm has level
l ∈ N if x = (a1, a2, . . . , al). The level of x is denoted by |x|.

A branch of Tm is an infinite sequence of vertices, where each one of them
is followed by one of its immediate successors. The collection of all branches
defines the boundary of Tm, denoted by ∂Tm. Note that the function ψ :
∂Tm → [0, 1] defined as

ψ(π) :=

+∞∑
j=1

aj
mj

is surjective, where π = (a1, . . . , aj , . . . ) ∈ ∂Tm and aj ∈ {0, 1, . . . ,m − 1} for
all j ∈ N. Whenever x = (a1, . . . , aj) ∈ Tm is a vertex, we set

ψ(x) := ψ(a1, . . . , aj , 0, . . . , 0, . . . ).

Each vertex x has associated an interval Ix of length 1
m|x| as follows

Ix :=

[
ψ(x), ψ(x) +

1

m|x|

]
.

Observe that for all x ∈ Tm, Ix ∩ ∂Tm is the subset of ∂Tm formed by all
branches that pass through x. Additionally, for any branch π = (a1, . . . , aj , . . . )
∈ ∂Tm, we can associate the sequence of intervals {Iπ,j} given by

Iπ,j := Ixj
with xj = (a1, . . . , aj) for all j.

It is easy to see that Iπ,j+1 ⊂ Iπ,j and ψ(π) ∈ Iπ,j for all j.

2.1. Quasiconvexity for directed regular trees

First, let us recall the definition of a k−convex set inside the tree. Fix k ∈
{2, . . . ,m− 1}. We denote by Tx

k the collection of finite directed subgraphs of
Tm with x as root and k−branching and for B ∈ Tx

k we write E(B) for the set
of terminal nodes of B.

Definición 2.1. A set C ⊂ Tm is k−convex if for every B ∈ Tx
k with E(B) ⊂ C

we have that x ∈ C.

Then, the definition of a quasiconvex function runs as follows:

Definición 2.2. A function on the tree u : Tm 7→ R is called k−quasiconvex
if every sublevel set Sα(u) = {x : u(x) ≤ α} is a k−convex set in Tm.
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We can characterize quasiconvexity by an inequality involving only the val-
ues of u at the node and its successors. This characterization will be used to
argue why the previous definitions of convexity and quasiconvexity seem “nat-
ural”, establishing an analogy with the Euclidean case, which is described in
Section 5.

Theorem 2.3. A function u is k−quasiconvex if and only if

u(x) ≤ min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{u(yi)} for every x ∈ Tm. (4)

Notice that the right side of (4) is the k−th smallest value among all the
values of u in the successors of x.

2.2. The quasiconvex envelope of a boundary datum

We are interested in the k−quasi convex envelope of a function defined on
∂Tm. Given f : [0, 1] → R, the k−quasiconvex envelope of f on Tm is defined
as follows

u∗f (x) := sup {u(x) : u ∈ QCk(f)} ,
where

QCk(f) :=

{
u : Tm → R :

u is k−quasiconvex and

lim sup
x→π∈∂Tm

u(x) ≤ f(ψ(π)) ∀π ∈ ∂Tm

}
.

The k−quasiconvex envelope is unique by the fact that the maximum of two
k−quasiconvex functions is also k−quasiconvex. In the next theorem we char-
acterize the k−quasiconvex envelope as the largest solution of the nonlinear
inequality (4) on Tm that is below f on ∂Tm.

Theorem 2.4. Given a bounded function f : [0, 1] → R, its k−quasiconvex
envelope u∗f is unique and is given by the largest solution to

u(x) = min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{u(yi)} for x ∈ Tm,

u(π) := lim sup
x→π

u(x) ≤ f(ψ(π)) for π ∈ ∂Tm

(5)

Moreover, the corresponding boundary value problem for the equation in (5) on
Tm with a continuous Dirichlet datum f on ∂Tm has existence and uniqueness,
that is, the k−quasiconvex envelope u∗f reaches f on ∂Tm when f is continuous
in the sense that limx→π u(x) = f(ψ(π)) for π ∈ ∂Tm.

