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ABsTrACT. The article presents new inequalities of Hadamard-type which are
obtained using fractional integral operators belonging to a function whose
third-order derivative is convex. The proposed Hadamard-type inequalities
have the potential for application in various areas where it is required to esti-
mate the properties of functions with a convex third-order derivative. Exam-
ples of functions are given based on a comparative analysis of the estimates of
the upper bounds of the Hadamard-type inequalities obtained using the classi-
cal and extended Holder inequalities. Finally, applications to special functions
are provided.
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ResuMEN. El articulo presenta nuevas desigualdades de tipo Hadamard que se
obtienen utilizando operadores integrales fraccionarios pertenecientes a una
funcién cuya derivada de tercer orden es convexa. Las desigualdades de tipo
Hadamard propuestas tienen potencial de aplicacién en diversas areas donde
se requiere estimar las propiedades de funciones con una derivada convexa de
tercer orden. Se dan ejemplos de funciones basados en un andlisis compara-
tivo de las estimaciones de los limites superiores de las desigualdades de tipo
Hadamard obtenidas utilizando las desigualdades Holder clasica y extendida.
Finalmente, se proporcionan aplicaciones a funciones especiales.

Palabras y frases clave. Funciones convexas, desigualdad de Hadamard, de-
sigualdad de Holder, cdlculo fraccional, funciones especiales.
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1. Introduction

The definition of convexity is well-known in the literature:

Definition 1.1. Function ¥ : [g1, 02] — R, is said to be convex, if we have
v (0’01 + (1 - 0) 92) S o¥ (91) + (]. - J) \11(02)
for all 01,05 € [p1, 02] and & € [0,1].

There are many significant inequalities established for the class of convex
functions, but the Hermite-Hadamard inequality, also known as Hadamard’s
inequality, is one of the most significant. The study of Hadamard-type inequali-
ties is a hot topic in mathematical analysis and has a wide range of applications
in various fields, including optimization, mathematical physics, and statistics.

Let I C R be an interval, ¥ : I — R be a convex function and let g1, 02 € I
with 91 < g2. The double inequality

02

o (Ql +Q2> <! /\I/(a)da < ¥(o1) + V(02)

2 T 0o 2
01
is called the Hermite-Hadamard inequality. The above inequality is reversed if
W is concave.

Recently, new Hermite—-Hadamard and other types of integral inequalities
have been introduced using fractional operators. These inequalities generalize
classical ones and could have potential applications in various areas of mathe-
matics and its associated fields (see [1, 3, 5, 10, 16, 18, 19] and the references
therein). These extensions offer improved estimates for integral operators and
give more accurate bounds on function values.

One key feature of the new Hadamard-type inequalities is their connection
with fractional integral operators. Fractional integrals generalize the classical
ones and account for the particularities of functions exhibiting fractal prop-
erties. By incorporating fractional integrals into Hadamard-type inequalities,
new possibilities arise for studying complex mathematical models.

The classical definition of the Riemann—Liouville fractional integrals is the
following (see e.g. [21]):

Definition 1.2. Let ¥ € L [py, 02]. The Riemann-Liouville integrals J;;‘II and
1
J;‘,\If of order o > 0 with g; > 0 are defined by
2

o 1 o a—1
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HADAMARD-TYPE INEQUALITIES 3

and

Q2
Je q/(e)zif (60— 0 U (0)do, 0 < o,
0

Q2—

respectively. Note that for o = 1, the fractional integrals simplify to classical
integrals of W.

In the vast majority of studies dealing with the theory of integral inequali-
ties, two classical inequalities are employed: Holder’s inequality and the power
mean inequality.

Theorem 1.3 ([17], Holder’s inequality). Let ¢ > 1 and % +% =1. If U and
g are real functions defined on [01, 02] and if | V|, |g|¢ € L[o1, 02], then

[Tw@seiar< ([ i) ( [ war) )

Equality occurs if and only if C1|¥(c)|¢ = Calg(a)|¢ holds almost everywhere,
where Cy and Ca are constants, not both of them zero.

