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Abstract. In this paper, we study new results regarding the existence, unique-
ness and convergence of the solution of nonlinear fractional Volterra integro-
differential equations via Caputo-Fabrizio operator. The main results of this
paper are based on the Banach contraction principle. Furthermore, we inves-
tigate the approximate analytical solutions of the proposed problem using a
new combination method called Khalouta decomposition method. Some illus-
trated examples of our results are provided with some numerical simulations
of the solutions.
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Resumen. En este art́ıculo estudiamos nuevos resultados sobre la existencia,
unicidad y convergencia de la solución de ecuaciones integro-diferenciales frac-
cionarias no lineales de Volterra mediante el operador Caputo-Fabrizio. Los
principales resultados de este art́ıculo se basan en el principio de contracción de
Banach. Además, investigamos las soluciones anaĺıticas aproximadas del prob-
lema propuesto utilizando un nuevo método de combinación llamado método
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de descomposición de Khalouta. Se proporcionan algunos ejemplos ilustrados
de nuestros resultados con algunas simulaciones numéricas de las soluciones.

Palabras y frases clave. Ecuaciones diferenciales integro-fraccionales de Volterra,
operador fraccionario de Caputo-Fabrizio, principio de contracción de Banach,
método de la transformada de Khalouta, método de descomposición de Ado-
mian.

1. Introduction

In recent years, the theory of nonlinear fractional integro-differential equations
has witnessed great advancement, as these equations have appeared in various
fields of physical sciences, fluid mechanics, engineering, electromagnetic, opti-
mal control theory, biology, economics, and applied mathematics, in addition
to other fields of science [1, 2, 4, 13, 15].

In general, nonlinear fractional integro-differential equations do not have an
exact analytical solution, so many researchers resort to using approximation
and numerical techniques.

In the literature, there are several techniques that have been employed to
solve fractional intego-differential equations. For example, in [7] the modified
variational iteration method was utilized to find the approximate solution of Ca-
puto fractional Volterra-Fredholm integro-differential equations. In [3] the ho-
motopy perturbation method was presented for solving fourth-order fractional
Volterra integral-differential equations involving the Caputo fractional deriva-
tive. Also, [9] the modified Adomian decomposition method was applied to
solve fractional integro-differential equations and systems of fractional integro-
differential equations. In [8] the authors use the homotopy analysis method for
higher-order fractional Volterra-Fredholm integro-differential equations. In [10]
the hybrid functions and the collocation method were applied to obtain the
numerical solution of the nonlinear Fredholm integral-differential equations.

The main objective of this paper is to prove the existence, uniqueness and
convergence results of the solution of nonlinear fractional Volterra integro-
differential equations involving the Caputo-Fabrizio fractional derivative. Fur-
thermore, we study the solution behaviour of our problem which can be for-
mally obtained by a new hybrid method called Khalouta decomposition method
(KHDM).

The nonlinear fractional Volterra integro-differential equation of is given by

CFDαX(ϖ) = f(ϖ) +

∫ ϖ

0

K(ϖ, ς)F(X(ς))dς, (1)

under the condition
X(0) = X0, (2)

where CFDα is the Caputo-Fabrizio fractional operator of order 0 < α ≤ 1
with X : I = [0, 1] → R is the continuous function which has to be determined,
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f : I → R and K : I × I → R are continuous functions and F : R → R is
nonlinear function of X(ϖ).

The KHDM, which is based on the coupling of the Adomian decomposi-
tion method with the Khalouta transform method, has advantages over other
existing methods, which can be summarized in the following points:

- The ability to transform the proposed problem into Khalouta space and
create solutions in the form of algebraic equations that can be easily solved.

- The method provides analytical and approximate solutions in the form of
rapidly convergent series with minimal computational effort.

- The KHDM takes less time and provides higher accuracy with minor
computational requirements.

- The proposed method is free from any restrictive assumption, perturba-
tions, discretization or linearization.

