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Abstract. The article presents new inequalities of Hadamard-type which are
obtained using fractional integral operators belonging to a function whose
third-order derivative is convex. The proposed Hadamard-type inequalities
have the potential for application in various areas where it is required to esti-
mate the properties of functions with a convex third-order derivative. Exam-
ples of functions are given based on a comparative analysis of the estimates of
the upper bounds of the Hadamard-type inequalities obtained using the classi-
cal and extended Hölder inequalities. Finally, applications to special functions
are provided.
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Resumen. El art́ıculo presenta nuevas desigualdades de tipo Hadamard que se
obtienen utilizando operadores integrales fraccionarios pertenecientes a una
función cuya derivada de tercer orden es convexa. Las desigualdades de tipo
Hadamard propuestas tienen potencial de aplicación en diversas áreas donde
se requiere estimar las propiedades de funciones con una derivada convexa de
tercer orden. Se dan ejemplos de funciones basados en un análisis compara-
tivo de las estimaciones de los ĺımites superiores de las desigualdades de tipo
Hadamard obtenidas utilizando las desigualdades Hölder clásica y extendida.
Finalmente, se proporcionan aplicaciones a funciones especiales.

Palabras y frases clave. Funciones convexas, desigualdad de Hadamard, de-
sigualdad de Hölder, cálculo fraccional, funciones especiales.
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1. Introduction

The definition of convexity is well-known in the literature:

Definition 1.1. Function Ψ : [ϱ1, ϱ2] → R, is said to be convex, if we have

Ψ (σθ1 + (1− σ) θ2) ≤ σΨ(θ1) + (1− σ)Ψ (θ2)

for all θ1, θ2 ∈ [ϱ1, ϱ2] and σ ∈ [0, 1] .

There are many significant inequalities established for the class of convex
functions, but the Hermite–Hadamard inequality, also known as Hadamard’s
inequality, is one of the most significant. The study of Hadamard-type inequali-
ties is a hot topic in mathematical analysis and has a wide range of applications
in various fields, including optimization, mathematical physics, and statistics.

Let I ⊆ R be an interval, Ψ : I → R be a convex function and let ϱ1, ϱ2 ∈ I
with ϱ1 < ϱ2. The double inequality

Ψ

(
ϱ1 + ϱ2

2

)
≤ 1

ϱ2 − ϱ1

ϱ2∫
ϱ1

Ψ(σ)dσ ≤ Ψ(ϱ1) + Ψ(ϱ2)

2

is called the Hermite–Hadamard inequality. The above inequality is reversed if
Ψ is concave.

Recently, new Hermite–Hadamard and other types of integral inequalities
have been introduced using fractional operators. These inequalities generalize
classical ones and could have potential applications in various areas of mathe-
matics and its associated fields (see [1, 3, 5, 10, 16, 18, 19] and the references
therein). These extensions offer improved estimates for integral operators and
give more accurate bounds on function values.

One key feature of the new Hadamard-type inequalities is their connection
with fractional integral operators. Fractional integrals generalize the classical
ones and account for the particularities of functions exhibiting fractal prop-
erties. By incorporating fractional integrals into Hadamard-type inequalities,
new possibilities arise for studying complex mathematical models.

The classical definition of the Riemann–Liouville fractional integrals is the
following (see e.g. [21]):

Definition 1.2. Let Ψ ∈ L [ϱ1, ϱ2]. The Riemann–Liouville integrals Jα
ϱ+
1

Ψ and

Jα
ϱ−
2

Ψ of order α > 0 with ϱ1 ≥ 0 are defined by

Jα
ϱ+
1
Ψ(θ) =

1

Γ (α)

∫ θ

ϱ1

(θ − σ)
α−1

Ψ(σ) dσ, θ > ϱ1,
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and

Jα
ϱ2−Ψ(θ) =

1

Γ (α)

∫ ϱ2

θ

(σ − θ)
α−1

Ψ(σ) dσ, θ < ϱ2,

respectively. Note that for α = 1, the fractional integrals simplify to classical
integrals of Ψ.

In the vast majority of studies dealing with the theory of integral inequali-
ties, two classical inequalities are employed: Hölder’s inequality and the power
mean inequality.

Theorem 1.3 ([17], Hölder’s inequality). Let ζ > 1 and 1
ζ + 1

ξ = 1. If Ψ and

g are real functions defined on [ϱ1, ϱ2] and if |Ψ|ζ , |g|ξ ∈ L[ϱ1, ϱ2], then

∫ ϱ2

ϱ1

|Ψ(σ) g(σ)| dσ ≤
(∫ ϱ2

ϱ1

|Ψ(σ)|ζ dσ
) 1

ζ
(∫ ϱ2

ϱ1

|g(σ)|ξ dσ
) 1

ξ

. (1)

Equality occurs if and only if C1|Ψ(σ)|ζ = C2|g(σ)|ξ holds almost everywhere,
where C1 and C2 are constants, not both of them zero.

Theorem 1.4 ([12], improved Hölder inequality). Let Ψ and g be real functions
defined on [ϱ1, ϱ2]. If |Ψ|ζ , |g|ξ ∈ L[ϱ1, ϱ2] with

1
ζ + 1

ξ = 1 and ζ > 1, then

∫ ϱ2

ϱ1

|Ψ(σ)g(σ)| dσ

≤ 1

ϱ2 − ϱ1

{(∫ ϱ2

ϱ1

(ϱ2 − σ)|Ψ(σ)|ζdσ
) 1

ζ
(∫ ϱ2

ϱ1

(ϱ2 − σ)|g(σ)|ξdσ
) 1

ξ

+

(∫ ϱ2

ϱ1

(σ − ϱ1)|Ψ(σ)|ζdσ
) 1

ζ
(∫ ϱ2

ϱ1

(σ − ϱ1)|g(σ)|ξdσ
) 1

ξ

}
. (2)

Theorem 1.5 ([17], power mean inequality). Let ξ ≥ 1 and 1
ζ + 1

ξ = 1. If Ψ

and g are real functions defined on [ϱ1, ϱ2] and if |Ψ|, |Ψ||g|ξ ∈ L[ϱ1, ϱ2], then

∫ ϱ2

ϱ1

|Ψ(σ) g(σ)| dσ ≤
(∫ ϱ2

ϱ1

|Ψ(σ)| dσ
)1− 1

ξ
(∫ ϱ2

ϱ1

|Ψ(σ)| |g(σ)|ξ dσ
) 1

ξ

. (3)

Theorem 1.6 ([13], improved power mean integral inequality). Let ξ ≥ 1 and
let Ψ and g be real functions defined on [ϱ1, ϱ2]. If |Ψ|, |Ψ||g|ξ ∈ L[ϱ1, ϱ2], then
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∫ ϱ2

ϱ1

|Ψ(σ)g(σ)|dσ

≤ 1

ϱ2 − ϱ1

{(∫ ϱ2

ϱ1

(ϱ2 − σ)|Ψ(σ)|dσ
)1− 1

ξ
(∫ ϱ2

ϱ1

(ϱ2 − σ)|Ψ(σ)||g(σ)|ξdσ
) 1

ξ

+

(∫ ϱ2

ϱ1

(σ − ϱ1)|Ψ(σ)|dσ
)1− 1

ξ
(∫ ϱ2

ϱ1

(σ − ϱ1)|Ψ(σ)||g(σ)|ξdσ
) 1

ξ

}
. (4)

The upcoming paragraph summarizes some recent studies pertaining to
the article’s subject, specifically focusing on functions whose third derivative
belongs to a particular convex class.

In [2], the author derived parameterized integral inequalities of Hadamard
and Simpson types for concave and r-convex functions. For certain values of r,
these inequalities were established using dedicated computational tools. Some
new inequalities of Hadamard-type for s-convex functions were presented by the
authors in [7, 20]. For extended s-convex functions, Simpson-type inequalities
were obtain by Chun and Qi in [9]. In [26], Wu et al. obtained new parameter-
ized inequalities of the Hadamard-type for quasi-convex functions, moreover, an
application to special means of real numbers was also given there. In [8], Chun
and Qi discovered some new Hermite–Hadamard type integral inequalities for
the classical convex functions, while in [24], Shuang et al. did for (α,m)-convex
functions. Recently, some fractional estimations are provided pertaining con-
vex mappings in [11] by Hezenci et al., while in [14], Li and Du obtained one
for (α,m)-GA-convex functions, centering Simpson-type integral inequalities.
Many other fractal-fractional variants for differentiable convex mappings can
be observed in [6, 4, 22, 23].