Theorem 1.4 ([12], improved Holder inequality). Let ¥ and g be real functions
defined on [o1, 02]. If 9|, |g|* € Llo1, 02] with % + % =1 and (> 1, then

| sl do

01

e : Ql{ (/:2(02 ) U)W(U)'Cd"y </:2("2 - U)Ig<a)|€da>é
+ </:2(U - 91)|‘If(c7)|cda>é </:2(U B Q1)|g(a)|5da>é } o)

Theorem 1.5 ([17], power mean inequality). Let & > 1 and % + % =1.Ifv
and g are real functions defined on [o1, 02] and if ||, |¥||g|¢ € L[o1, 02], then

/: U (0) g(0)| do < (/: \1/(0)|da>1_é (/f 7 (0)| |g(0)|5d0>§. -

Theorem 1.6 ([13], improved power mean integral inequality). Let £ > 1 and
let U and g be real functions defined on [o1, 02). If |¥|,|¥||g|® € Llo1, 02], then
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| 1wl

S { (/:2(92 - ">‘1’(">'d")1é ( [ e ¥ (o)llto) o ) é
*(AT”Q”W@?®>1E<LTW@mwwmm@ﬁ@)é} (@

The upcoming paragraph summarizes some recent studies pertaining to
the article’s subject, specifically focusing on functions whose third derivative
belongs to a particular convex class.

In [2], the author derived parameterized integral inequalities of Hadamard
and Simpson types for concave and r-convex functions. For certain values of r,
these inequalities were established using dedicated computational tools. Some
new inequalities of Hadamard-type for s-convex functions were presented by the
authors in [7, 20]. For extended s-convex functions, Simpson-type inequalities
were obtain by Chun and Qi in [9]. In [26], Wu et al. obtained new parameter-
ized inequalities of the Hadamard-type for quasi-convex functions, moreover, an
application to special means of real numbers was also given there. In [8], Chun
and Qi discovered some new Hermite-Hadamard type integral inequalities for
the classical convex functions, while in [24], Shuang et al. did for (a, m)-convex
functions. Recently, some fractional estimations are provided pertaining con-
vex mappings in [11] by Hezenci et al., while in [14], Li and Du obtained one
for (a, m)-GA-convex functions, centering Simpson-type integral inequalities.
Many other fractal-fractional variants for differentiable convex mappings can
be observed in [6, 4, 22, 23].

The aim of this article is to introduce new variations of Hadamard-type
inequalities by incorporating fractional integral operators, specifically tailored
for functions with convex third-order derivatives. The derivation of these re-
sults relies on the fundamental properties of convexity and the application of
Holder’s inequality, alongside its extended forms. Furthermore, a comparative
analysis of the estimates of the proven Hadamard-type inequalities is provided,
accompanied by relevant applications.

2. Main results

Lemma 2.1. Let ¥ : I C R — R be a three times differentiable function on
I° (I° is the interior of I), where o1, 02 € I with 01 < 02. If V"' € L|o1, 09],
then we have

Volumen 59, Numero 1, Afio 2025



HADAMARD-TYPE INEQUALITIES 5

W(o2) + ¥(o1)

2
B IMa+2) a+3 a1 a1 e .
402 — 01)* {92 -0 {ng oy + JQI' \D(Qz)] [Jagql(m) * J@T\P(Qz)”
_ L2270 / (02— 01)°

where o > 0,

—

I = [ 0°T2(1 - 0)¥" (001 + (1 — 0)02)do,

L= [ 021 —0)0"(0ps + (1 —0)o1)do.

S O~

Proof. By integrating both integrals by parts three times, we get for the first
integral

Il = a+2( )\I}”’(ng + (]. — U)Qg)d
I

1

o’ 2(a+2 a(a+1) a—|—2 o
= (Q1)2_ ( )S\I/(gl) /0’ 1\11 (co14+(1—0)o2)do
(01—02) (01—02) 91—92 0
1
+1 +3)
+ (o J(@+2)(a /0‘ (co1 + (1 —0)p2)do.
(91 - Q2

0

After changing variables by setting o1 + (1 — 0)p2 = 3, we obtain
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- Y  2(+2) W(Ql)+a(a+1)(a+2)7<923)a—1

2 3 3
(02 — 01) (02 —01) (02 — 01) J 02 — 01

oo i5) et () v (%)

Q2

a(a+1) (0;:32) /(Qz —3)" 7 U(5)ds

01

3 1

- (92 - 91)2 (Qz - 91) (92 - 91)

