Revista Colombiana de Matemáticas Volumen 58(2024)2, páginas 137-140

Ineffable sets and large cardinals

Conjuntos inefables y grandes cardinales

Franqui Cardenas

Universidad Nacional de Colombia, Bogotá, Colombia

ABSTRACT. Suppose κ is a regular cardinal. We prove that if the set of $H_{\lambda+}$ -reflecting cardinals $\lambda < \kappa$ is ineffable, then κ is an $H_{\kappa+}$ -reflecting cardinal. Similarly, we also prove that if the set of Woodin cardinals/cardinals having the stationary reflection property below κ is ineffable, then κ is a Woodin cardinal/cardinal having the stationary reflection property.

Key words and phrases. Ineffable set, reflecting cardinal, Woodin cardinal, stationary reflection property.

 $2020\ Mathematics\ Subject\ Classification.\ 03E55.$

Resumen. Probamos que si el conjunto de cardinales λ bajo κ tales que λ es cardinal H_{λ^+} -reflejante es un subconjunto inefable de κ entonces κ resulta ser un cardinal H_{κ^+} -reflejante. De manera similar para la propiedades de ser cardinal de Woodin y la propiedad de reflexión estacionaria: si el conjunto de los cardinales λ bajo κ tales que λ es cardinal de Woodin (se satisface $RP(\lambda)$) es un subconjunto inefable de κ entonces κ es cardinal de Woodin (se tiene $RP(\kappa)$).

Palabras y frases clave. Conjunto inefable, cardinal reflejante, cardinal de Woodin, propiedad de reflexión estacionaria.

1. Introduction

We have proved in [1] that if the set of Ramsey cardinals, Rowbottom cardinals or Jónsson cardinals below κ is an ineffable subset of κ then κ turns out to be a Ramsey cardinal, Rowbottom or Jónsson cardinal respectively. Continuing with this idea, we extend the result for the property of being a Woodin cardinal, a reflecting cardinal and having the stationary reflection property.

2. Main results

Definition 2.1. Let $\kappa > \omega$ be a regular cardinal and $A \subseteq \kappa$. A is said to be an ineffable subset of κ if and only if for any sequence $\langle S_\zeta : \zeta \in A \rangle$ such that for all $\zeta \in A$, $S_\zeta \subseteq \zeta$ there exists $T \subseteq A$, T a stationary subset of κ such that for all $\zeta < \zeta' \in T$, $S_\zeta = \zeta \cap S_{\zeta'}$. In this case we say that the sequence $\langle S_\zeta : \zeta \in T \rangle$ is coherent. If $A = \kappa$, κ is said to be an ineffable cardinal.

The following definition is due to Miyamoto, [3]:

Definition 2.2. An inaccessible cardinal κ is said to be an H_{κ^+} -reflecting cardinal if and only if for any $E \subseteq \kappa$ and any formula φ , if there is some cardinal χ such that $H_{\chi} \models \varphi(E)$, then the set $\{\alpha < \kappa : \text{There is a cardinal } \chi' < \kappa \text{ with } H_{\chi'} \models \varphi(E \cap \alpha)\}$ is a stationary subset of κ .

In [3] it is proved that κ is an H_{κ^+} -reflecting cardinal if and only if κ is a strongly unfoldable cardinal. Unfoldable cardinals were introduced by Villaveces in [4].

Theorem 2.3. If $A = \{\lambda < \kappa : \lambda \text{ is an } H_{\lambda^+}\text{-reflecting cardinal}\}$ is an ineffable subset of κ then κ is an H_{κ^+} -reflecting cardinal.