A natural question is to compare solutions to these solutions for different
k’s but the same boundary datum. The next comparison principle goes in this
direction and the immediate corollary provides an answer for the behavior of
the solutions.
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Theorem 2.5. Fix k, j ∈ {2, . . . ,m− 1} with k ≥ j. Let u and v satisfy

u(x) ≥ min
y1,...,yk∈S(x)

yi ̸=yl

max
i=1,...,k

{u(yi)} and v(x) ≤ min
y1,...,yj∈S(x)

yi ̸=yl

max
i=1,...,j

{v(yi)}

for every x ∈ Tm, together with

lim sup
x→π

u(x) ≥ lim inf
x→π

v(x) ∀π ∈ ∂Tm.

Then,
u(x) ≥ v(x)

for all x ∈ Tm.

As an immediate corollary, we get that the k−quasiconvex envelopes for
different values of k are ordered.

Corollary 2.6. Fix k, j ∈ {2, . . . ,m − 1} with k ≥ j. Let f, g : [0, 1] → R
be continuous functions with f ≥ g, u and v be the unique solutions of the
equations

u(x) = min
y1,...,yk∈S(x)

yi ̸=yl

max
i=1,...,k

{u(yi)} and v(x) = min
y1,...,yj∈S(x)

yi ̸=yl

max
i=1,...,j

{v(yi)} ,

for every x ∈ Tm, with f and g as boundary data, respectively. Then,

u(x) ≥ v(x)

for all x ∈ Tm.

2.3. The quasiconvex envelope of a function inside Tm

We also study the k−quasiconvex envelope of a bounded function g : Tm → R,
that is, we consider

u⋆g(x) := sup {u(x) : u ∈ QCk(g)} ,

where

QCk(g) := {u : Tm → R : u is quasiconvex and u(x) ≤ g(x) ∀x ∈ Tm} .

Observe that g is not necessarily k−quasiconvex (when g is k−quasiconvex,
then we trivially have u⋆g ≡ g).

The quasiconvex envelope u⋆g is also unique. One can characterize u⋆g as the
solution to the obstacle problem for the equation (4). This property is analogous
to the convex envelope on the Euclidean space and the regular tree (see for
instance [21, 7]). A relevant set for this type on envelopes is the coincident set,
i.e., the set where the k−quasiconvex envelope u⋆g hits the obstacle g,

CS(g) :=
{
x ∈ Tm : u⋆g(x) = g(x)

}
.

These aspects are summarized in the next result.
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Theorem 2.7. The k−quasiconvex envelope u⋆g of a function g : Tm → R that
is bounded below is the largest solution to the problem

u(x) ≤ min
y1,...,yk∈S(x)

yi ̸=yl

max
i=1,...,k

{u(yi)} for x ∈ Tm

u(x) ≤ g(x) for x ∈ Tm.

For vertices inside CS(g) the obstacle g verifies the inequality

g(x) ≤ min
y1,...,yk∈S(x)

yi ̸=yl

max
i=1,...,k

{g(yi)}, (6)

while outside CS(g) the k−quasiconvex envelope u⋆g satisfies the equation

u⋆g(x) = min
y1,...,yk∈S(x)

yi ̸=yl

max
i=1,...,k

{
u⋆g(yi)

}
. (7)

In this setting, we also have a comparison result, analogous to Corollary
2.6.

Corollary 2.8. Fix k, j ∈ {2, . . . ,m − 1} with k ≥ j. Given g : Tm → R a
bounded function, let u and v be the unique quasiconvex envelopes for k and j
respectively, with g as interior datum for both cases. Then,

u(x) ≥ v(x)

for all x ∈ Tm.

3. Proofs

Let us start by proving the following proposition:

Proposition 3.1. A function u : Tm 7→ R is k−quasiconvex if and only if it
holds that

u(x) ≤ max
y∈E(B)

u(y), (8)

for every x ∈ Tm and every B ∈ Tx
k.