B [ v

_ V) |, 20@+2)
(Q2*Ql)2+(92*Q1)3 (o) + (02 — 01
_ et D@+ @+ 0@+ jagig, )

(92 - Q1)a+4

ala+1)(a+2)T(a)
)a+3

JST\I](QQ)

Similarly, for the second integral, we have

1
I :/0_2+a(1 — 0’)‘1’”’(0@2 + (1 —=0)o1)do
0

1

/aa Yoo+ (1—0)01)do
0

U’ (02) 2 (a+2) (a+2) (a+1) « a—l—l )
= 5 3\IJ(Q2
(Q2—Q1) (92—91) 92—91
1

+ 1
(a /cr (co2+ (1 —0)o1)do,
0

N (a+3) (a+
(92—91

and after the change of variables o2 + (1 — 0)01 = 3, we get

o) _ 2(a+2) a(a+1)(a+2)(a)

I = U(o2) —

JU(01
(02— 01)°  (02—01)° (02 — 01)° 3 05 (01)
T Vi TP
(92 - 91)
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HADAMARD-TYPE INEQUALITIES 7

By subtracting the last equalities, we obtain

U'(02) = W'(e1) | 2(a+2)

L —I,=— 5— + 5 [V(02) + ¥(o1)]
(02 - 91) (92 - 91)
(a+1)(a+2)(a+3)T(a+1) [ 01 at1
N (92 - 91)a+4 [JQ; qj(gl) + J@fj \I/(gg)}

o (Oé (—;21)_((:1_;0(3)3]:‘(@) [J;(;\P(Ql) + J;J}\I/(Qg)]

_ W' (0) — ‘I"ggl) n 2(a+ 2)3 [(W(02) + ¥(01)]
(02 — 01) (02— 01)
B R TS)

O [ v + g ven)].

(92 -0

(02—e1)?

Finally, we multiply both parts of the last equality by the expression 1(at2)

and simplify to obtain the following:

(02— 1)’ (L — )
Ala+2) 7
_ v v
_ 4@(2a +@;) [0 (03) — W' (01)] + (@2)-2% (01)
INa+2) a+3 o o o o
4(e2—01)" {92Q1 [Jgjl\l’<91)+‘]gf+1\p(g2)]_[‘]92\P(QI)JFJ@T‘I'(QZ)}}'
The proof is complete. vf

Corollary 2.2. For o =1, (5) yields

02

W(02) + ¥(o1) 1
2 B /\P(U)da

_ 02 — 01 [\I//(QQ) 7\11/(91)} + M (Il 712)7

where

=

L= / (1= )" (001 + (1 = 7)0s)doy,

(=)

1
I, = /03(1 — )V (0gs + (1 — 0)01)do.

o
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8 B. BAYRAKTAR, S. BUTT & P. KORUS

Theorem 2.3. Let ¥ : [ — R, ¥ € C3(I°) and V" € L|p1,02], where

01,00 € L. If |9"| is a convex function, then for all a > 0, the following
inequality holds:

"I’(@) + ¥(01)

2
IMNa+2) a+3 o N
e [ et e e < 5w
2@ ! 4 (Q _9) /// "
< ﬁlm (02)— 0 (91)|+4(a+2)?a+;)(a+4){| 01|+ [ (02)|}-

|
(6)
Proof. From Lemma 2.1, taking into account that |¥"”| is convex, we get

"I’(Qz) + ¥(01)
2
T'(a+2) { a+3 [
4 (02 — Q1)a 02 — 01

02 /
< ﬁ |9’ (02) — ¥'(01))|

Q2

T (o)) + J§;1@(02)}_{J52\I/(gl)—kJ;?\If(Qz)}H

(Q _Q) ! a+2 ///
Pl [ o2 )W o + (1 - o))l

+ [ o + 0 —a)mﬂdo}

02 — 01 / /
< m |U'(02) — ¥'(01)]
(ffafé)) V 02 (1 = 0)[o| U (1)] + (1 — 0)| " (02)[do

+ [ o el el + (1 U)I\I’”’(m)l]da] ,

and by calculating the integrals, we obtain the upper bound

02 — 01 ‘
4(a+2)