- The method is straightforward, accurate, and suitable to investigate the
solutions of the nonlinear physical and engineering problems.

The framework of this paper is as follows: In Section 2, we recall some es-
sential definitions and properties related to fractional calculus and Khalouta
transform. In Section 3, we talk about our main findings regarding the existence,
uniqueness and convergence analysis. In addition, we present the Khalouta de-
composition method and apply this method to nonlinear fractional Volterra
integro-differential equations. Some numerical examples are presented in Sec-
tion 4. Conclusions are presented in Section 5.

2. Definitions and preliminary results

In this section, we present the basic definitions and several properties of the
theory of fractional calculus which has been recently developed by [5, 12].

Definición 2.1. The Caputo-Fabrizio fractional integral of order 0 < α ≤ 1
for a function X ∈ H1(0, 1) is defined by

CFIαX(ϖ) =
2(1− α)

(2− α)M(α)
X(ϖ) +

2α

(2− α)M(α)

∫ ϖ

0

X(ς)dς,

where M(α) is a normalization function that satisfies M(0) = M(1) = 1.

Definición 2.2. The Caputo-Fabrizio fractional derivative of order 0 < α ≤ 1
for a function X ∈ H1(0, 1) is defined by

CFDαX(ϖ) =
(2− α)M(α)

2(1− α)

∫ ϖ

0

X′(ς) exp

(
−α (ϖ − ς)

1− α

)
dς. (3)

For M(α) =
2

2− α
in equation (3), we have

CFDαX(ϖ) =
1

1− α

∫ ϖ

0

X′(ς) exp

(
−α (ϖ − ς)

1− α

)
dς. (4)
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Definición 2.3. The Caputo-Fabrizio fractional derivative of order α+n when
0 < α ≤ 1 and n ≥ 1 is defined by

CFDα+nX(ϖ) =CF Dα(DnX(ϖ)). (5)

Theorem 2.4. [18] (Banach contraction principle). Let (E, d) be a complete
metric space, then each contraction mapping T : E → E has a unique fixed
point ω of T in E i.e.

Tω = ω.

Now, we present a new result related to the Khalouta transform of the
Caputo-Fabrizio fractional derivative. The Khalouta transform is a new integral
transform that is applied to solve ordinary and partial differential equations,
defined and developed by [11].

Definición 2.5. [11] Let X(ϖ) be a integrable function defined for ϖ ≥ 0. We
define the Khalouta transform K of X(ϖ) by the formula

KH [X(ϖ)] = K(s, γ, η) =
s

γη

∫ ∞

0

exp

(
− sς

γη

)
X(ς)dς,

provided the integral exists.

Some basic properties of the Khalouta transform are given as follows [11].

Property 1: The Khalouta transform is a linear operator

KH [aX(ϖ) + bY(ϖ)] = aKH [X(ϖ)] + bKH [Y(ϖ)] , a, b ∈ R.

Property 2: If X(ϖ) is nth differentiable, then

KH [X(ϖ)] =

(
s

γη

)n

K(s, γ, η)−
n−1∑
k=0

(
s

γη

)n−k

X(k)(0).

Property 3: (Convolution) Let X(ϖ) and Y(ϖ) have Khalouta transforms
K(s, γ, η) and H(s, γ, η) respectively. Then the Khalouta transform of the con-
volution of X and Y is

KH [(X ∗Y) (ϖ)] =

∫ +∞

0

X(ς)Y(ϖ − ς)dς =
γη

s
K(s, γ, η)H(s, γ, η).

Property 4: Some special Khalouta transforms :

KH [1] = 1,

KH [ϖ] =
γη

s
,

KH
[
ϖn

n!

]
=

(γη
s

)n
, n = 0, 1, 2, ...