Proof. First, assume that u is k−quasiconvex and take any x ∈ Tm and any
B ∈ Tx

k. Then, consider the sublevel set

Sα(u) = {y : u(y) ≤ α}

with

α = max
y∈E(B)

u(y).
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This set Sα(u) is k−convex in Tm since u is k−quasiconvex, and so, every
terminal node in B belongs to Sα(u). Hence, we get that x ∈ Sα(u), that is,

u(x) ≤ α = max
y∈E(B)

u(y).

To see the converse, let u be a function such that (8) holds and consider a
sublevel set Sα(u) = {y : u(y) ≤ α}. Let B be a finite subtree with k−branching
with terminal nodes that belonging to Sα(u), that is E(B) ⊂ Sα(u). Then, from
(8), if we denote by x the root of B we have

u(x) ≤ max
y∈E(B)

u(y) ≤ α.

This shows that Sα(u) is a k−convex set and proves that u is k−quasiconvex
since its sublevel sets are convex. □✓

We can characterize k−quasiconvexity by an inequality that involves only
the values of u at the successors of the point x (a local property).

Proposition 3.2. A function u : Tm → R is k−quasiconvex if and only if for
every x ∈ Tm and for any k different successors of x, y1, . . . , yk with yi ∈ S(x),
it holds

u(x) ≤ max
i=1,...,k

{u(yi)} . (9)

Proof. Assume that u is quasiconvex and choose the subtree B composed by
x as root and any set of k different successors of x, y1, . . . , yk, yi ∈ S(x). Then,
using Proposition 3.1, we get that

u(x) ≤ max
y∈E(B)

u(y) = max
i=1,...,k

{u(yi)} ,

since the terminal nodes of B are y1, ..., yk.

To prove the converse, take any subtree B ∈ Tx
k and iterate the inequality

u(x) ≤ max
i=1,...,k

{u(yi)}

to obtain
u(x) ≤ max

y∈E(B)
u(y).

Then, using again Proposition 3.1, we conclude that u is k−quasiconvex. □✓

From our previous result Theorem 2.3 follows immediately.

Proof of Theorem 2.3. The inequality (9) is equivalent to

u(x) ≤ min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{u(yi)} . (10)

Therefore, (10) characterizes k−quasiconvexity. □✓
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3.1. The quasiconvex envelope of a boundary datum

We start proving the comparison principle stated in Theorem 2.5.

Lemma 3.3. Fix k, j ∈ {2, . . . ,m− 1} with k ≥ j. Let u and v satisfy

u(x) ≥ min
y1,...,yk∈S(x)

yi ̸=yl

max
i=1,...,k

{u(yi)} and v(x) ≤ min
y1,...,yj∈S(x)

yi ̸=yl

max
i=1,...,j

{v(yi)}

(11)
for all x ∈ Tm and

lim sup
x→π

u(x) ≥ lim inf
x→π

v(x) ∀π ∈ ∂Tm. (12)

Then, u(x) ≥ v(x) for all x ∈ Tm.

Proof. Adding c > 0 to u we may assume that (12) is strict. Assume that

M = sup
x∈Tm

(v(x)− u(x)) > 0.

By the strict version of (12) the supremum is a maximum and it is attained
inside Tm. Let x0 be a vertex with maximal level |x0| and such that v(x0) −
u(x0) =M .

Now, by the equation (11) for v we have that v(x0) is smaller or equal to v
evaluated in j nodes of S(x0), so, there exists at least m− j + 1 successors of
x0 such that

v(y) ≥ v(x0).

On the other hand, using (11) for u, we deduce that for at least k successors
of x0 it holds that

u(y) ≤ u(x0).

Since k ≥ j, by the pigeonhole principle, there is some y ∈ S(x0) where both
inequalities are satisfied. Then, at this particular y ∈ S(x0) we have

v(y)− u(y) ≥ v(x0)− u(x0) =M,

but this contradicts the assumption of maximal level for x0. So, we conclude
that

u(x) ≥ v(x)

as we wanted to show. □✓

The proof of Theorem 2.4 is split into two lemmas and an easy application
of the comparison principle. In the first lemma, we show that u∗f is well-defined,
k−quasiconvex and reaches f on ∂Tm when f is continuous. Then, we prove
that u∗f is the largest solution of (5). The uniqueness of the solution for the
equation (5) is deduced from the comparison principle Theorem 2.5.
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Lemma 3.4. Let f : [0, 1] → R be a bounded function and let u∗f be given by

u∗f (x) := sup {u(x) : u ∈ QCk(f)} ,

where

QCk(f) :=

{
u : Tm → R : u is k−quasiconvex and lim sup

x→π∈∂Tm

u(x) ≤ f(ψ(π))

}
.