The aim of this article is to introduce new variations of Hadamard-type
inequalities by incorporating fractional integral operators, specifically tailored
for functions with convex third-order derivatives. The derivation of these re-
sults relies on the fundamental properties of convexity and the application of
Hölder’s inequality, alongside its extended forms. Furthermore, a comparative
analysis of the estimates of the proven Hadamard-type inequalities is provided,
accompanied by relevant applications.

2. Main results

Lemma 2.1. Let Ψ : I ⊂ R → R be a three times differentiable function on
I◦ (I◦ is the interior of I), where ϱ1, ϱ2 ∈ I with ϱ1 < ϱ2. If Ψ′′′ ∈ L [ϱ1, ϱ2],
then we have
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Ψ(ϱ2) + Ψ(ϱ1)

2

− Γ(α+ 2)

4(ϱ2 − ϱ1)α

{
α+ 3

ϱ2 − ϱ1

[
Jα+1

ϱ−
2

Ψ(ϱ1) + Jα+1

ϱ+
1

Ψ(ϱ2)
]
−
[
Jα
ϱ−
2
Ψ(ϱ1) + Jα

ϱ+
1
Ψ(ϱ2)

]}
=

ϱ2 − ϱ1
4 (α+ 2)

[Ψ′(ϱ2)−Ψ′(ϱ1)] +
(ϱ2 − ϱ1)

3

4 (α+ 2)
(I1 − I2) , (5)

where α > 0,

I1 =

1∫
0

σα+2(1− σ)Ψ′′′(σϱ1 + (1− σ)ϱ2)dσ,

I2 =

1∫
0

σα+2(1− σ)Ψ′′′(σϱ2 + (1− σ)ϱ1)dσ.

Proof. By integrating both integrals by parts three times, we get for the first
integral

I1=

1∫
0

σα+2(1− σ)Ψ′′′(σϱ1 + (1− σ)ϱ2)dσ

=
Ψ′(ϱ1)

(ϱ1−ϱ2)
2 −

2 (α+2)

(ϱ1−ϱ2)
3Ψ(ϱ1)−

α (α+1) (α+2)

(ϱ1−ϱ2)
3

1∫
0

σα−1Ψ(σϱ1+(1−σ)ϱ2)dσ

+
(α+ 1) (α+ 2) (α+ 3)

(ϱ1 − ϱ2)
3

1∫
0

σαΨ(σϱ1 + (1− σ)ϱ2)dσ.

After changing variables by setting σϱ1 + (1− σ)ϱ2 = z, we obtain
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I1 =
Ψ′(ϱ1)

(ϱ2 − ϱ1)
2 +

2 (α+ 2)

(ϱ2 − ϱ1)
3Ψ(ϱ1) +

α (α+ 1) (α+ 2)

(ϱ2 − ϱ1)
3

ϱ1∫
ϱ2

(
ϱ2 − z

ϱ2 − ϱ1

)α−1

Ψ(z)

(
−dz

ϱ2 − ϱ1

)
− (α+ 1) (α+ 2) (α+ 3)

(ϱ2 − ϱ1)
3

ϱ1∫
ϱ2

(
ϱ2 − z

ϱ2 − ϱ1

)α

Ψ(z)

(
−dz

ϱ2 − ϱ1

)

=
Ψ′(ϱ1)

(ϱ2 − ϱ1)
2 +

2 (α+ 2)

(ϱ2 − ϱ1)
3Ψ(ϱ1) +

α (α+ 1) (α+ 2)

(ϱ2 − ϱ1)
α+3

ϱ2∫
ϱ1

(ϱ2 − z)
α−1

Ψ(z)dz

− (α+ 1) (α+ 2) (α+ 3)

(ϱ2 − ϱ1)
α+4

ϱ2∫
ϱ1

(ϱ2 − z)
α
Ψ(z)dz

=
Ψ′(ϱ1)

(ϱ2 − ϱ1)
2 +

2 (α+ 2)

(ϱ2 − ϱ1)
3Ψ(ϱ1) +

α (α+ 1) (α+ 2)Γ(α)

(ϱ2 − ϱ1)
α+3 Jα

ϱ+
1
Ψ(ϱ2)

− (α+ 1) (α+ 2) (α+ 3)Γ(α+ 1)

(ϱ2 − ϱ1)
α+4 Jα+1

ϱ+
1

Ψ(ϱ2).

Similarly, for the second integral, we have

I2 =

1∫
0

σ2+α(1− σ)Ψ′′′(σϱ2 + (1− σ)ϱ1)dσ

=
Ψ′(ϱ2)

(ϱ2−ϱ1)
2 −

2 (α+2)

(ϱ2−ϱ1)
3Ψ(ϱ2)−

(α+2) (α+1)α

(ϱ2−ϱ1)
3

1∫
0

σα−1Ψ(σϱ2+(1−σ)ϱ1)dσ

+
(α+ 3) (α+ 2) (α+ 1)

(ϱ2 − ϱ1)
3

1∫
0

σαΨ(σϱ2 + (1− σ)ϱ1)dσ,

and after the change of variables σϱ2 + (1− σ)ϱ1 = z, we get

I2 =
Ψ′(ϱ2)

(ϱ2 − ϱ1)
2 − 2 (α+ 2)

(ϱ2 − ϱ1)
3Ψ(ϱ2)−

α (α+ 1) (α+ 2)Γ(α)

(ϱ2 − ϱ1)
α+3 Jα

ϱ−
2
Ψ(ϱ1)

+
(α+ 1) (α+ 2) (α+ 3)Γ(α+ 1)

(ϱ2 − ϱ1)
α+4 Jα+1

ϱ2− Ψ(ϱ1).
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By subtracting the last equalities, we obtain

I1 − I2 = − Ψ′(ϱ2)−Ψ′(ϱ1)

(ϱ2 − ϱ1)
2 +

2 (α+ 2)

(ϱ2 − ϱ1)
3 [Ψ(ϱ2) + Ψ(ϱ1)]

− (α+ 1) (α+ 2) (α+ 3)Γ(α+ 1)

(ϱ2 − ϱ1)
α+4

[
Jα+1

ϱ−
2

Ψ(ϱ1) + Jα+1

ϱ+
1

Ψ(ϱ2)
]

+
α (α+ 1) (α+ 2)Γ(α)

(ϱ2 − ϱ1)
α+3

[
Jα
ϱ−
2
Ψ(ϱ1) + Jα

ϱ+
1
Ψ(ϱ2)

]
= − Ψ′(ϱ2)−Ψ′(ϱ1)

(ϱ2 − ϱ1)
2 +

2 (α+ 2)

(ϱ2 − ϱ1)
3 [Ψ(ϱ2) + Ψ(ϱ1)]

− Γ(α+ 4)

(ϱ2 − ϱ1)
α+4

[
Jα+1

ϱ−
2

Ψ(ϱ1) + Jα+1

ϱ+
1

Ψ(ϱ2)
]

+
Γ(α+ 3)

(ϱ2 − ϱ1)
α+3

[
Jα
ϱ−
2
Ψ(ϱ1) + Jα

ϱ+
1
Ψ(ϱ2)

]
.

Finally, we multiply both parts of the last equality by the expression (ϱ2−ϱ1)
3

4(α+2)

and simplify to obtain the following:

(ϱ2 − ϱ1)
3

4 (α+ 2)
(I1 − I2)

= − ϱ2 − ϱ1
4 (α+ 2)

[Ψ′(ϱ2)−Ψ′(ϱ1)] +
Ψ(ϱ2) + Ψ(ϱ1)

2

− Γ(α+2)

4 (ϱ2−ϱ1)
α

{
α+3

ϱ2−ϱ1

[
Jα+1

ϱ−
2

Ψ(ϱ1)+Jα+1

ϱ+
1

Ψ(ϱ2)
]
−
[
Jα
ϱ−
2
Ψ(ϱ1)+Jα

ϱ+
1
Ψ(ϱ2)

]}
.