KH [exp(aϖ)] =
s

s− aγη
.
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Theorem 2.6. The Khalouta transform of the Caputo-Fabrizio fractional deriva-
tive operator of the function X(ϖ) of order α + n, where 0 < α ≤ 1 and
n ∈ N∪{0} , is given by

KH
[
CFDα+nX(ϖ)

]
=

s

(1−α) s+ αγη

((
s

γη

)n
K(s, γ, η)−

n∑
k=0

(
s

γη

)n−k

X(k)(0)

)
.

Proof. Using equations (4) and (5), we have

KH
[
CFDα+nX(ϖ)

]
= KH

[
CFDα(DnX(ϖ))

]
=

1

1− α

s

γη

∫ ∞

0

exp

(
− st

γη

)(∫ ϖ

0

X(n+1)(ς) exp

(
−α (ϖ − ς)

1− α

)
dς

)
dϖ

=
1

1− α

s

γη

∫ ∞

0

exp

(
− st

γη

)(
X(n+1)(ϖ) ∗ exp

(
− αϖ

1− α

))
dϖ

=
1

1− α
KH

[
X(n+1)(ϖ) ∗ exp

(
− αϖ

1− α

)]
.

Using Properties (2), (3) and (4), we have

KH
[
CFDα+nX(ϖ)

]
=

1

1− α

γη

s
KH

[
X(n+1)(ϖ)

]
KH

[
exp

(
− αϖ

1− α

)]
=

γη

s (1− α) + αγη

((
s

γη

)n+1

K(s, γ, η)−
n∑

k=0

(
s

γη

)n−k+1

u(k)(0)

)

=
s

s− α (s− γη)

((
s

γη

)n

K(s, γ, η)−
n∑

k=0

(
s

γη

)n−k

X(k)(0)

)

=
s

(1− α) s+ αγη

((
s

γη

)n

K(s, γ, η)−
n∑

k=0

(
s

γη

)n−k

X(k)(0)

)
.

The proof is complete. □✓

3. Main results

3.1. Existence and uniqueness results

In this subsection, we shall prove an existence and uniqueness results for equa-
tion (1) under the condition (2).

Let B = {X(ϖ)/X(ϖ) ∈ C(I)} be the Banach space equipped with the
norm ∥X(ϖ)∥B = max

ϖ∈I
|X(ϖ)| . To prove the main results, we need the following

hypotheses

(H1) There exists a constant LF > 0 such that, for any X,Y ∈ C(I,R)

|F(X(ϖ))−F(Y(ϖ))| ≤ LF |X(ϖ)−Y(ϖ)| .
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(H2) There exists a function K∗ ∈ C(D,R+), the set of all positive function
continuous on D = {(ϖ, ς) ∈ R× R : 0 ≤ ς ≤ ϖ ≤ 1} such that

K∗ = sup
ϖ∈[0,1]

∫ ϖ

0

|K(ϖ, ς)| dς < ∞.

(H3) The function f : I → R is continuous.

Lemma 3.1. If a function X(ϖ) ∈ C(I,R) satisfies (1)-(2), then the problems
(1)-(2) are equivalent to the problem of finding a continuous solution of the
integral equation

X(ϖ) = X(0) +
2(1− α)

(2− α)M(α)

(
f(ϖ) +

∫ ϖ

0

K(ϖ, ς)F(X(ς))dς

)
+

2α

(2− α)M(α)

∫ ϖ

0

(
f(ς) +

∫ ς

0

K(ς, τ)F(X(τ))dτ

)
dς.

Theorem 3.2. Suppose that the hypotheses (H1)-(H3) are satisfied and

(A(α) +B(α))K∗LF < 1. (6)

Then there is a unique solution X(ϖ) ∈ C(I,R) to the equations (1)-(2).

Proof. We define an operator T : C(I,R) → C(I,R) by

TX(ϖ) = X(0) +A(α)

(
f(ϖ) +

∫ ϖ

0

K(ϖ, ς)F(X(ς))dς

)
+B(α)

∫ ϖ

0

(
f(ς) +

∫ ς

0

K(ς, τ)F(X(τ))dτ

)
dς,

where

A(α) =
2(1− α)

(2− α)M(α)
and B(α) =

2α

(2− α)M(α)
.