Then, u∗f is well-defined, unique, k−quasiconvex and it is below f at the bound-
ary, i.e.,

u∗f (π) := lim sup
x→π

u∗f (x) ≤ f(ψ(π)) (13)

for every π ∈ ∂Tm. Moreover, when f is continuous u∗f reaches f at the bound-
ary.

Proof. Note that QCk(f) ̸= ∅. Indeed, the constant function u defined by

u(x) = inf{f(y) : y ∈ [0, 1]},

is k−quasiconvex and bounded by f on ∂Tm, hence QCk(f) ̸= ∅.

To show that u∗f is also k−quasiconvex note that for any u ∈ QCk(f) we
have

u(x) ≤ min
y1,...,yk∈S(x)

yi ̸=yl

max
i=1,...,k

{u(yi)} ≤ min
y1,...,yk∈S(x)

yi ̸=yl

max
i=1,...,k

{
u∗f (yi)

}
(14)

at every x ∈ Tm. Taking the supremum in (14), it follows that

u∗f (x) ≤ min
y1,...,yk∈S(x)

yi ̸=yl

max
i=1,...,k

{
u∗f (yi)

}
and we obtain that u∗f is k−quasiconvex using Theorem 2.3. Moreover, one
can use the comparison principle Theorem 2.5 to show that every u ∈ QCk(f)
verifies

u(x) ≤ sup{f(y) : y ∈ [0, 1]}

and then u∗f is well defined.

Now, we aim to show that u∗f is bounded by f on the boundary, that is, we
want to show (13). First, note that for any π ∈ ∂Tm we have

u∗f (π) = lim sup
x→π

u∗f (x) ≤ f(ψ(π)) (15)

due to the definition of u∗f as the supremum for functions in QCk(f). This
shows that u∗f in fact belongs to QCk(f) and therefore uniqueness of the
k−quasiconvex envelope follows. This completes the proof for a bounded bound-
ary datum f .
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We continue with the case where f is continuous to show that u∗f attains f
on ∂Tm. Assume that for some π ∈ ∂Tm the inequality (15) is strict and let
ε > 0 such that

lim sup
x→π

u∗f (x) < f(ψ(π))− ε.

Let j be such that on the interval Iπ,j one has

min
y∈Iπ,j

f(y) > f(ψ(π))− ε

2
,

the existence of such an interval Iπ,j follows because f is continuous.

Now, recall that Iπ,j is a decreasing sequence of intervals such that ψ(π) ∈
Iπ,j for every j. Denote by xj ∈ Tm to the vertex for which Ixj = Iπ,j and
write T xj

m for the subtree with regular m−branching that has xj as root, that
is, the subtree of Tm containing all successors of xj of any level.

Define v : Tm → R by the formula

v(x) :=

 min
y∈Iπ,j

f(y) if x ∈ T xj
m ,

min
y∈[0,1]

f(y) otherwise.
(16)

We check that v ∈ QCk(f). It is immediate from (16) that v is bounded above
by f on ∂Tm. To show that v is k−quasiconvex we just require to check the
definition at xj and its predecessor, x̂j . Since x̂j /∈ T xj

m we have

v(x̂j) = min
y∈[0,1]

f(y) ≤ min
y1,...,yk∈S(x̂j)

yi ̸=yl

max
i=1,...,k

{v(yi)}

because v only at the successor xj ∈ S(x̂j) takes a possible different value from
v(x̂j) and this value is bigger or equal than v(x̂j). We also have that

v(xj) = min
y∈Iπ,j

f(y) = min
y1,...,yk∈S(xj)

yi ̸=yl

max
i=1,...,k

{v(yi)} = min
y∈Iπ,j

f(y).