The proof is complete. □✓

Corollary 2.2. For α = 1, (5) yields

Ψ(ϱ2) + Ψ(ϱ1)

2
− 1

ϱ2 − ϱ1

ϱ2∫
ϱ1

Ψ(σ)dσ

=
ϱ2 − ϱ1

12
[Ψ′(ϱ2)−Ψ′(ϱ1)] +

(ϱ2 − ϱ1)
3

12
(I1 − I2) ,

where

I1 =

1∫
0

σ3(1− σ)Ψ′′′(σϱ1 + (1− σ)ϱ2)dσ,

I2 =

1∫
0

σ3(1− σ)Ψ′′′(σϱ2 + (1− σ)ϱ1)dσ.
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Theorem 2.3. Let Ψ : I → R, Ψ ∈ C3(I◦) and Ψ′′′ ∈ L [ϱ1, ϱ2], where
ϱ1, ϱ2 ∈ I. If |Ψ′′′| is a convex function, then for all α > 0, the following
inequality holds:∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2

− Γ(α+ 2)

4 (ϱ2−ϱ1)
α

{
α+ 3

ϱ2 − ϱ1

[
Jα+1

ϱ−
2

Ψ(ϱ1) + Jα+1

ϱ+
1

Ψ(ϱ2)
]
−
[
Jα
ϱ−
2
Ψ(ϱ1) + Jα

ϱ+
1
Ψ(ϱ2)

]}∣∣∣∣
≤ ϱ2 − ϱ1

4 (α+ 2)
|Ψ′(ϱ2)−Ψ′(ϱ1)|+

(ϱ2 − ϱ1)
3

4(α+ 2)(α+ 3)(α+ 4)
{|Ψ′′′(ϱ1)|+ |Ψ′′′(ϱ2)|}.

(6)

Proof. From Lemma 2.1, taking into account that |Ψ′′′| is convex, we get∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2

− Γ(α+ 2)

4 (ϱ2 − ϱ1)
α

{
α+ 3

ϱ2 − ϱ1

[
Jα+1

ϱ−
2

Ψ(ϱ1)+Jα+1

ϱ+
1

Ψ(ϱ2)
]
−
[
Jα
ϱ−
2
Ψ(ϱ1) + Jα

ϱ+
1
Ψ(ϱ2)

]}∣∣∣∣
≤ ϱ2 − ϱ1

4 (α+ 2)
|Ψ′(ϱ2)−Ψ′(ϱ1)|

+
(ϱ2 − ϱ1)

3

4(α+ 2)

[∫ 1

0

σα+2(1− σ)|Ψ′′′(σϱ1 + (1− σ)ϱ2)|dσ

+

∫ 1

0

σα+2(1− σ)|Ψ′′′(σϱ2 + (1− σ)ϱ1)|dσ
]

≤ ϱ2 − ϱ1
4 (α+ 2)

|Ψ′(ϱ2)−Ψ′(ϱ1)|

+
(ϱ2 − ϱ1)

3

4(α+ 2)

[∫ 1

0

σα+2(1− σ)[σ|Ψ′′′(ϱ1)|+ (1− σ)|Ψ′′′(ϱ2)|]dσ

+

∫ 1

0

σα+2(1− σ)[σ|Ψ′′′(ϱ2)|+ (1− σ)|Ψ′′′(ϱ1)|]dσ
]
,

and by calculating the integrals, we obtain the upper bound

ϱ2 − ϱ1
4(α+ 2)

|Ψ′(ϱ2)−Ψ′(ϱ1)|+
(ϱ2 − ϱ1)

3

4(α+ 2)(α+ 3)(α+ 4)
{|Ψ′′′(ϱ1)|+ |Ψ′′′(ϱ2)|} .

□✓

Corollary 2.4. If we choose α = 1, then from (6), we obtain∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2
− 1

ϱ2 − ϱ1

∫ ϱ2

ϱ1

Ψ(σ)dσ

∣∣∣∣
≤ ϱ2 − ϱ1

12
|Ψ′(ϱ2)−Ψ′(ϱ1)|+

(ϱ2 − ϱ1)
3

240
[|Ψ′′′(ϱ1)|+ |Ψ′′′(ϱ2)|] .
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Theorem 2.5. Let Ψ : I → R, Ψ ∈ C3(I◦) and Ψ′′′ ∈ L [ϱ1, ϱ2] , where

ϱ1, ϱ2 ∈ I. If |Ψ′′′|ξ is a convex function, then for all α > 0, ξ > 1 and 1
ζ+

1
ξ = 1,

the following inequality holds:∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2

− Γ(α+ 2)

4 (ϱ2 − ϱ1)
α

{
α+ 3

ϱ2 − ϱ1

[
Jα+1

ϱ−
2

Ψ(ϱ1) + Jα+1

ϱ+
1

Ψ(ϱ2)
]
−
[
Jα
ϱ−
2
Ψ(ϱ1) + Jα

ϱ+
1
Ψ(ϱ2)

]}∣∣∣∣
≤ ϱ2 − ϱ1

4 (α+ 2)
[Ψ′(ϱ2)−Ψ′(ϱ1)]

+
(ϱ2 − ϱ1)

3

2(α+ 2)
(B (αζ + 2ζ + 1, ζ + 1))

1
ζ

[
|Ψ′′′(ϱ1)|ξ + |Ψ′′′(ϱ2)|ξ

2

] 1
ξ

, (7)

where B(., .) is the Euler Beta function.

Proof. From Lemma 2.1, taking the properties of modulus into account, we
obtain∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2

− Γ(α+ 2)

4 (ϱ2 − ϱ1)
α

{
α+ 3

ϱ2 − ϱ1

[
Jα+1

ϱ−
2

Ψ(ϱ1) + Jα+1

ϱ+
1

Ψ(ϱ2)
]
−
[
Jα
ϱ−
2
Ψ(ϱ1) + Jα

ϱ+
1
Ψ(ϱ2)

]}∣∣∣∣
≤ ϱ2 − ϱ1

4 (α+ 2)
|Ψ′(ϱ2)−Ψ′(ϱ1)|+

(ϱ2 − ϱ1)
3

4(α+ 2)
(|I1|+ |I2|) . (8)

By using the Hölder’s inequality (1) and considering that |Ψ′′′|ξ is convex, for
|I1|, we have

|I1| ≤
(∫ 1

0

σ(α+2)ζ |1− σ|ζdσ
) 1

ζ
(∫ 1

0

|Ψ′′′(σϱ1 + (1− σ)ϱ2)|ξdσ
) 1

ξ

.

Let us calculate the integrals:∫ 1

0

σαζ+2ζ (1− σ)
ζ
dσ = B (αζ + 2ζ + 1, ζ + 1) ,

and ∫ 1

0

[
σ |Ψ′′′(ϱ1)|

ξ
+ (1− σ) |Ψ′′′(ϱ2)|

ξ
]
dσ =

|Ψ′′′(ϱ1)|ξ + |Ψ′′′(ϱ2)|ξ

2
.

Thus, for first integral, we get

|I1| ≤ [B (αζ + 2ζ + 1, ζ + 1)]
1
ζ

[
|Ψ′′′(ϱ1)|ξ + |Ψ′′′(ϱ2)|ξ

2

] 1
ξ

.
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Analogously, for I2, we can write

|I2| ≤ [B (αζ + 2ζ + 1, ζ + 1)]
1
ζ

[
|Ψ′′′(ϱ1)|ξ + |Ψ′′′(ϱ2)|ξ

2

] 1
ξ

.