Let X(ϖ),Y(ϖ) ∈ C(I,R), then we have

|TX(ϖ)−TY(ϖ)| ≤ A(α)

(∫ ϖ

0

|K(ϖ, ς)| |F(X(ς))−F(Y(ς))| dς
)

+B(α)

∫ ϖ

0

(∫ ς

0

|K(ς, τ)| |F(X(τ))−F(Y(τ))| dτ
)
dς

≤ A(α)K∗LF |X(ς)−Y(ς)|+B(α)K∗LF |X(ς)−Y(ς)|
∫ ϖ

0

1dς

≤ (A(α) +B(α))K∗LF |X(ς)−Y(ς)| .

Hence, we have

∥TX(ϖ)− TY(ϖ)∥B ≤ (A(α) +B(α))K∗LF ∥X(ς)−Y(ς)∥B .
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Given (6), T is a contraction. By the Banach contraction principle (See. The-
orem 2.4), T has only one fixed point X in C(I,R), then X is a solution of the
equations (1)-(2). □✓

3.2. Analysis of the Khalouta decomposition method (KHDM)

In this subsection, we explore the essential facts of the KHDM. Let us con-
sider the nonlinear fractional Volterra integro-differential equation (1) under
the condition (2). We consider the kernel K(ϖ, ς) of equation (1) as a differ-
ence kernel that depends on the difference ϖ− ς. Then the nonlinear fractional
Volterra integro-differential equation (1) can be expressed as

CFDαX(ϖ) = f(ϖ) +

∫ ϖ

0

K(ϖ − ς)F(X(ς))dς, (7)

Operating the Khalouta transform to (7) and using Theorem 2.6, we get

KH [X(ϖ)] = X(0) +

(
(1− α) s+ αγη

s

)
KH

[
f(ϖ) +

∫ ϖ

0

K(ϖ − ς)F(X(ς))dς

]
= X(0) +

(
(1− α) s+ αγη

s

)
KH [f(ϖ)]

+

(
(1− α) sγη + α (γη)

2

s2

)
KH [K(ϖ)]KH [F(X(ς))] . (8)

Taking the inverse Khalouta transform of (8), we get

X(ϖ) = X(0) +KH−1

[(
(1− α) s+ αγη

s

)
KH [f(ϖ)]

]
+KH−1

[(
(1− α) sγη + α (γη)

2

s2

)
KH [K(ϖ)]KH [F(X(ς))]

]
.

(9)

Now, we represent the solution in an infinite series form

X(ϖ) =

∞∑
n=0

Xn(ϖ), (10)

and the nonlinear terms can be decomposed as

F(X(ς)) =

∞∑
n=0

An(ς), (11)

where An are the Adomian polynomials [19] of X0,X1,X2, ..,Xn, and it can be
calculated by formula given by

An =
1

n!

dn

dλn

[
F

( ∞∑
i=0

λiXi

)]
λ=0

, n = 0, 1, 2, ...
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Substituting (10) and (11) into (9) leads to

∞∑
n=0

Xn(ϖ) = X(0) +KH−1

[(
(1− α) s+ αγη

s

)
KH [f(ϖ)]

]

+KH−1

[(
(1− α) sγη + α (γη)

2

s2

)
KH [K(ϖ)]KH

[ ∞∑
n=0

An(ϖ)

]]
.

So that, the recursive relation is given by

X0(ϖ) = X(0) +KH−1

[(
(1− α) s+ αγη

s

)
KH [f(ϖ)]

]
,

Xn+1(ϖ) = KH−1

[(
(1− α) sγη + α (γη)

2

s2

)
KH [K(ϖ)]KH [An(ϖ)]

]
, n ≥ 0.

Using the obtained recurrence relation, we get the components of Xn(ϖ)).