A similar argument can be applied at any other vertex in Tm. Hence, we con-
clude that v ∈ QCk(f).

Then, u∗f (x) ≥ v(x) for any x ∈ Tm, so, in particular

u∗f (xj) ≥ min
Iπ,j

f(y) > f(ψ(π))− ε

2
.

Hence, it follows that

lim inf
x→π

u∗f (x) ≥ f(ψ(π))− ε

2
.
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Finally, we have obtained

f(ψ(π))− ε

2
≤ lim inf

x→π
u∗f (x) ≤ lim sup

x→π
u∗f (x) < f(ψ(π))− ε,

which contradicts our assumption over π and completes the proof. □✓

The previous result showed that the quasiconvex envelope, u∗f , is well de-
fined. Next, we look for the equation that it satisfies.

Lemma 3.5. The k−quasiconvex envelope u∗f is the largest solution of the
problem 

u(x) = min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{u(yi)} for x ∈ Tm,

u(π) ≤ f(ψ(π)) for π ∈ ∂Tm.

(17)

Proof. Since u∗f is k−quasiconvex, we have that

u∗f (x) ≤ min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{
u∗f (yi)

}
,

for any x ∈ Tm. Let us show that in fact, we have equality. Arguing by contra-
diction, suppose that there exists x ∈ Tm for which

u∗f (x) < min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{
u∗f (yi)

}
,

and choose δ > 0 small enough such that adding δ to the left side the inequality
remains strict. Consider v : Tm → R defined by

v(y) :=

{
u∗f (y) if y ̸= x,

u∗f (x) + δ if y = x.

We claim that v ∈ QCk(f). To show this we just need to prove that v is
k−quasiconvex. At x, v is k−quasiconvex by the choice of δ. For y ∈ Tm \ {x}
we have

v(y) = u∗f (y) ≤ min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{
u∗f (yi)

}
≤ min

y1,...,yk∈S(x)
yi ̸=yj

max
i=1,...,k

{v(yi)} ,

since v ≥ u∗f . This proves v ∈ QCk(f), but it contradicts the definition of u∗f as
the supremum of QCk(f) since v(x) > u∗f (x). This proves that u

∗
f solves (17).

Now, observe that any other function u that solves (17) is k−quasiconvex
and its below f on ∂Tm. Hence, it follows that u ∈ QCk(f) and we must have
u ≤ u∗f . Therefore, u

∗
f is the largest solution of (17). □✓
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Now, we are ready to end the proof of Theorem 2.4.

Proof of Theorem 2.4. We have already proved that the k−quasiconvex enve-
lope u∗f is the largest solution to (17).

To finish the proof we need to show that it is the unique solution to (17)
when the boundary datum f is continuous. Assume that v is a solution to (17)
that reaches the boundary condition. So, v is k−quasiconvex and from our
previous result we have that

v(x) ≤ u∗f (x) for all x ∈ Tm.

Since v and u∗f coincide on ∂Tm, we show the opposite inequality applying the
comparison principle Theorem 2.5. Then, v = u∗f and the problem (17) has a

unique solution for continuous boundary conditions. □✓

3.2. The quasiconvex envelope of a function inside Tm

Finally, we include the proofs for the k−quasiconvex envelope of a function
g : Tm → R. Recall that the k−quasiconvex envelope of g, u⋆g, is given by

u⋆g(x) = sup {u(x) : u ∈ QCk(g)} ,

where

QCk(g) := {u : Tm → R : u is k−quasiconvex and u(x) ≤ g(x) ∀x ∈ Tm} .

When we assume that g is bounded below the k−quasiconvex envelope is well
defined since u ≡ inf g ∈ QCk(g). Recall that the k−quasiconvex envelope u⋆g
is also unique (this fact can be proved exactly as we did for the quasiconvex
envelope of a boundary datum).

One can characterize u⋆g as the solution to the obstacle problem for the
equation (4). This is the content of Theorem 2.7 that we prove next.