Proof. Let $E \subseteq \kappa$, φ be a formula and χ be a cardinal such that $H_{\chi} \models \varphi(E)$. Let ψ be the Σ_1 -sentence "There is ρ a cardinal and there is a set y such that $y = H_{\rho}$ and $y \models \varphi(E)$ ". Since $H_{\kappa^+} \prec_1 V$ there is a cardinal $\rho \in H_{\kappa^+}$ and there exists $y \in H_{\kappa^+}$ such that $y = H_{\rho}$ and $y \models \varphi(E)$ in H_{κ^+} . So $H_{\kappa^+} \models \varphi(E)$ and therefore $\langle V_{\kappa}, \in, E \rangle \models \varphi(E)$. Hence the set:

$$C = \{ \alpha < \kappa : \langle V_{\alpha}, \in, E \cap \alpha \rangle \prec \langle V_{\kappa}, \in, E \rangle \}$$

is a club subset of κ . So $A \cap C$ is an ineffable subset of κ and for every $\lambda \in A \cap C$, $\langle V_{\lambda}, \in, E \cap \lambda \rangle \models \varphi(E \cap \lambda)$. Then there is a cardinal χ_{λ} such that $H_{\chi_{\lambda}} \models \varphi(E \cap \lambda)$ for any $\lambda \in A \cap C$. Now since λ is an H_{λ^+} -reflecting cardinal the set

$$N_{\lambda} := \{ \alpha < \lambda : \exists \eta < \lambda \text{ a cardinal}, \ H_{\eta} \models \varphi(E \cap \alpha) \}$$

is a stationary subset of λ for every $\lambda \in A \cap C$. So there exists $S \subseteq A \cap C$ a stationary subset of κ such that the sequence $\langle N_{\lambda} : \lambda \in S \rangle$ is coherent. Then the set $N = \bigcup_{\lambda \in S} N_{\lambda}$ is a stationary subset of κ such that

$$N \subseteq \{\alpha < \kappa : \exists \chi' < \kappa \text{ a cardinal}, H_{\chi'} \models \varphi(E \cap \alpha)\}.$$

(N is a stationary subset of κ : Given $D \subseteq \kappa$ a club subset of κ , then for $\lambda \in S \cap \overline{D}, \ D \cap \lambda$ is club in λ and hence $D \cap N_{\lambda} \neq \emptyset$).

For the following theorem we use the fact that κ is a Woodin cardinal if and only if for any $B \subseteq V_{\kappa}$ the set

$$\{\alpha < \kappa : \forall \delta < \kappa \ (\alpha \text{ is } \delta\text{-strong for } B)\}\$$

is stationary in κ (see [2]), where κ is γ -strong for B if and only if there is a $j: V \to M$ such that:

- (1) $cp(j) = \kappa$ and $\gamma < j(\kappa)$,
- (2) $V_{\gamma} \subseteq M$, and
- (3) $B \cap V_{\gamma} = j(B) \cap V_{\gamma}$.

Theorem 2.4. If $A = \{\delta < \kappa : \delta \text{ is a Woodin cardinal}\}\$ is an ineffable subset of κ then κ is a Woodin cardinal.

Proof. Let $B \subseteq V_{\kappa}$. We have to prove that the set $\{\delta < \kappa : \forall \lambda < \kappa(\delta \text{ is } \lambda\text{-strong for } B)\}$ is a stationary subset of κ . For $\mu \in A$, the set $S_{\mu} := \{\alpha < \mu : \forall \lambda < \mu \ (\alpha \text{ is } \lambda\text{-strong for } B \cap V_{\mu})\}$ is a stationary subset of μ . Since A is an ineffable subset of κ , there exists $T \subseteq A$ a stationary subset of κ such that the sequence $\langle S_{\mu} : \mu \in T \rangle$ is coherent. Let $S = \bigcup_{\mu \in T} S_{\mu}$. Then S is a stationary subset of κ . We have to prove that $S \subseteq \{\delta < \kappa : \forall \lambda < \kappa(\delta \text{ is } \lambda\text{-strong for } B)\}$: Let $\delta \in S$. Then there exists $\mu \in T$ such that $\delta \in S_{\mu}$. We can suppose $\lambda < \mu$ since $S - (\lambda + 1)$ is also a stationary subset of κ and the sequence $\langle S_{\mu} : \mu \in T \rangle$ is coherent. So δ is λ -strong for $B \cap V_{\mu}$ and there is $j : V \to M$ such that $cp(j) = \delta$ with $j(\delta) > \lambda$, $V_{\lambda} \subseteq M$ and $(B \cap V_{\mu}) \cap V_{\lambda} = B \cap V_{\lambda} = j(B \cap V_{\mu}) \cap V_{\lambda} = j(B) \cap j(V_{\mu}) \cap V_{\lambda} = j(B) \cap V_{\lambda}$.