(Q —0 )3 " "
4(a+2)§0¢+§3)(a+4) U o)+ 177 (el

v

' (02) =¥’ (01)| +

Corollary 2.4. If we choose o =1, then from (6), we obtain
v v 1 02
(QZ) + (Ql) o / \IJ(O')dO'
2 02 — 01

§92—91|
12

_\3
¥ (o2) ~ W) + B 10 00)) 1 9 (03)]
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HADAMARD-TYPE INEQUALITIES 9

Theorem 2.5. Let ¥ : I — R, ¥ € C3(I°) and V" € Loy, 0], where
01,02 € 1. If|\11”’|5 s a convex function, then for alla > 0, > 1 and %—l—% =1,
the following inequality holds:

"I’(Qz) + VU (o01)

2
F(a+2) O[—|—3 a+1 a+1 « @
T {92 — [Jg; (o) + It (o2)| — [T Wlor) + 72 W(02)| H
02 — 01 ' ,
STCED)] [P (02) — ¥'(01)]
_ 3 N " 3 " 19 %
M(B(OzC+2C+1,C+1))< (9" (ev)| ;rl\l’ (Q2)|1 R

where B(.,.) is the Euler Beta function.

Proof. From Lemma 2.1, taking the properties of modulus into account, we
obtain

U(02) + ¥(o1)

2
F(a+2) a+3 a (e (e} «
_4(92 - Ql)a {92 — 01 {Jé’f;lql(m) + JQTH\II(QQ)} B [JL);\II(QI) + JQT‘I’(QQ)} }’
— _ 3
< M|\P/(Q2)—\D’(91)+m(|Il|+|[2|), ®)

By using the Holder’s inequality (1) and considering that [¥"” \5 is convex, for
|I1], we have

1 1
1 < 1 €
|| < (/ U(a+2)<|1 _ U|<da> (/ 0" (o0 + (1 — U)QQ)FdU) )
0 0

Let us calculate the integrals:

1
/ ot (1-0)do = B(aC+2¢+1,( + 1),
0
and

[0 (01)|" + [¥""(02)
5 :

/ [ e + (1= o) 9 )] o =

Thus, for first integral, we get

1
|\I/N/(Ql>|€+|\1’m(92)‘€ £

1] < [B(ag +2¢ +1,¢ +1)¢ 5

Revista Colombiana de Matemaéticas
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Analogously, for I, we can write

I < [B(al +2¢ +1,¢ + 1)]¢

1
|\I////(Ql>|€ + \I’/N(gg)é‘| €
9 .

By summing |I1], |I2| and taking (8) into account, we get (7). o

Corollary 2.6. If we choose o =1, then from (7), we obtain

W(o2) + ¥(e1) 1 e 02 = 01 o/ /
2 o /gl V(o)do| < =5 [Wlez) = Wlen)
. " 3 m 13 5
Jr@(B (3C+17C+1))Z ‘\I] (Ql)‘ ;FNJ (Q2)| ] ) (9)

Theorem 2.7. Let ¥ : [ — R, ¥ € C3(I°) and V" € L]o1,02], where
01,02 € 1. If|\IJ’”|E s a convezx function, then for alla > 0,€ > 1 and %+% =1
the following inequality holds:

“1’(92) + ¥ (01)

2
4(Fg(jjgi))a {Qj J_r 21 [ng‘ﬂqj(m) + JSTH\II(QQ)} B [‘]5;‘1’(91) + J;”T‘I’(Qz)} }‘
— _ 3
= % W' (02) — W'(01)| + (iaf;))
X [(B(a(+2<+1,<+2))% +(B(a§+2<+274+1))%} (M, + M),

(10)

where B(.,.) is the Euler Beta function and

1 1
" £ m &\ € " 3 " £\ ¢
Ml:(w (e +210 <gz>|) | M2:<2"I’ (el +19 <g2>|> |

Volumen 59, Numero 1, Afio 2025
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Proof. By using the improved Holder inequality (2) for |I1] from (8), we get

1
Bl [0 - W oo+ (1 - el
0
1

<([a-alea- cr>|<dcr)é (/ (1 )" (01 + (1~ Merlids)

0

+ (/01 oloot2(1 - g)cda>é (/01 o1 (01 4 (1 a)g2)|5do) :
- (/o1 021 - J)Hgd")é </01(1 —0)|¥" (o014 (1 — 0))92|5da>é