By summing |I1|, |I2| and taking (8) into account, we get (7). □✓

Corollary 2.6. If we choose α = 1, then from (7), we obtain∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2
− 1

ϱ2 − ϱ1

∫ ϱ2

ϱ1

Ψ(σ)dσ

∣∣∣∣ ≤ ϱ2 − ϱ1
12

|Ψ′(ϱ2)−Ψ′(ϱ1)|

+
(ϱ2 − ϱ1)

3

6
(B (3ζ + 1, ζ + 1))

1
ζ

[
|Ψ′′′(ϱ1)|ξ + |Ψ′′′(ϱ2)|ξ

2

] 1
ξ

. (9)

Theorem 2.7. Let Ψ : I → R, Ψ ∈ C3(I◦) and Ψ′′′ ∈ L [ϱ1, ϱ2] , where

ϱ1, ϱ2 ∈ I. If |Ψ′′′|ξ is a convex function, then for all α > 0, ξ > 1 and 1
ζ +

1
ξ = 1

the following inequality holds:∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2

− Γ(α+ 2)

4 (ϱ2 − ϱ1)
α

{
α+ 3

ϱ2 − ϱ1

[
Jα+1

ϱ−
2

Ψ(ϱ1) + Jα+1

ϱ+
1

Ψ(ϱ2)
]
−
[
Jα
ϱ−
2
Ψ(ϱ1) + Jα

ϱ+
1
Ψ(ϱ2)

]}∣∣∣∣
≤ ϱ2 − ϱ1

4 (α+ 2)
|Ψ′(ϱ2)−Ψ′(ϱ1)|+

(ϱ2 − ϱ1)
3

4(α+ 2)

×
[
(B (αζ + 2ζ + 1, ζ + 2))

1
ζ + (B (αζ + 2ζ + 2, ζ + 1))

1
ζ

]
(M1 +M2) ,

(10)

where B(., .) is the Euler Beta function and

M1 =

(
|Ψ′′′(ϱ1)|ξ + 2 |Ψ′′′(ϱ2)|ξ

6

) 1
ξ

, M2 =

(
2 |Ψ′′′(ϱ1)|ξ + |Ψ′′′(ϱ2)|ξ

6

) 1
ξ

.
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Proof. By using the improved Hölder inequality (2) for |I1| from (8), we get

|I1| ≤
∫ 1

0

|σα+2(1− σ)||Ψ′′′(σϱ1 + (1− σ)ϱ2)|dσ

≤
(∫ 1

0

(1− σ)|σα+2(1− σ)|ζdσ
)1

ζ
(∫ 1

0

(1− σ)|Ψ′′′(σϱ1 + (1− σ)ϱ2)|ξdσ
)1

ξ

+

(∫ 1

0

σ|σα+2(1− σ)|ζdσ
) 1

ζ
(∫ 1

0

σ|Ψ′′′(σϱ1 + (1− σ)ϱ2)|ξdσ
) 1

ξ

=

(∫ 1

0

σαζ+2ζ(1− σ)1+ζdσ

) 1
ζ
(∫ 1

0

(1− σ)|Ψ′′′(σϱ1 + (1− σ))ϱ2|ξdσ
) 1

ξ

+

(∫ 1

0

σ1+αζ+2ζ(1− σ)ζdσ

) 1
ζ
(∫ 1

0

σ|Ψ′′′(σϱ1 + (1− σ))ϱ2|ξdσ
) 1

ξ

.

Here ∫ 1

0

σαζ+2ζ(1− σ)1+ζdσ = B (αζ + 2ζ,+1, ζ + 2) ,∫ 1

0

σ1+αζ+2ζ(1− σ)ζdσ = B (αζ + 2ζ + 2, ζ + 1) ,

and by using the definition of convexity,∫ 1

0

(1− σ)|Ψ′′′(σϱ1 + (1− σ)ϱ2|ξdσ

≤ |Ψ′′′(ϱ1)|
ξ
∫ 1

0

σ(1−σ)dσ + |Ψ′′′(ϱ2)|
ξ
∫ 1

0

(1−σ)2dσ=
|Ψ′′′(ϱ1)|ξ+2 |Ψ′′′(ϱ2)|ξ

6

and∫ 1

0

σ|Ψ′′′(σϱ1 + (1− σ)ϱ2)|ξdσ

≤ |Ψ′′′(ϱ1)|
ξ
∫ 1

0

σ2dσ + |Ψ′′′(ϱ2)|
ξ
∫ 1

0

σ (1− σ) dσ =
2 |Ψ′′′(ϱ1)|ξ + |Ψ′′′(ϱ2)|ξ

6
.

Thus, we have

|I1| ≤ (B (αζ + 2ζ + 1, ζ + 2))
1
ζ ·

(
|Ψ′′′(ϱ1)|ξ + 2 |Ψ′′′(ϱ2)|ξ

6

) 1
ξ

+ (B (αζ + 2ζ + 2, ζ + 1))
1
ζ ·

(
2 |Ψ′′′(ϱ1)|ξ + |Ψ′′′(ϱ2)|ξ

6

) 1
ξ

.
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12 B. BAYRAKTAR, S. BUTT & P. KORUS

Similarly, for |I2| from (8), we get

|I2| ≤ (B (αζ + 2ζ + 1, ζ + 2))
1
ζ ·

(
2 |Ψ′′′(ϱ1)|ξ + |Ψ′′′(ϱ2)|ξ

6

) 1
ξ

+ (B (αζ + 2ζ + 2, ζ + 1))
1
ζ ·

(
|Ψ′′′(ϱ1)|ξ + 2 |Ψ′′′(ϱ2)|ξ

6

) 1
ξ

.

Summing the integrals yields

|I1|+ |I2| ≤ (B (αζ + 2ζ + 1, ζ + 2))
1
ζ (M1 +M2)

+ (B (αζ + 2ζ + 2, ζ + 1))
1
ζ (M2 +M1) .

Considering the last inequality, we deduce (10) from (8). The proof is complete.
□✓

Corollary 2.8. By selecting α = 1, inequality (10) yields∣∣∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2
− 1

ϱ2 − ϱ1

ϱ2∫
ϱ1

Ψ(σ)dσ

∣∣∣∣∣∣ ≤ ϱ2 − ϱ1
12

|Ψ′(ϱ2)−Ψ′(ϱ1)|

+
(ϱ2 − ϱ1)

3

12

[
(B (3ζ + 1, ζ + 2))

1
ζ + (B (3ζ + 2, ζ + 1))

1
ζ

]
(M1 +M2) ,

(11)

where M1 and M2 are defined above.

Theorem 2.9. Let Ψ : I → R, Ψ ∈ C3(I◦) and Ψ′′′ ∈ L [ϱ1, ϱ2] , where

ϱ1, ϱ2 ∈ I. If |Ψ′′′|ξ is a convex function on [ϱ1, ϱ2], then for all α > 0, ξ ≥ 1,
the following inequality holds:∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2

− Γ(α+2)

4 (ϱ2−ϱ1)
α

{
α+3

ϱ2−ϱ1

[
Jα+1

ϱ−
2

Ψ(ϱ1)+Jα+1

ϱ+
1

Ψ(ϱ2)
]
−
[
Jα
ϱ−
2
Ψ(ϱ1)+Jα

ϱ+
1
Ψ(ϱ2)

]}∣∣∣∣
≤ ϱ2 − ϱ1

4 (α+ 2)
|Ψ′(ϱ2)−Ψ′(ϱ1)|+

(ϱ2 − ϱ1)
3

4(α+ 2)(α+ 3)(α+ 4)
· (Φ1 +Φ2) , (12)

where

Φ1 =

[
(α+ 3) |Ψ′′′(ϱ1)|ξ + 2 |Ψ′′′(ϱ2)|ξ

α+ 5

] 1
ξ

,

Φ2 =

[
2 |Ψ′′′(ϱ1)|ξ + (α+ 3) |Ψ′′′(ϱ2)|ξ

α+ 5

] 1
ξ

.
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Proof. By using the power mean inequality (3) and considering that |Ψ′′′|ξ is
convex, we get for |I2| from (8)

|I1| ≤
∫ 1

0

|σα+2(1− σ)||Ψ′′′(σϱ1 + (1− σ)ϱ2)|dσ

≤
(∫ 1

0

|σα+2(1− σ)|dσ
)1− 1

ξ
(∫ 1

0

σα+2(1− σ) |Ψ′′′(σϱ1 + (1− σ)ϱ2)|
ξ
dσ

)1
ξ

≤
(∫ 1

0

|σα+2(1− σ)|dσ
)1− 1

ξ

×
(∫ 1

0

σα+2(1− σ)
[
σ |Ψ′′′(ϱ1)|

ξ
+ (1− σ) |Ψ′′′(ϱ2)|

ξ
]
dσ

) 1
ξ

.