We define the m−terms approximte of the solution X(ϖ) by

ϕm [X(ϖ)] =

m−1∑
n=0

Xn(ϖ),

with

lim
m→∞

ϕm [X(ϖ)] = X(ϖ).

3.3. Convergence analysis of the KHDM

In this subsection, we give a sufficient condition for the convergence analysis of
our method.

Theorem 3.3. Let Xn(ϖ) and X(ϖ) be in the Banach space B. Then the
KHDM series solutions Xn(ϖ) defined by equation (10) converges to the so-
lution of equations (1) and (2) provided that 0 < ϱ < 1 and X0(ϖ) ∈ B is
bounded.

Proof. Considering the sequence of partial sums {Pn(ϖ)}∞n=0 of the form

P0(ϖ) = X0(ϖ),

P1(ϖ) = X0(ϖ) + X1(ϖ),

P2(ϖ) = X0(ϖ) + X1(ϖ) + X2(ϖ),

...

Pn(ϖ) = X0(ϖ) + X1(ϖ) + X2(ϖ) + ...+ Xn(ϖ).
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To achieve the desired result, we will prove that {Pn(ϖ)}∞n=0 is a Cauchy
sequence in B. From the last hypothesis of the theorem, we have ϱ ∈ (0, 1)
then

∥Pn+1(ϖ)− Pn(ϖ)∥ ≤ ∥Xn+1(ϖ)∥ ≤ ϱ ∥Xn(ϖ)∥
≤ ϱ2 ∥Xn−1(ϖ)∥ ≤ ... ≤ ϱn+1 ∥X0(ϖ)∥ .

For any n,m ∈ N with n ≥ m, we have

∥Pn(ϖ)− Pm(ϖ)∥ = ∥Pn(ϖ)− Pn−1(ϖ) + Pn−1(ϖ)− Pn−2(ϖ)

+...+ Pm+1(ϖ)− Pm(ϖ)∥
≤ ∥Pn(ϖ)− Pn−1(ϖ)∥+ ∥Pn−1(ϖ)− Pn−2(ϖ)∥

+...+ ∥Pm+1(ϖ)− Pm(ϖ)∥
≤ ϱn ∥X0(ϖ)∥+ ϱn−1 ∥X0(ϖ)∥+ ...+ ϱm+1 ∥X0(ϖ)∥
= ϱm+1

(
1 + ϱ+ ...+ ϱn−m−1

)
∥X0(ϖ)∥

≤ ϱm+1

(
1− ϱn−m

1− ϱ

)
∥X0(ϖ)∥ .

Since 0 < ϱ < 1, we have 1− ϱn−m < 1, then

∥Pn(ϖ)− Pm(ϖ)∥ ≤ ϱm+1

1− ϱ
∥X0(ϖ)∥ .

Since X0(ϖ) is bounded, then ∥X0(ϖ)∥ < ∞. So

lim
n,m→∞

∥Pn(ϖ)− Pm(ϖ)∥ = 0

Hence, {Pn(ϖ)}∞n=0 is a Cauchy sequence in Banach space B. Consequently,

the series
∞∑

n=0
Xn(ϖ) is convergent. The proof is complete. □✓

Theorem 3.4. The maximum absolute truncation error of the series solution
(10) for equations (1) and (2) is estimated to be

∥∥∥∥∥X(ϖ)−
r∑

n=0

Xn(ϖ)

∥∥∥∥∥ ≤ ϱr+1

1− ϱ
∥X0(ϖ)∥ .
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Proof. Consider the partial sum
r∑

n=0
Xn(ϖ). Then

∥∥∥∥∥u(x, t)−
r∑

n=0

Xn(ϖ)

∥∥∥∥∥ ≤

∥∥∥∥∥
∞∑

n=r+1

Xn(ϖ)

∥∥∥∥∥
≤

∞∑
n=r+1

∥Xn(ϖ)∥

≤
∞∑

n=r+1

ϱr ∥X0(ϖ)∥

≤ ϱr+1
(
1 + ϱ+ ϱ2 + ϱ3 + ...