1 1
1 < 1 :
+ </ ol tactq 0)<d0> </ oV (oo + (1 — 0))g2|5d0) .
0 0

Here
1
/ o2 (1 — 6)"*do = B (al +2¢,+1,( +2),
0
1
/ o1+ (1 5)odo = B(aC + 20 +2,(+ 1),
0
and by using the definition of convexity,
1
/ (1= o)W (001 + (1 — 0)oa|do
0

1 1 N €4 oy 3
< |‘I,///(Ql)|§/ U(l—U)dU+‘\P///(Qg)‘g/(l—U)QdU:‘ (01)] +6 | (02)]
0 0

and
1
/ o|U" (o014 (1 —0)o)|5do
0

1 1 " 13 " 13
2w v
< |‘IJW(Q1)|§/ o%do + ‘\I’/H(Qz)‘g/ c(l—o0)do = 97 (01)] 6+ [97(e2)] .
0 0

Thus, we have

. " 13 " 13 z
|11|s<B(a<+2<+1,<+2))<~("I’ el 220 ) )

" 3 " £ %
+(B(ag+2g+2,g+1))é.<2|‘1’ (01)] 6+|\I’ (Q2)|) _

Revista Colombiana de Matemaéticas



12 B. BAYRAKTAR, S. BUTT & P. KORUS

Similarly, for |Iz| from (8), we get

A=

12| < (B(a¢+2¢+1,(+2))

1
. (2 9" (o) + |w"'<g2>|f> ﬁ
6

1

1B (01)[¢ + 2 |\W<gg>|f) ¢
6

+(B(ag+2c+2,g+1))%-<

Summing the integrals yields

|+ |Ta] < (B (aC +2¢ +1,¢ +2))% (My + My)
+(B(aC+2¢+2,C+1))¢ (Ma +My).

Considering the last inequality, we deduce (10) from (8). The proof is complete.
o

Corollary 2.8. By selecting o = 1, inequality (10) yields

02

. ; el 02 i 01 /‘I’(U)da < % [0 (02) — ¥'(o1)]
e 0 B 5c 1 c 2t + (B B+ 2.0+ 1)) (M +Ma)
12 ’ ’ T

(11)
where My and My are defined above.

Theorem 2.9. Let ¥ : [ — R, ¥ € C3(I°) and ¥ € L|[o1,02], where

01,02 € 1. If |\I/”'|€ is a convex function on [o1, 02], then for all a > 0, > 1,
the following inequality holds:

“1’(92) + ¥(01)

2
F(a+2> a+3 a+1 a+1 @ a
S 4(02—01)" {9291 {JQE \II(Q1>+J9T \II(Q2)}_ {JQE\IJ(Ql)—FJQT\IJ(Qz)}
270 g / (02— on)®
Taro ¥ie2)-¥ (1 + B3), (12
_4(a+2)| (02) (Q1)|+4(a+2)(a+3)(a+4) (®1 + ®2), (12)
where
(a+3) |\Ijm(91)|§ +2|W/1/(92)|§] €
P, = :
a—+5
1
219 (g1)[ + (0 + 3 |\1ﬂ~<g2>|§1 |
P, =
a+9d

Volumen 59, Numero 1, Afio 2025
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Proof. By using the power mean inequality (3) and considering that |¥" |E is
convex, we get for |I5| from (8)

L < / 0 2(1 — 0)| [ U (001 + (1 — 0)02)|do
-z 1 ¢ €
( [ 0-0) 900 + (1 - 0)02) da)
0

([ wa)
([ o)

< ([ oo [o @) + (- ) 9o o)

Let us calculate the integrals:

a2 _ 1
/|"+ Mo = T o

=

and

[ o) [o 1w (@) + (1) |9 (22)] o

0
1 1
= [ (01)[¢ / °3(1 — 0)do + [9"(g2) ¢ / 0" 2(1 — 0)2do
0 0

(@t 3) 17" (01)]" + 2] (02)[°
o (a+3)(a+4)(a+5) '

Thus, we have

(@ +3) |9 (01)[* +2 ¥ (0)]* ¢
(a+3)(a+4)(a+5)