Let us calculate the integrals:∫ 1

0

∣∣σα+2(1− σ)
∣∣ dσ =

1

(α+ 3) (α+ 4)

and ∫ 1

0

σα+2(1− σ)
[
σ |Ψ′′′(ϱ1)|

ξ
+ (1− σ) |Ψ′′′(ϱ2)|

ξ
]
dσ

= |Ψ′′′(ϱ1)|
ξ
∫ 1

0

σα+3(1− σ)dσ + |Ψ′′′(ϱ2)|
ξ
∫ 1

0

σα+2(1− σ)2dσ

=
(α+ 3) |Ψ′′′(ϱ1)|ξ + 2 |Ψ′′′(ϱ2)|ξ

(α+ 3) (α+ 4) (α+ 5)
.

Thus, we have

|I1| ≤
(

1

(α+ 3)(α+ 4)

)1− 1
ξ

[
(α+ 3) |Ψ′′′(ϱ1)|ξ + 2 |Ψ′′′(ϱ2)|ξ

(α+ 3) (α+ 4) (α+ 5)

] 1
ξ

=
1

(α+ 3)(α+ 4)

[
(α+ 3) |Ψ′′′(ϱ1)|ξ + 2 |Ψ′′′(ϱ2)|ξ

α+ 5

] 1
ξ

.

Similarly, for |I2| from (8), we get

|I2| ≤
1

(α+ 3)(α+ 4)

[
(α+ 3) |Ψ′′′(ϱ2)|ξ + 2 |Ψ′′′(ϱ1)|ξ

α+ 5

] 1
ξ

.

By summing the upper estimations for |I1| and |I2| and considering notations
Φ1 and Φ2, we get

|I1|+ |I2| ≤
1

(α+ 3)(α+ 4)
· (Φ1 +Φ2) .

Thus, from (8), we deduce (12). The proof is concluded. □✓
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14 B. BAYRAKTAR, S. BUTT & P. KORUS

Corollary 2.10. If we choose α = 1, then from (12), we obtain∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2
− 1

ϱ2 − ϱ1

∫ ϱ2

ϱ1

Ψ(σ)dσ

∣∣∣∣ ≤ ϱ2 − ϱ1
12

|Ψ′(ϱ2)−Ψ′(ϱ1)|

+
(ϱ2 − ϱ1)

3

240


[
2 |Ψ′′′(ϱ1)|ξ + |Ψ′′′(ϱ2)|ξ

3

]1
ξ

+

[
|Ψ′′′(ϱ1)|ξ + 2 |Ψ′′′(ϱ2)|ξ

3

]1
ξ

 .

(13)

Theorem 2.11. Let Ψ : I → R, Ψ ∈ C3(I◦) and Ψ′′′ ∈ L [ϱ1, ϱ2] , where

ϱ1, ϱ2 ∈ I. If |Ψ′′′|ξ is a convex function on [ϱ1, ϱ2], then for all α > 0, ξ ≥ 1,
the following inequality holds:∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2

− Γ(α+ 2)

4 (ϱ2 − ϱ1)
α

{
α+ 3

ϱ2 − ϱ1

[
Jα+1

ϱ−
2

Ψ(ϱ1)+Jα+1

ϱ+
1

Ψ(ϱ2)
]
−
[
Jα
ϱ−
2
Ψ(ϱ1) + Jα

ϱ+
1
Ψ(ϱ2)

]}∣∣∣∣
≤ ϱ2 − ϱ1

4 (α+ 2)
|Ψ′(ϱ2)−Ψ′(ϱ1)|

+
(ϱ2 − ϱ1)

3

4(α+ 2)

[
B (α+ 3, 3)

1− 1
ξ (P1 +P3) +B (α+ 4, 2)

1− 1
ξ (P2 +P4)

]
,

(14)

where B(., .) is the Euler Beta function and

P1 =
[
|Ψ′′′(ϱ1)|

ξ
B (α+ 4, 3) + |Ψ′′′(ϱ2)|

ξ
B (α+ 3, 4)

] 1
ξ

,

P2 =
[
|Ψ′′′(ϱ1)|

ξ
B (α+ 5, 2) + |Ψ′′′(ϱ2)|

ξ
B (α+ 4, 3)

] 1
ξ

,

P3 =
[
|Ψ′′′(ϱ2)|

ξ
B (α+ 4, 3) + |Ψ′′′(ϱ1)|

ξ
B (α+ 3, 4)

] 1
ξ

,

P4 =
[
|Ψ′′′(ϱ2)|

ξ
B (α+ 5, 2) + |Ψ′′′(ϱ1)|

ξ
B (α+ 4, 3)

] 1
ξ

.
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Proof. By using the improved power mean inequality (4) and considering the

convexity of |Ψ′′′|ξ, we have

|I1| ≤
∫ 1

0

∣∣σα+2(1− σ)
∣∣ |Ψ′′′(σϱ1 + (1− σ)ϱ2)|dσ

≤
(∫ 1

0

(1− σ)|σα+2(1− σ)|dσ
)1− 1

ξ

×
(∫ 1

0

(1− σ)|σα+2(1− σ)||Ψ′′′(σϱ1 + (1− σ)ϱ2)|ξdσ
) 1

ξ

+

(∫ 1

0

σ|σα+2(1−σ)|dσ
)1− 1

ξ
(∫ 1

0

σ|σα+2(1−σ)||Ψ′′′(σϱ1+(1−σ)ϱ2)|ξdσ
)1

ξ

=

(∫ 1

0

σα+2(1− σ)2dσ

)1− 1
ξ
(∫ 1

0

(σα+2(1− σ)2|Ψ′′′(σϱ1 + (1− σ)ϱ2)|ξdσ
)1

ξ

+

(∫ 1

0

σα+3(1− σ)dσ

)1− 1
ξ
(∫ 1

0

σα+3(λ− σ)|Ψ′′′(σϱ1 + (1− σ)ϱ2)|ξdσ
)1

ξ

.

Here ∫ 1

0

σα+2(1− σ)2dσ = B(α+ 3, 3),∫ 1

0

σα+3(1− σ)dσ = B(α+ 4, 2),

and by using the definition of convexity, we get∫ 1

0

σα+2(1− σ)2|Ψ′′′(σϱ1 + (1− σ)ϱ2)|ξdσ

≤ |Ψ′′′(ϱ1)|
ξ
∫ 1

0

σα+3(1− σ)2dσ + |Ψ′′′(ϱ2)|
ξ
∫ 1

0

σα+2(1− σ)3dσ

= |Ψ′′′(ϱ1)|
ξ
B (α+ 4, 3) + |Ψ′′′(ϱ2)|

ξ
B (α+ 3, 4)

and ∫ 1

0

σα+3(1− σ)|Ψ′′′(σϱ1 + (1− σ)ϱ2)|ξdσ

≤ |Ψ′′′(ϱ1)|
ξ
∫ 1

0

σα+4(1− σ)dσ + |Ψ′′′(ϱ2)|
ξ
∫ 1

0

σα+3(1− σ)2dσ

= |Ψ′′′(ϱ1)|
ξ
B (α+ 5, 2) + |Ψ′′′(ϱ2)|

ξ
B (α+ 4, 3) .
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16 B. BAYRAKTAR, S. BUTT & P. KORUS

Thus, we have

|I1| ≤ B (α+ 3, 3)
1− 1

ξ

[
|Ψ′′′(ϱ1)|

ξ
B (α+ 4, 3) + |Ψ′′′(ϱ2)|

ξ
B (α+ 3, 4)

] 1
ξ

+B (α+ 4, 2)
1− 1

ξ

[
|Ψ′′′(ϱ1)|

ξ
B (α+ 5, 2) + |Ψ′′′(ϱ2)|

ξ
B (α+ 4, 3)

] 1
ξ

.