Proof of Theorem 2.7. First, note that there is at least one k−quasiconvex
function bounded above by g on Tm. In fact, the function u : Tm → R given
by u(x) = inf{g(y) : y ∈ Tm} is well-defined because g is bounded below, and
u is also k−quasiconvex. Then, QC(g) ̸= ∅. In addition, we have that every
v ∈ QCk(g) verifies

v(x) ≤ g(x) ≤ sup{g(y) : y ∈ Tm} < +∞.

Hence, u⋆g is well-defined and bounded above by g.

To show that u⋆g is k−quasiconvex, we use that for any u ∈ QC(g)

u(x) ≤ min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{u(yi)} ≤ min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{
u⋆g(yi)

}
.
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So, taking supremum over u ∈ QCk(g) the k−quasiconvexity of u⋆g follows. This
proves that u⋆g is a solution of the obstacle problem.

Let v⋆ be the largest solution of the obstacle problem
u(x) ≤ min

y1,...,yk∈S(x)
yi ̸=yj

max
i=1,...,k

{v(yi)} for x ∈ Tm

v(x) ≤ g(x) for x ∈ Tm,

(18)

that is,

v⋆(x) = sup {v(x) : v satisfies (18)} .

Since u⋆g satisfies (18) we have u⋆g ≤ v⋆(x). Our goal now is to prove that

v∗(x) = u⋆g(x)

for every x ∈ Tm. Note that by definition v⋆ is k−quasiconvex and bounded
above by g at all vertices. So, v⋆ ∈ QCk(g) and therefore v⋆(x) ≤ u⋆g(x) for any
x ∈ Tm.

It remains to prove the claims about the coincidence set CS(g). If x ∈
CS(g), using that u⋆g ≤ g at any vertex, we have

g(x) = u⋆g(x) ≤ min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{
u⋆g(yi)

}
≤ min

y1,...,yk∈S(x)
yi ̸=yj

max
i=1,...,k

{g(yi)} ,

and it follows that g verifies the inequality (6) in the coincidence set CS(g).

For the complement of CS(g) we want to prove that u⋆g satisfies the equation
(7). Arguing by contradiction, suppose that for some x ̸∈ CS(g) we have

u⋆g(x) < min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{
u⋆g(yi)

}
.

Thus, adding a small δ > 0 to the left-hand side the previous inequality remains
strict. Therefore, the function

v(y) =

{
u⋆g(y) for y ̸= x,

u⋆g(x) + δ for y = x.

is k−quasiconvex (see the proof of Lemma 3.5) and we still have v ≤ g, con-
tradicting the maximality assumption of u⋆g. □✓

The proof of Corollary 2.8 is analogous to the one of Corollary 2.6 and thus
it is left to the reader.
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4. The quasiconvex envelope for monotone boundary data

In this section, we present a simple example that illustrates that quasicon-
vex envelopes are easy to compute when the boundary data are monotone (or
piecewise monotone).

Example 4.1. Assume that f : [0, 1] 7→ R is continuous and monotone in-
creasing (the case when f is decreasing is completely analogous). Then, the
k−quasiconvex envelope of the boundary datum f inside Tm is given by

u∗f (x) = f(ψ(x, k − 1, k − 1, . . . )).

In fact, one can check that u∗f is a solution to the problem that characterizes
the k−quasiconvex envelope, (17), that is, u satisfies

u(x) = min
y1,...,yk∈S(x)

yi ̸=yj

max
i=1,...,k

{u(yi)} for x ∈ Tm,

u(π) = f(ψ(π)) for π ∈ ∂Tm.

(19)

In fact, since we have that f is increasing, it holds that

u(x, 0) = f(ψ(x, 0, k − 1 . . . )) ≤ u(x, 1) = f(ψ(x, 1, k − 1 . . . )) ≤ . . .

· · · ≤ u(x,m− 1) = f(ψ(x,m− 1, k − 1 . . . )),

and hence is the k−th smallest value of u on S(x) is attained at y = (x, k− 1)
and the equation (19) is satisfied.

Moreover, since f is continuous we get that

lim
x→π

u(x) = lim
x→π

f(ψ(x, k − 1, k − 1, . . . )) = f(ψ(π)).