< (roars)

(o +3) [0 (01)|° + 2|9 (02)|®
a+5

1
(a+3)(a+4)

Similarly, for |Iz| from (8), we get

|Io| <

1
(o +3) 0" (02)|* + 29" (1) | ¢
a+5

(a+3)(a+4)

By summing the upper estimations for |I;| and |I2| and considering notations
®, and P, we get

1
LI+ L < —r (P14 P2).
|1| ‘2|7(Oé+3)(0(+4) ( 1 2)
Thus, from (8), we deduce (12). The proof is concluded. vf

Revista Colombiana de Matemaéticas
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Corollary 2.10. If we choose a =1, then from (12), we obtain

U(o2) + ¥(o01) 1 /92 ’ 02— 01, ,
— U(o)do| < —= |W -
! o [ o < S W) - o)
1
(02— 01)? [T (01)]° + 20" (02)|° |

_|_

240 3

1
2 ‘\I,///(Ql)‘i + |W///(Q2)|E] 3
3 +

(13)

Theorem 2.11. Let ¥ : I — R, ¥ € C3(I°) and V" € L|p1, 02, where
01,02 € I. If |‘l/’”|)5 is a convex function on [g1, 02], then for all « > 0, > 1,
the following inequality holds:

"If(m) + ¥(e1)

2
F(a+2) Oé+3 fe% o « o
_4(92 —o01)” {92 -0 {JQ;IW('QI)—FJQ;MI](QQ)} B {J@;\P(Ql) + J@T\II(@)}}‘
02 — 01 , ,
Siat2) [V (02) — V' (1))

+ m [B(a+3,3)' "¢ (Py+Pg)+ B(a+4,2) "% (Py+ Py,
(14)

where B(.,.) is the Euler Beta function and

=

Py = |07 (1) B(a+4,3) + 9" (00)[° B(a +3,4)

=

Volumen 59, Numero 1, Afio 2025
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Proof. By using the improved power mean inequality (4) and considering the
convexity of |U"|°, we have

1
L) < / 102 (1 — )| [9" (01 + (1 - 0)oa)ldo
0

) </01(1 — o)l L - J)Ida> B

<( (1L— 0021 — )[4 (o1 + (1~ 7er)do

+ (/010|0“+2(1—a)|d0)

_ (/Olow?(l _ 0)2610-)1é (/01(0“+2(1 02U (001 + (1 — a)gg)fd(f)

+ ( / P a)da) 5 ( / L o) 8 (0 + (1 0)92)5d0> .

1
3

1-1 1

é 1 €
(/ Olaa+2<1—a>||w<am+<1—o>92>5d">
0

=

=

Here
1
/ 0°"2(1 — 0)%*do = B(a + 3,3),
0
1
/ 03 (1 — 0)do = B(a +4,2),
0
and by using the definition of convexity, we get
1
/ o 21— )| " (oo1 + (1 — 0)0o)|5do
0
1 1
< ‘@///(91)‘5/ Ua+3(1 70)2dgJr |\I/”/(g2)|§/ o_oc+2(1 70)3d0
0 0
= 0" (01)|* B (a+4,3) + [0 (02)|° B (e +3,4)
and
1
/ s H3(1 — o)W (00, + (1 — 7)0s)[Edor
0

1 1
< [0 ()€ / o™ (1 — 0)do + |17 (o) / o1~ 0)?do
0 0

= 0" (01)|" B (a+5,2) + [9"(02)[° B (e +4,3).

Revista Colombiana de Matemaéticas



16 B. BAYRAKTAR, S. BUTT & P. KORUS

Thus, we have

1

0] < Ba+3,3) % [[97(e0)|* B(a+4,3) + 9" (e2)|* Bla+3,4)]°

m=

+ B (a+4,2)'7F [[97(0) B(a+5,2) + 9" ()| B(a+4,3)] "

Similarly for |I3| from (8), we obtain

1

B < B(a+3,3) 7% [|07(02)| B(a+4,3) + 9" (o) B (a+34)°
+B(a+4,2) 7% {|\IJ”’(92)|f B(a+5,2)+ |9 (o) B(a+4, 3)} :
Upon summing the integrals and considering the accepted notations, we get
| +112) < B(a+3,3) 78 (P1+P3) + Ba+4,2)' "¢ (Py+ Py).