)
∥X0(ϖ)∥

≤ ϱr+1

1− ϱ
∥X0(ϖ)∥ .

The proof is complete. □✓

4. Illustrative Examples

In this section, we present the analytical technique based on KHDM for solving
nonlinear fractional Volterra integro-differential equations with non-singular
kernel derivative in the Caputo-Fabrizio sense. It should be noted that the
m−term approximate solution using KHDM is given by

X(ϖ) =

m−1∑
n=0

Xn(ϖ) = X0(ϖ) + X1(ϖ) + X2(ϖ) + ...+ Xm−1(ϖ).

Example 4.1. Let us consider the nonlinear fractional Volterra integro-dif-
ferential

CFDαX(ϖ) = −1 +

∫ ϖ

0

X2(ς)dς, (12)

under the condition
X(0) = 1, (13)

To solve this problem by the proposed method, we apply the steps involved
in KHDM as presented in subsection 3.2 to equations (12)-(13), we obtain the
following recursive relation

X0(ϖ) = 1 +KH−1

[(
(1− α) s+ αγη

s

)
KH [1]

]
,

Xn+1(ϖ) = KH−1

[(
(1− α) s+ αγη

s

)
KH

[∫ ϖ

0

An(ϖ)

]]
,(14)

where An, n ≥ 0 are the Adomian polynomials of the nonlinear term X2.
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The first few nonlinear terms are given by

A0 = X2
0,

A1 = 2X0X1,

A2 = 2X0X2 + X2
1.

From (14), we have

X0(ϖ) = − ((1− α) + αϖ) ,

X1(ϖ) = (1− α)
3
ϖ + 3α (1− α)

2 ϖ2

2!
+ 4α2 (1− α)

ϖ3

3!
+ 2α3ϖ

4

4!
,

...

and so on.

Therefore we obtain the approximate solution as

X(ϖ) = − (1− α) +
(
(1− α)

3 − α
)
ϖ + 3α (1− α)

2 ϖ2

2!

+4α2 (1− α)
ϖ3

3!
+ 2α3ϖ

4

4!
+ ...(15)

Taking α = 1 in equation (15) we get

X(ϖ) = −ϖ +
ϖ4

12
− ϖ7

252
+ ...

which is the same result as in [16].

The 2D plots of the approximate solutions using KHDM for equations (12)-
(13) for different values of α are given in Figure 1. Additionally, the numerical
values of the approximate solutions using KHDM for different values of α are
provided in Table 1. The comparison of KHDM with LGLQM [6], OPM [14],
and IRKA [17] at α = 1 is shown in Table 2.

ϖ α = 0.7 α = 0.8 α = 0.9 α = 1

0.1 −0.36625 −0.27863 −0.18970 −0.099992

0.2 −0.42999 −0.35573 −0.27873 −0.199870

0.3 −0.49052 −0.43063 −0.36653 −0.29933

0.4 −0.54708 −0.50257 −0.45243 −0.39787

0.5 −0.59884 −0.57067 −0.53558 −0.49482

Table 1. Numerical values of the KHDM-approximate solutions
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Figure 1. The 2D plots of the KHDM-approximate solutions

ϖ LGLQM OPM IRKA KHDM

0.1 −0.099992 −0.099992 −0.099992 −0.099992

0.2 −0.199870 −0.199870 −0.199870 −0.199870

0.3 −0.29933 −0.29933 −0.29933 −0.29933

0.4 −0.39787 −0.39787 −0.39787 −0.39787

0.5 −0.49482 −0.49482 −0.49482 −0.49482

Table 2. Comparison of the proposed method with LGLQM, OPM, and IRKA
at α = 1

Example 4.2. Let us consider the nonlinear fractional Volterra integro-dif-
ferential

CFDαX(ϖ) = 1 +

∫ ϖ

0

X′(ς)X(ς)dς, (16)

under the condition

X(0) = 0, (17)

The exact solution of equations (12)-(13) for α = 1 is [16]

X(ϖ) =
√
2 tan

(√
2

2
ϖ

)
.