Definition 2.5. For $\lambda \geq \omega_2$ a regular cardinal, $RP(\lambda)$ is the statement: For every $S \subseteq [\lambda]^{\omega}$, S a stationary subset of $[\lambda]^{\omega}$ there exists $x \in [\lambda]^{\omega_1}$ such that $S \cap [x]^{\omega}$ is a stationary subset of $[x]^{\omega}$.

Definition 2.6. For $S \subseteq [\kappa]^{\omega}$ and $\lambda < \kappa$, $S|\lambda$ is the set $\{a \cap \lambda : a \in S\}$. If $S \subseteq [\kappa]^{\omega}$ is a stationary subset of $[\kappa]^{\omega}$ then $S|\lambda$ is a stationary subset of $[\lambda]^{\omega}$ (see [2]).

Theorem 2.7. If $A = \{\lambda < \kappa : \lambda \ge \omega_2 \text{ is a regular cardinal such that } RP(\lambda)\}$ is an ineffable subset of κ then $RP(\kappa)$.

Proof. Let S be a stationary subset of $[\kappa]^{\omega}$. For every $\lambda \in A$, there exists $x_{\lambda} \in [\lambda]^{\omega_1}$ such that $(S|\lambda) \cap [x_{\lambda}]^{\omega}$ is a stationary subset of $[x_{\lambda}]^{\omega}$. Since A is an ineffable subset of κ , there is $T \subseteq A$ a stationary subset of κ such that the sequence $\langle x_{\lambda} : \lambda \in T \rangle$ is coherent, so there is $\lambda \in T$ such that $x := x_{\lambda} = x_{\lambda'}$ for every $\lambda' \geq \lambda$. Then $S \cap [x]^{\omega}$ is a stationary subset of $[x]^{\omega}$: Let C be a club subset of $[x]^{\omega}$ and let $\lambda_0 \in T$ be such that $\lambda_0 \geq \lambda$ and $x \subseteq \lambda_0$. Since $(S|\lambda_0) \cap [x]^{\omega}$ is a stationary subset of $[x]^{\omega}$ there exists $p_0 \in (S|\lambda_0) \cap C$ and $q_0 \in S$ such that $p_0 = q_0 \cap \lambda_0 = q_0 \cap x$. For some $\lambda_1 \in T$ with $\lambda_1 \geq \lambda_0$, $q_0 \subseteq \lambda_1$, so $q_0 \in S|\lambda_1$ and therefore there is $p_1 \in (S|\lambda_1) \cap C$ such that $q_0 \subseteq p_1 \subseteq x$. Hence $q_0 \cap x = q_0 = p_0 \in S$, so $p_0 \in S \cap C$.

References

- [1] F. Cárdenas, *Ineffable limits of weakly compact cardinals and similar results*, Revista Colombiana de Matemáticas **54** (2020), no. 2, 181–186.
- [2] T. Jech, Set Theory. The Third Millennium Edition, revised and expanded, fourth ed., Springer-Verlag, Berlin, Heidelberg, New York, 2006.
- [3] T. Miyamoto, A note on weak segments of PFA. In Proceedings of the Sixth Asian Logic Conference (Beijing, 1996), World Scientific Publishing, River Edge, 1998.
- [4] A. Villaveces, Chains of end elementary extensions of models of set theory, Journal of Symbolic Logic **63** (1998), no. 3, 1116–1136.

(Recibido en agosto de 2024. Aceptado en enero de 2025)

DEPARTAMENTO DE MATEMÁTICAS
UNIVERSIDAD NACIONAL DE COLOMBIA
FACULTAD DE CIENCIAS
CARRERA 30, CALLE 45
BOGOTÁ, COLOMBIA
e-mail: fscardenasp@unal.edu.co