By taking into account the last inequality and (8), we obtain (14). v

Corollary 2.12. If we choose o = 1, then from (14), we obtain

‘1’(92);‘1’(91) - i . /\I'(cr)da < % W' (02) — ¥'(01)]
. w (84,37 (Py+Ps) +B(5,2) 7t (P +P4)],  (15)
where
“\p"’ B(5,3) + [ (02)[° B (4, 4)}%7
[|\1ﬂ" B(6,2) + 9" (02)|* B (5, 3)F7
“\y'" B(5,3) + [¥"(01)[* B (4, 4)}%7
Pa = [[97(e2)lf B.(6.2) + 19" (o)l B (5.3)]

2.1. Examples

To verify the accuracy of the main results, the following examples are provided
in order to analyze them from various viewpoints.

Example 2.13. Case 1: Considering ¥ (o) = €7, where o > 0, taking [o1, 02] =
[1,2] and £ € [1.1,10], we find that the mapping ¥/ (c) = e is convex for o > 0,
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HADAMARD-TYPE INEQUALITIES 17

inequality (9) becomes

RPN VR S EERa b
12 6 \ 252 2

<6(3fe)<i(27)+1 ilf% ef 4% 7% 1)
=Ty =12 976 a2 2 '

Case 2: Let U(0) = ¢e?,0 > 0, if we take £ = 2 and 9 € [1,2], 02 € [3,4] then
inequality (9) changes to

02 — 01 (02— 01)* [ 1 \ 2 [e2er 4 ¢2e2 5
_ (e22 — ) — 22— EU e rTe-
12 6 252 2

< (692 + el B ef2 _ 691)
2 02 — 01
1 1
02 — 01 (02 —01)° (1 \2[e?n fe*e2]2
< 22 T2 (92 21 A= = = - - . 1
S Tqg (et T (252 2 (7
Figure 1 illustrates the three mappings corresponding to the Right, Middle, and
Left sides of inequality (16) plotted as a function of £ € [1.1,10]. Additionally,
Figure 2 displays the three mappings realized on the Right, Middle, and Left
sides of inequality (17) graphed for o1 € [1,2] and g2 € [3,4].

M Right
W Middle
— Right W Left
— Middle
1
e — Left

40 20

FiGure 1. The graphical represen- FIGURE 2. The graphical representa-
tation of Example 2.13 for oy = 1, tion of Example 2.13 for o1 € [1,2],
02 =2 and & € [1.1,10]. 02 € [3,4].

Example 2.14. Case 1 : Considering ¥(o) = Ino, where ¢ > 0, taking
[01,00] = [2,3] and £ € [1.1,100], we find that the mapping ¥"'(c) = % is
convex for o > 0, inequality (9) becomes

1
L1 N[ R
T2 6\252 2

2
<2 ohmetri< il o
=7 . =72 76\ 252

1
1€ 2167¢
EY R
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18 B. BAYRAKTAR, S. BUTT & P. KORUS

Case 2: Let ¥(0) = Ino,o > 0, if we take £ = 2 and o1 € [2,2.5], 02 € [3,4],
then inequality (9) becomes

, CTIa 2 121217
11 1] (ee—e)’ (1N ||| T
12|02 o1 6 252 2
Ing; +1n 1 22
< o1 e2 _ <1D<Q31>+91—92>
2 02 — 01 01
. 2 5 |2 3
11 1 —0)? /1 \2||#| t|z
<—|=_= +(Q2 01) . 01 % ) (19)
1202 o1 6 252 2

Figure 1 illustrates the three mappings corresponding to the Right, Middle, and
Left sides of inequality (18) plotted as a function of £ € [1.1,100]. Additionally,
Figure 2 displays the three mappings realized on the Right, Middle, and Left
sides of inequality (19) graphed for g1 € [2,2.5] and o2 € [3,4].

—— Right Term
— Middle Term

— Left Term

[ Right Term
M Middle Term )
M Left Term 100

FIGURE 4. The graphical representa-
FIGURE 3. The graphical representa-  tion of Example 20 for p; € [2,2.5],
tion of Example 20 for o1 =2, 00 =3 o, € [3,4].
and ¢ € [1.1,100].