To solve this problem by the proposed method, we apply the steps involved
in KHDM as presented in subsection 3.2 to equations (16)-(17), we obtain the
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following recursive relation

X0(ϖ) = KH−1

[(
(1− α) s+ αγη

s

)
KH [1]

]
,

Xn+1(ϖ) = KH−1

[(
(1− α) s+ αγη

s

)
KH

[∫ ϖ

0

An(ϖ)

]]
,(18)

where An, n ≥ 0 are the Adomian polynomials of the nonlinear term X′(ς)X(ς).

The first few nonlinear terms are given by

A0 = X′
0X0,

A1 = X′
0X1 + X0X

′
1,

A2 = X′
0X2 + X1X

′
1 + X0X

′
2,

From (18), we have

X0(ϖ) = (1− α) + αϖ

X1(ϖ) = α (1− α)
2
ϖ + 2α2 (1− α)

ϖ2

2
+ α3ϖ

3

3!
...

and so on.

Therefore we obtain the approximate solution as

X(ϖ) = (1− α) +
(
α+ α (1− α)

2
)
ϖ + 2α2 (1− α)

ϖ2

2
+ α3ϖ

3

3!
+ ... (19)

Taking α = 1 in equation (19) we get

X(ϖ) = ϖ +
ϖ3

6
+

ϖ5

30
+ ...

=
√
2 tan

(√
2

2
ϖ

)
.

which is the same result as in [16].

The 2D plots of the approximate solutions using KHDM and the exact
solution for equations (16)-(17) for different values of α are given in Figure 2.
Additionally, the numerical values of the approximate solutions using KHDM
and the exact solution for different values of α are provided in Table 3. The
absolute error comparison of the KHDM with LGLQM [6], OPM [14], and
IRKA [17] at α = 1 is shown in Table 4.

Example 4.3. Let us consider the nonlinear fractional Volterra integro-dif-
ferential

CFDαX(ϖ) = −1

2
+

∫ ϖ

0

(X′(ς))
2
dς, (20)
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Figure 2. The 2D plots of KHDM-approximate solutions and exact solution

ϖ α = 0.7 α = 0.8 α = 0.9 α = 1 Exact solution

0.1 0.37783 0.28457 0.19183 0.10017 0.10017

0.2 0.45894 0.37220 0.28601 0.20134 0.20134

0.3 0.54367 0.46342 0.38327 0.30458 0.30458

0.4 0.63238 0.55874 0.48434 0.41101 0.41102

0.5 0.72540 0.65867 0.58994 0.52188 0.52193

Table 3. Numerical values of the KHDM-approximate solutions and exact
solution

ϖ |Xexact − XLGLQM | |Xexact − XOPM | |Xexact − XIRKA| |Xexact − XKHDM |
0.1 6.7597× 10−10 6.7597× 10−10 6.7597× 10−10 6.7597× 10−10

0.2 8.7055× 10−8 8.7055× 10−8 8.7055× 10−8 8.7055× 10−8

0.3 1.5028× 10−6 1.5028× 10−6 1.5028× 10−6 1.5028× 10−6

0.4 1.1423× 10−5 1.1423× 10−5 1.1423× 10−5 1.1423× 10−5

0.5 5.5515× 10−5 5.5515× 10−5 5.5515× 10−5 5.5515× 10−5

Table 4. Comparison of the proposed method with LGLQM, OPM, and IRKA
in terms of absolute error at α = 1

under the condition

X(0) = 0, (21)

The exact solution of equations (20)-(21) for α = 1 is [16]

X(ϖ) = − ln

(
1

2
ϖ + 1

)
. (22)
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To solve this problem by the proposed method, we apply the steps involved
in KHDM as presented in subsection 3.2 to equations (20)-(21), we obtain the
following recursive relation

X0(ϖ) = KH−1

[(
(1− α) s+ αγη

s

)
KH

[
−1

2

]]
,

Xn+1(ϖ) = KH−1

[(
(1− α) s+ αγη

s

)
KH

[∫ ϖ

0

An(ς)dς

]]
,(23)

where An, n ≥ 0 are the Adomian polynomials of the nonlinear term (X′(ς))
2
.