Similarly for |I2| from (8), we obtain

|I2| ≤ B (α+ 3, 3)
1− 1

ξ

[
|Ψ′′′(ϱ2)|

ξ
B (α+ 4, 3) + |Ψ′′′(ϱ1)|

ξ
B (α+ 3, 4)

] 1
ξ

+B (α+ 4, 2)
1− 1

ξ

[
|Ψ′′′(ϱ2)|

ξ
B (α+ 5, 2) + |Ψ′′′(ϱ1)|

ξ
B (α+ 4, 3)

] 1
ξ

.

Upon summing the integrals and considering the accepted notations, we get

|I1|+ |I2| ≤ B (α+ 3, 3)
1− 1

ξ (P1 +P3) +B (α+ 4, 2)
1− 1

ξ (P2 +P4) .

By taking into account the last inequality and (8), we obtain (14). □✓

Corollary 2.12. If we choose α = 1, then from (14), we obtain∣∣∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2
− 1

ϱ2 − ϱ1

ϱ2∫
ϱ1

Ψ(σ)dσ

∣∣∣∣∣∣ ≤ ϱ2 − ϱ1
12

|Ψ′(ϱ2)−Ψ′(ϱ1)|

+
(ϱ2 − ϱ1)

3

12

[
B (4, 3)

1− 1
ξ

(
P̃1 + P̃3

)
+B (5, 2)

1− 1
ξ

(
P̃2 + P̃4

)]
, (15)

where

P̃1 =
[
|Ψ′′′(ϱ1)|

ξ
B (5, 3) + |Ψ′′′(ϱ2)|

ξ
B (4, 4)

] 1
ξ

,

P̃2 =
[
|Ψ′′′(ϱ1)|

ξ
B (6, 2) + |Ψ′′′(ϱ2)|

ξ
B (5, 3)

] 1
ξ

,

P̃3 =
[
|Ψ′′′(ϱ2)|

ξ
B (5, 3) + |Ψ′′′(ϱ1)|

ξ
B (4, 4)

] 1
ξ

,

P̃4 =
[
|Ψ′′′(ϱ2)|

ξ
B (6, 2) + |Ψ′′′(ϱ1)|

ξ
B (5, 3)

] 1
ξ

.

2.1. Examples

To verify the accuracy of the main results, the following examples are provided
in order to analyze them from various viewpoints.

Example 2.13. Case 1: Considering Ψ(σ) = eσ, where σ > 0, taking [ϱ1, ϱ2] =
[1, 2] and ξ ∈ [1.1, 10], we find that the mapping Ψ′′′(σ) = eσ is convex for σ > 0,
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inequality (9) becomes

− 1

12
(e2 − e)− 1

6

(
1

252

)1− 1
ξ
[
eξ + e2ξ

2

] 1
ξ

≤ e (3− e)

2
≤ 1

12
(e2 − e) +

1

6

(
1

252

)1− 1
ξ
[
eξ + e2ξ

2

] 1
ξ

. (16)

Case 2: Let Ψ(σ) = eσ, σ > 0, if we take ξ = 2 and ϱ1 ∈ [1, 2], ϱ2 ∈ [3, 4] then
inequality (9) changes to

− ϱ2 − ϱ1
12

(eϱ2 − eϱ1)− (ϱ2 − ϱ1)
3

6

(
1

252

) 1
2
[
e2ϱ1 + e2ϱ2

2

] 1
2

≤
(
eϱ2 + eϱ1

2
− eϱ2 − eϱ1

ϱ2 − ϱ1

)
≤ ϱ2 − ϱ1

12
(eϱ2 − eϱ1) +

(ϱ2 − ϱ1)
3

6

(
1

252

) 1
2
[
e2ϱ1 + e2ϱ2

2

] 1
2

. (17)

Figure 1 illustrates the three mappings corresponding to the Right, Middle, and
Left sides of inequality (16) plotted as a function of ξ ∈ [1.1, 10]. Additionally,
Figure 2 displays the three mappings realized on the Right, Middle, and Left
sides of inequality (17) graphed for ϱ1 ∈ [1, 2] and ϱ2 ∈ [3, 4].

Figure 1. The graphical represen-
tation of Example 2.13 for ϱ1 = 1,
ϱ2 = 2 and ξ ∈ [1.1, 10].

Figure 2. The graphical representa-
tion of Example 2.13 for ϱ1 ∈ [1, 2],
ϱ2 ∈ [3, 4].

Example 2.14. Case 1 : Considering Ψ(σ) = lnσ, where σ > 0, taking
[ϱ1, ϱ2] = [2, 3] and ξ ∈ [1.1, 100], we find that the mapping Ψ′′′(σ) = 2

σ3 is
convex for σ > 0, inequality (9) becomes

− 1

72
− 1

6

(
1

252

)1− 1
ξ

[∣∣ 1
4

∣∣ξ + ∣∣ 2
27

∣∣ξ
2

] 1
ξ

≤ ln 2

2
− 2 ln 2 + 1 ≤ 1

72
+

1

6

(
1

252

)1− 1
ξ

[∣∣ 1
4

∣∣ξ + ∣∣ 2
27

∣∣ξ
2

] 1
ξ

. (18)
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18 B. BAYRAKTAR, S. BUTT & P. KORUS

Case 2: Let Ψ(σ) = lnσ, σ > 0, if we take ξ = 2 and ϱ1 ∈ [2, 2.5], ϱ2 ∈ [3, 4],
then inequality (9) becomes

− 1

12

∣∣∣∣ 1ϱ2 − 1

ϱ1

∣∣∣∣− (ϱ2 − ϱ1)
3

6

(
1

252

) 1
2


∣∣∣ 2
ϱ3
1

∣∣∣2 + ∣∣∣ 2
ϱ3
2

∣∣∣2
2


1
2

≤ ln ϱ1 + ln ϱ2
2

− 1

ϱ2 − ϱ1

(
ln

(
ϱϱ2

2

ϱϱ1

1

)
+ ϱ1 − ϱ2

)

≤ 1

12

∣∣∣∣ 1ϱ2 − 1

ϱ1

∣∣∣∣+ (ϱ2 − ϱ1)
3

6

(
1

252

) 1
2


∣∣∣ 2
ϱ3
1

∣∣∣2 + ∣∣∣ 2
ϱ3
2

∣∣∣2
2


1
2

. (19)

Figure 1 illustrates the three mappings corresponding to the Right, Middle, and
Left sides of inequality (18) plotted as a function of ξ ∈ [1.1, 100]. Additionally,
Figure 2 displays the three mappings realized on the Right, Middle, and Left
sides of inequality (19) graphed for ϱ1 ∈ [2, 2.5] and ϱ2 ∈ [3, 4].

Figure 3. The graphical representa-
tion of Example 20 for ϱ1 = 2, ϱ2 = 3
and ξ ∈ [1.1, 100].

Figure 4. The graphical representa-
tion of Example 20 for ϱ1 ∈ [2, 2.5],
ϱ2 ∈ [3, 4].

Example 2.15. Case 1: Let Ψ(σ) = 1
6σ

6, σ > 0. If we take ϱ1 = 1, ϱ2 = 2
and ξ ∈ [1.1, 10], then the mapping Ψ′′′(σ) = 20σ3 is convex for σ > 0 and
inequality (13) becomes

− 31

12
− 1

240

{[
2 · 20ξ + 160ξ

3

] 1
ξ

+

[
20ξ + 2 · 160ξ

3

] 1
ξ

}

≤ 67

28
≤ 31

12
+

1

240

{[
2 · 20ξ + 160ξ

3

] 1
ξ

+

[
20ξ + 2 · 160ξ

3

] 1
ξ

}
. (20)
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Case 2: Let Ψ(σ) = 1
6σ

6, σ > 0. If we take ξ = 2 and ϱ1 ∈ [1, 2], ϱ2 ∈ [3, 4], then
inequality (13) takes the following form:

− ϱ2 − ϱ1
12

(ϱ52 − ϱ51)−
(ϱ2 − ϱ1)

3

240

{[
800ϱ61 + 400ϱ62

3

] 1
2

+

[
400ϱ61 + 800ϱ62

3

] 1
2

}

≤ ϱ62 + ϱ61
12

− ϱ72 − ϱ71
42(ϱ2 − ϱ1)

≤ ϱ2−ϱ1
12

(ϱ52 − ϱ51) +
(ϱ2−ϱ1)

3

240

{[
800ϱ61 + 400ϱ62

3

]1
2

+

[
400ϱ61 + 800ϱ62

3

]1
2

}
.