When f has a finite number of maximums/minimums (f is increasing in
some subintervals and decreasing in others), then the previous idea can be
applied to obtain the values of u at the nodes x such that ψ(x) is at the
interior of such intervals. Details are left to the reader.

Therefore, one can construct a solution to the problem for the quasiconvex
envelope (19) by approximation. Fix a continuous boundary datum f and ap-
proximate it by the piecewise linear continuous function fn that interpolates
f at the points ψ(xi) = (i − 1)/mn, i = 1, . . . ,mn + 1. These approximating
functions fn are monotone on every interval [xi, xi+1] and converge uniformly
to f as n → ∞. Therefore, one can compute its quasiconvex envelope u∗fn to
obtain the values inside the intervals [xi, xi+1]. In the other nodes of Tm, that
are a finite number, one computes the values solving backward the finite system
of equations, and then pass to the limit as n → ∞. A similar approximation
argument can be found in [9, 8].
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This approximation of a solution to (19) is well suited for explicit compu-
tations, and also shows existence (and uniqueness follows from the comparison
argument) of a solution. However, it is not immediate from this construction
that solutions to (19) are related to the quasiconvex envelope of f inside Tm.
For this reason, we prefer to construct the solution (or the quasiconvex enve-
lope) as a supremum of functions that verify an inequality and are below f on
∂Tm.

Finally, we remark that for a function g : Tm 7→ R such that g is increasing
in the sense that

g(x) ≤ g(y) when ψ(x) ≤ ψ(y),

we have that

g(x) is k−quasiconvex (and also k−convex)

for any k. This holds since

g(x) ≤ g(y) ∀y ∈ S(x).

Therefore, the k−quasiconvex envelope of g, u⋆g(x), coincides with g in Tm and
CS(g) = Tm.

This has to be contrasted with the fact that for an increasing function f as
boundary datum on ∂Tm we have u∗f (x) ≤ f(ψ(x)) in Tm and the inequality
is strict when f is strictly increasing

As we mentioned in the introduction, the cases k = 1 and k = m are
simpler (and hence less interesting). In the special case k = 1 the equation for
the quasiconvex envelope is

u(x) = min
y∈S(x)

{u(y)} .

In this special case, the quasiconvex envelope of a boundary datum f is given
by

u∗f (x) = inf
z∈Ix

f(z).

Analogously, for k = m we have that the associated equation is

u(x) = max
y∈S(x)

{u(y)} ,

and in this case, the quasiconvex envelope of a boundary datum f is

u∗f (x) = sup
z∈Ix

f(z).
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5. On the equations that characterize the convex and quasiconvex
envelopes

In this section, we aim to compare and obtain a complete analogy between
the equations that appear when one considers the convex and quasiconvex
envelopes on RN and Tm. For the tree case, to obtain a complete analogy,
we consider k = 2, that is, we look for the 2−convex and the 2−quasiconvex
envelopes of a boundary datum.

5.1. The Euclidean case

In RN let us first recall that the usual Laplacian is given by

∆u(x) =

N∑
i=1

∂2u

∂x2i
(x) =

N∑
i=1

λi(D
2u(x)).

Here, and in what follows, λ1 ≤ λ2 ≤ · · · ≤ λN are the ordered eigenvalues
of the Hessian matrix, D2u. That is, the Laplacian is given by the sum of the
pure second derivatives or by the sum of the eigenvalues of the Hessian matrix.

We have that the convex envelope inside a domain Ω ⊂ RN turns out to be
a solution to

λ1(D
2u)(x) = 0 x ∈ Ω, (20)

where the equation has to be interpreted in viscosity sense. Here λ1(D
2u) is

the smallest of the eigenvalues of D2u. We refer to [5, 22, 21]. Notice that the
equation (20) is equivalent to

min
|v|=1

⟨D2u(x)v, v⟩ = 0. (21)

This says that the equation that governs the convex envelope is just the mini-
mum among all possible directions of the second derivative of the function at
x equal to zero.

As we mentioned in the introduction, there is a PDE for the quasiconvex
envelope, see [2, 3, 4]. In fact, the quasiconvex envelope of a boundary datum
u in the Euclidean space is a viscosity solution to

min
|v|=1

⟨v,∇u(x)⟩=0

⟨D2u(x)v, v⟩ = 0. (22)

In words, the equation for the quasiconvex envelope involve the minimum of
the second derivatives in directions that are perpendicular to the gradient of
the solution.