The first few nonlinear terms are given by

A0 = (X′
0)

2
,

A1 = 2X′
0X

′
1+,

A2 = 2X′
0X

′
2 + X′

1X
′
1.

From (23), we have

X0(ϖ) = −1

2
((1− α) + αϖ)

X1(ϖ) =
1

4
α2 (1− α)ϖ +

1

8
α3ϖ2,

X2(ϖ) = −
(
1

4
α3 (1− α)

2
ϖ +

1

4
α4 (1− α)ϖ2 +

1

24
α5ϖ3

)
,

...

and so on.

Therefore we obtain the approximate solution as

X(ϖ) = −1

2
(1− α)− 1

4

(
α3 (1− α)

2 − α2 (1− α) + 2α
)
ϖ

+
1

8

(
α3 − 2υ4 (1− α)

2
)
ϖ2 − 1

24
α5ϖ3 + ...(24)

Taking α = 1 in equation (24) we get

X(ϖ) = −1

2
ϖ +

1

8
ϖ2 − 1

24
ϖ3 + ...

= − ln

(
1

2
ϖ + 1

)
,

which is the same result as in [16].

The numerical values of the approximate solutions using KHDM and the
exact solution for equations (20)-(21) for different values of α are provided in
Table 5. The absolute error comparison of the KHDM with LGLQM [6], OPM
[14], and IRKA [17] at α = 1 is shown in Table 6.
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ϖ α = 0.8 α = 0.9 α = 1 Exact solution

0.1 −0.13673 −0.092287 −0.0049875 −0.0049875

0.2 −0.17234 −0.132 93 −0.0099503 −0.0099503

0.3 −0.20691 −0.17208 −0.014889 −0.014889

0.4 −0.24054 −0.20989 −0.019803 −0.019803

0.5 −0.27329 −0.24649 −0.024693 −0.024693

Table 5. Numerical values of the KHDM-approximate solutions and exact
solution

ϖ |Xexact − XLGLQM | |Xexact − XOPM | |Xexact − XIRKA| |Xexact − XKHDM |
0.1 1.5563× 10−10 1.5563× 10−10 1.5563× 10−10 1.5563× 10−10

0.2 2.4802× 10−9 2.4802× 10−9 2.4802× 10−9 2.4802× 10−9

0.3 1.2506× 10−8 1.2506× 10−8 1.2506× 10−8 1.2506× 10−8

0.4 3.9370× 10−8 3.9370× 10−8 3.9370× 10−8 3.9370× 10−8

0.5 9.5743× 10−8 9.5743× 10−8 9.5743× 10−8 9.5743× 10−8

Table 6. Comparison of the proposed method with LGLQM, OPM, and IRKA
in terms of absolute error at α = 1

5. Conclusion

In this paper, we proposed a new technique known as Khalouta decomposition
method (KHDM) for solving nonlinear fractional Volterra integro-differential
equations. Fractional derivatives are described in the Caputo-Fabrizio sense
recently introduced by Michele Caputo and Mauro Fabrizio. The existence,
uniqueness and convergence results are performed based on the Banach con-
traction principle. Finally, the results obtained are verified through three nu-
merical examples. The proposed method has shown to be a powerful and effec-
tive technique for obtaining an approximate analytical solution for nonlinear
fractional Volterra integro-differential equations. The results obtained will be
treated as benchmarks for our future studies on solving nonlinear fractional
Volterra-Fredholm integro-differential equations.
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