(21)

The three mappings realized on the Right, Middle and Left sides of inequality
(20) are plotted in Figure 3 as a function of ξ ∈ [1.1, 10]. While the three
mappings corresponding to the Right, Middle and Left sides of inequality (21)
are graphed in Figure 4 for ϱ1 ∈ [1, 2] and ϱ2 ∈ [3, 4].

Figure 5. The graphical represen-
tation of Example 2.15 for ϱ1 = 1,
ϱ2 = 2 and ξ ∈ [1.1, 10].

Figure 6. The graphical representa-
tion of Example 2.15 for ϱ1 ∈ [1, 2],
ϱ2 ∈ [3, 4].

2.2. Comparison analysis of classical and improved bounds

Example 2.16. If one chooses Ψ(σ) = σ4, σ > 0, then for ξ > 1, function
|Ψ′′′(σ)| = 24σ is convex. In case of α = 1, [ϱ1, ϱ2] = [1, 2] and ξ = 2, let us
find the right hand side of inequalities (9) and (11).

a) For (9), we have
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∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2
− 1

ϱ2 − ϱ1

∫ ϱ2

ϱ1

Ψ(σ)dσ

∣∣∣∣
≤ 1

12
· 28 + 1

6
· (B (7, 3))

1
2 ·
[
242 + 482

2

] 1
2

≈ 2.333334 +
1

6
· (0.0039683)

1
2 ·
[
242 + 482

2

] 1
2

≈ 2.333334 + 0.398412 = 2.731746.

b) For (11), we get∣∣∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2
− 1

ϱ2 − ϱ1

ϱ2∫
ϱ1

Ψ(σ)dσ

∣∣∣∣∣∣
≤ 2.333334+

1

12

[√
B (7, 4)+

√
B (8, 3)

](√242 + 2 · 482
6

+

√
2 · 242 + 482

6

)

≈ 2.333334 +
1

12
(0.034504 + 0.052705) (29.393877 + 24)

≈ 2.333334 +
0.087209 · 53.393877

12
= 2.333334 + 0.388036 ≈ 2.72137.

As 2.731746 is greater than 2.72137, we observe that the improved Hölder
inequality provides a superior estimate compared to the classical Hölder in-
equality.

Figure 7. The graphical represen-
tation of Example 2.16 for ϱ1 = 1,
ϱ2 = 2 and ξ ∈ [1.1, 10].

Figure 8. The graphical representa-
tion of Example 2.16 for ϱ1 ∈ [1, 2],
ϱ2 ∈ [3, 4].

Example 2.17. If one chooses Ψ(σ) = e2σ, σ > 0, then for ξ > 1 and σ > 0
function |Ψ′′′(σ)| = 8e2σ is convex. In the case α = 1, [ϱ1, ϱ2] = [1, 2] and ξ = 2,
let us find the right hand side of inequalities (13) and (15).
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a) For (13), we have∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2
− 1

ϱ2 − ϱ1

∫ ϱ2

ϱ1

Ψ(σ)dσ

∣∣∣∣
≤ e4 − e2

6
+

8e2

240

[√
2 + e4

3
+

√
1 + 2e4

3

]

≈
54.598150− 7.389056

6
+

7.389056

30
(4.343507 + 6.060701)

≈ 7.868182 + 2.562576 ≈ 10.430758.

b) For (15), we get∣∣∣∣∣∣Ψ(ϱ2) + Ψ(ϱ1)

2
− 1

ϱ2 − ϱ1

ϱ2∫
ϱ1

Ψ(σ)dσ

∣∣∣∣∣∣
≤ ϱ2 − ϱ1

12
|Ψ′(ϱ2)−Ψ′(ϱ1)|

+
(ϱ2 − ϱ1)

3

12

[√
B (4, 3)

(
P̃1 + P̃3

)
+
√

B (5, 2)
(
P̃2 + P̃4

)]
≈ 7.868182 +

8e2

12
·
√

1

60

(√
B (5, 3) + e4B (4, 4) +

√
B (5, 3) e4 +B (4, 4)

)
+

8e2

12
·
√

1

30

(√
B (6, 2) + e4B (5, 3) +

√
B (6, 2) e4 +B (5, 3)

)
≈ 7.868182 +

59.112449

12
(0.175330 + 0.343558) ≈ 10.424244.

As 10.430758 is greater than 10.424244, we can conclude that the improved
power mean inequality offers a more accurate estimate compared to the classical
power mean inequality.

Figure 9. The graphical representa-
tion of Example 2.17 for ϱ1 = 1, ϱ2 = 2
and ξ ∈ [1.1, 10].

Figure 10. The graphical represen-
tation of Example 2.17 for ϱ1 ∈
[1, 2], ϱ2 ∈ [3, 4].
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3. Applications

3.1. Special Means

Next, we will explore the means for arbitrary real numbers ϱ1 and ϱ2 (ϱ1 ̸= ϱ2).
Let us consider the following ones.

(1) Arithmetic mean:

A(ϱ1, ϱ2) =
ϱ1 + ϱ2

2
, ϱ1, ϱ2 ∈ R.

(2) Logarithmic mean:

L(ϱ1, ϱ2) =
ϱ1 − ϱ2

ln |ϱ1| − ln |ϱ2|
, |ϱ1| ≠ |ϱ2| , ϱ1, ϱ2 ̸= 0, ϱ1, ϱ2 ∈ R.

(3) Generalized log-mean:

Ln(ϱ1, ϱ2) =

[
ϱn+1
2 − ϱn+1

1

(n+ 1)(ϱ2 − ϱ1)

] 1
n

, n ∈ Z\{−1, 0}, ϱ1, ϱ2 ∈ R+, ϱ1 < ϱ2.

(4) Harmonic mean

H = H(ϱ1, ϱ2) =
2ϱ1ϱ2
ϱ1 + ϱ2

, ϱ1, ϱ2 > 0.

We present some applications to special means of real numbers using our
main results.

Proposition 3.1. Let ϱ1, ϱ2 ∈ [0,∞), ϱ1 < ϱ2. We have

|A (eϱ1 , eϱ2)− L (eϱ1 , eϱ2)| ≤ ϱ2 − ϱ1
12

(eϱ2 − eϱ1) +
(ϱ2 − ϱ1)

3

120
A (eϱ1 , eϱ2) .

Proof. This is a consequence of applying Corollary 2.4 to the convex function

Ψ : [0,∞) → R, Ψ(σ) = eσ.

□✓

Proposition 3.2. Let ϱ1, ϱ2 ∈ [0,∞), ϱ1 < ϱ2, n ∈ Z+, n ≥ 3, ξ > 1. We
have

|A (ϱn1 , ϱ
n
2 )− Ln

n (ϱ1, ϱ2)| ≤
n (ϱ2 − ϱ1)

(
ϱn−1
2 − ϱn−1

1

)
12

+
n(n− 1)(n− 2)(ϱ2 − ϱ1)

3

6
(B (3ζ + 1, ζ + 1))

1
ζ ·
(
A
(
ϱ
(n−3)ξ
1 , ϱ

(n−3)ξ
2

)) 1
ξ

,

where B(., .) is the Euler Beta function and 1
ζ + 1

ξ = 1.
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Proof. This is a consequence of applying Corollary 2.6 to the convex function

Ψ : [0,∞) → R, Ψ(σ) = σn.