Finally, let us say that the infinity Laplacian in the Euclidean setting is
given by the nonlinear operator

∆∞u(x) := ⟨D2u(x)∇u(x),∇u(x)⟩,
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that is, the infinity Laplacian is given by the second derivative in the direction
of the gradient of the function.

5.2. The tree case

Fix k = 2. The usual Laplacian on Tm is defined by the mean value formula,

∆u(x) :=
1

m

∑
y∈S(x)

(
u(y)− u(x)

)
, ∀x ∈ Tm, (23)

see for instance [15]. In [7] we introduce a notion of convexity based on the same
idea of “segments” that we used here, using finite binary trees as segments.
The convex envelope of a boundary datum on Tm with this setting satisfies the
equation

0 = min
yi,yj∈S(x)

yi ̸=yj

{
1

2
u(yi) +

1

2
u(yj)− u(x)

}
.

In this case, in clear analogy with (21), we can identify the analogous to the
eigenvalues of the Hessian that are given by,{

1

2
u(yi) +

1

2
u(yj)− u(x)

}
i ̸=j

. (24)

Then, taking the average we obtain the usual Laplacian given by (23), where
we look at the Laplacian as the sum of the eigenvalues of the Hessian.

A different way to find the Laplacian runs as follows: fix x ∈ Tm and think
about it as the midpoint between two successors yi, yj ∈ S(x) on the tree. So,
computing the finite central difference approximation

1

2
u(yi) +

1

2
u(yj)− u(x),

we can understand it as a “mixed second derivative” in the directions from x
to yi and from x to yj . Then, the pure second derivative in the direction of
y ∈ S(x) is given by

u(y)− u(x).

Adding these pure second derivatives in every direction, that is, for every suc-
cessor y, and dividing by m, we obtain again the usual Laplacian given by (23)
but now interpreted as the sum of the pure second derivatives.

One the other hand, following [17, 25] we have that the infinity Laplacian
in the tree is given by

u(x) =
1

2
max

y∈S(x)
u(y) +

1

2
min

y∈S(x)
u(y).
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Therefore, we can identify the “direction of the gradient” of a function defined
in the tree as the two directions given by the successors at which maxy∈S(x) u(y)
and miny∈S(x) u(y) are attained.

Now, for the 2−convex envelope of a boundary datum on Tm, in [7] it is
shown that the associated equation is given by

min
y1,y2∈S(x)

y1 ̸=y2

1

2
u(y1) +

1

2
u(y2)− u(x) = 0,

that is, the minimum of the second eigenvalues of the Hessian (see (24) and c.f.
(20)).

Finally, for the 2−quasiconvex envelope of a boundary datum on Tm, we
have proved that it satisfies the equation

u(x) = min
y1,y2∈S(x)

y1 ̸=y2

max
i=1,2

{u(yi)} ,

that is, the value u(x) is the second smallest value of u on S(x).
If we consider pure second derivatives of u in directions “orthogonal to the

direction of the gradient”, in an analogy with the equation for the 2−quasiconvex
envelope in the Euclidean setting (22), and we compute the minimum, we ob-
tain

min
yi∈S(x)

yi ̸=y∗, yi ̸=y∗

{u(yi)− u(x)} ,

where y∗, y∗ are the two successors at which the maxy∈S(x) u(y) and the
miny∈S(x) u(y) are attained. Note that the last expression can be rewritten
as

min
yi∈S(x)

yi ̸=y∗, yi ̸=y∗

{u(yi)− u(x)}

= min
y1,y2∈S(x)

y1 ̸=y2

max
i=1,2

{u(yi)− u(x)}

= min
y1,y2∈S(x)

y1 ̸=y2

max
i=1,2

{u(yi)} − u(x),

and we have interpreted our equation for the 2−quasiconvex envelope on Tm

as the minimum of the second derivatives of u in directions that are orthogonal
to the direction of the gradient of u.
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