□✓

Proposition 3.3. Let ϱ1, ϱ2 ∈ [0,∞), ϱ1 < ϱ2, ξ > 1, 1
ζ + 1

ξ = 1. We have

|A (eϱ1 , eϱ2)− L (eϱ1 , eϱ2)|

≤ ϱ2 − ϱ1
12

(eϱ2 − eϱ1) +
(ϱ2 − ϱ1)

3

6
(B (3ζ + 1, ζ + 1))

1
ζ ·
(
A
(
eϱ1ξ, eϱ2ξ

)) 1
ξ .

Proof. This is a consequence of applying Corollary 2.6 to the convex function

Ψ : [0,∞) → R, Ψ(σ) = eσ.

□✓

Proposition 3.4. Let ϱ1, ϱ2 ∈ [0,∞), ϱ1 < ϱ2, n ∈ Z+, n ≥ 3, ξ ≥ 1. We
have

|A (ϱn1 , ϱ
n
2 )− Ln

n (ϱ1, ϱ2)|

≤
n (ϱ2 − ϱ1)

(
ϱn−1
2 − ϱn−1

1

)
12

+
n(n− 1)(n− 2)(ϱ2 − ϱ1)

3

120

(
2

3

) 1
ξ

×A

((
A
(
2ϱ

(n−3)ξ
1 , ϱ

(n−3)ξ
2

)) 1
ξ

,
(
A
(
ϱ
(n−3)ξ
1 , 2ϱ

(n−3)ξ
2

)) 1
ξ

)
.

Proof. This is a consequence of applying Corollary 2.10 to the convex function

Ψ : [0,∞) → R, Ψ(σ) = σn.

□✓

3.2. Quadrature formula

Now, we present an application related to a quadrature formula. Assume d is
a partition where ϱ1 = σ0 < σ1... < σm−1 < σm = ϱ2, which represents the
interval [ϱ1, ϱ2]. Let us take a look at the associated quadrature formula:∫ ϱ2

ϱ1

Ψ(σ)dσ = T (Ψ, d) + E(Ψ, d).

Here

T (Ψ, d) =

m−1∑
i=0

[
Ψ(σi+1) + Ψ(σi)

2
(σi+1 − σi)

]
,

and it computes the approximation error E(Ψ, d). In this context, we provide
certain error evaluations applicable to the quadrature formula.
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Proposition 3.5. According to the stipulations in Corollary 2.4, the following
inequality holds:∣∣∣∣∫ ϱ2

ϱ1

Ψ(σ)dσ − T (Ψ, d)

∣∣∣∣
≤

m−1∑
i=0

[
(σi+1−σi)

2

12
|Ψ′(σi+1)−Ψ′(σi)|+

(σi+1−σi)
4

240
(|Ψ′′′(σi+1)|+|Ψ′′′(σi)|)

]
.

Proof. By applying Corollary 2.4, the desired result is achieved. □✓

3.3. q̃-digamma function

The q̃-digamma mapping is determined by the next expression:

δq̃(σ) = − ln(q̃ − 1) + ln(q̃)

σ − 1

2
−

∞∑
j=1

q̃−jσ

1− q̃−jσ

 ,

with q̃ > 1 and σ > 0 (see [27]).

Proposition 3.6. For 0 < ϱ1 < ϱ2, we have∣∣∣∣δ′q̃(ϱ2) + δ′q̃(ϱ1)

2
− δq̃(ϱ2)− δq̃(ϱ1)

ϱ2 − ϱ1

∣∣∣∣
≤ ϱ2 − ϱ1

12

[
δ′′q̃ (ϱ2)− δ′′q̃ (ϱ1)

]
+

(ϱ2 − ϱ1)
3

240

[∣∣δ′′′′q̃ (ϱ1)
∣∣+ ∣∣δ′′′′q̃ (ϱ2)

∣∣] .
Proof. Applying Corollary 2.4 to the function Ψ(σ) = δ′q̃(σ) for σ > 0 yields

the desired result. □✓

Proposition 3.7. For 0 < ϱ1 < ϱ2, ξ > 1, we have∣∣∣∣δ′q̃(ϱ2) + δ′q̃(ϱ1)

2
− δq̃(ϱ2)− δq̃(ϱ1)

ϱ2 − ϱ1

∣∣∣∣ ≤ ϱ2 − ϱ1
12

[
δ′′q̃ (ϱ2)− δ′′q̃ (ϱ1)

]
+

(ϱ2 − ϱ1)
3

6
(B (3ζ + 1, ζ + 1))

1
ζ

[∣∣δ′′′′q̃ (ϱ1)
∣∣ϱ1

+
∣∣δ′′′′q̃ (ϱ2)

∣∣ξ
2

] 1
ξ

.

Proof. Applying Ψ(σ) = δ′q̃(σ) for σ > 0 to Corollary 2.6 and obtains the

desired result. □✓
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3.4. Modified Bessel function

Let the function Ip : R → [1, 0) be defined by

Ip(σ) = 2pΓ(1 + p)σ−pIp(σ),

where we used the modified Bessel function of the first kind Ip, which is defined
as

Ip(σ) =
∑
n≥0

(σ2 )
p+2n

n!Γ(p+ n+ 1)
,

in which p > −1 and Γ(.) is the Euler Gamma function (see [25]).

The first-, second-, and nth-order derivative formulas of Ip(σ) are respec-
tively given by (see [15])

I ′
p(σ) =

σ

2(1 + p)
I1+p(σ),

I ′′
p (σ) =

1

2p+ 2
Ip+1(σ) +

σ2

4p2 + 12p+ 8
Ip+2(σ).

∂nIp(σ)
∂nσ

=2n−2p
√
π σp−nΓ(1+p)2F3

(
1+p

2
,
2+p

2
;
1+p−n

2
,
2+p−n

2
, 1+p;

σ2

4

)
,

where 2F3(.; .; .) is the hyper-geometric function defined by (see [15])

2F3 (a1, a2; b1, b2, b3; z) =

∞∑
k=0

(a1)k(a2)k
(b1)k(b2)k(b3)k

zk

k!
.

Proposition 3.8. Let ϱ1, ϱ2 ∈ R with 0 < ϱ1 < ϱ2. For each p > −1, we have∣∣∣∣ϱ2I1+p(ϱ2) + ϱ1I1+p(ϱ1)

4(1 + p)
− Ip(ϱ2)− Ip(ϱ1)

ϱ2 − ϱ1

∣∣∣∣ ≤ ϱ2 − ϱ1
12

∣∣I ′′
p (ϱ2)− I ′′

p (ϱ1)
∣∣

+
(ϱ2−ϱ1)

3

240
24−2p

√
π Γ(1+p)

[
|ϱ1|p−4

∣∣∣∣ 2F3

(
1+p

2
,
2+p

2
;
p−3

2
,
p−2

2
, 1+p;

ϱ21
4

)∣∣∣∣
+|ϱ2|p−4

∣∣∣∣ 2F3

(
1 + p

2
,
2 + p

2
;
p− 3

2
,
p− 2

2
, 1 + p;

ϱ22
4

)∣∣∣∣] .
Proof. Applying Corollary 2.4 to Ψ(σ) = I ′

p (σ) yields the desired result. □✓

4. Conclusion

To the best of our knowledge, the current investigation provides new perspec-
tives of fractional Hermite–Hadamard integral inequalities involving three times
differentiable functions. We develop a new fractional integral identity for three
times differentiable functions via Riemann–Liouville fractional integral oper-
ators. Taking advantage of the established identity, combining with classical
convexity, we achieve a series of new Hadamard-type integral inequalities.
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It is also worth noting that the main results obtained here are transformed
into results of classical calculus, which are also new. It should be emphasized
that the extended versions of Hölder’s inequality perform slightly better than
the classical version. With the ideas developed in this paper, we hope to moti-
vate interested researchers to further explore other types of results by consid-
ering fractional integral operators other than Riemann–Liouville, or, by con-
sidering general convexity instead of convexity, or, by considering higher-order
derivatives (greater than third). Moreover, one can explore such extensions in
Fractal, Fractal-Fractional and Quantum calculus.
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