Example 2.15. Case 1: Let ¥(0) = %06,0 > 0. If we take gy = 1,00 = 2
and ¢ € [1.1,10], then the mapping ¥ (0) = 200 is convex for ¢ > 0 and

inequality (13) becomes

1 1
31 1 {[2-205+16Ofr+ [205—1—2&605]5}

12 240 3 3
1 1
67 31 1 2.208 + 16057 ¢ 206 +2-16087¢
< — < —4 — | = - )
= 8_12+240{[ 3 } +[ 3 } (20)
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Case 2: Let ¥(0) = %06, o > 0. If we take £ = 2 and 91 € [1,2], 02 € [3,4], then
inequality (13) takes the following form:

1 1
_m—m“_f%jm—mﬁ mw%4m£2+4m£+m@gz
12 2 ct 240 3 3

N R S

12 42(02 — 01)
1 1
02—01, 5 5 (02—01)% |[80008 +400057% [4000% + 8000512
< — .
<7 (ee-eD+ o 3 + 3

(21)

The three mappings realized on the Right, Middle and Left sides of inequality
(20) are plotted in Figure 3 as a function of £ € [1.1,10]. While the three
mappings corresponding to the Right, Middle and Left sides of inequality (21)
are graphed in Figure 4 for g1 € [1,2] and o € [3,4].

B Right
. W Middle
— Right W Ler
f—_— — Middle

— Left

4020

FIGURE 5. The graphical represen- FIGURE 6. The graphical representa-
tation of Example 2.15 for o, = 1, tion of Example 2.15 for o1 € [1,2],
02 =2and & € [1.1,10]. 02 € [3,4].

2.2. Comparison analysis of classical and improved bounds

Example 2.16. If one chooses ¥(c) = o* 6 > 0, then for ¢ > 1, function
¥ (o) = 240 is convex. In case of @ = 1, [p1,02] = [1,2] and & = 2, let us
find the right hand side of inequalities (9) and (11).

a) For (9), we have
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20 B. BAYRAKTAR, S. BUTT & P. KORUS

02
\II(QZ) +\II(QI) _ 1 / \I/(O')dO'
2 02— 01/,
1
1 1 1 [24% 448272
< __.984-.(B 2 (22 TP
<ot mEat [P

1
1 o [242 448277
~2.333334 + (0.0039683)7 - [;}

~ 2.333334 + 0.398412 = 2.731746.

b) For (11), we get

02

2 02 — 01
Q1

1 242 42482 [2.242 4 482
§2.333334+12[\/3(7,4)+\/B(873)}<\/ +6 +\/ 6+ )

1
~ 2.333334 + B (0.034504 + 0.052705) (29.393877 + 24)

0.087209 - 53.393877
~ 2.333334 + D = 2.333334 + 0.388036 ~ 2.72137.

As 2.731746 is greater than 2.72137, we observe that the improved Holder
inequality provides a superior estimate compared to the classical Holder in-
equality.

B Holder

280 — Holder W 'mproved nolder

— Improved Holder

o
=8

901.952.002.052.102.152 202 252 30

FIGURE 7. The graphical represen- FIGURE 8. The graphical representa-
tation of Example 2.16 for o1 = 1, tion of Example 2.16 for o; € [1,2],
02 =2 and & € [1.1,10]. 02 € [3,4].

Example 2.17. If one chooses ¥ (o) = €2?,0 > 0, then for ¢ > 1 and o > 0
function [¥" ()| = 8e%7 is convex. In the case a = 1, [91, 02] = [1,2] and £ = 2,
let us find the right hand side of inequalities (13) and (15).
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a) For (13), we have

\I/ \I; 02
(92) + (Ql) o 1 / \I/((T)dd
2 02— 01 Jy,
e*—e 8e?

2+ et \/1+2e4
< -
=76 T \/ 5 T 3

4.598150 — 7. .
~ p4.598 506 7389056 + ! 32%056 (4.343507 4 6.060701)

~ 7.868182 + 2.562576 ~ 10.430758.

4 2

b) For (15), we get

02

\11(92)4'\1/(91) o 1 /\I/(a)da

2 02— 01
Q1
02 — 0
< F g W (e2) — V()
(02 — 01)° 5 5 5 5
+ B [VB(43) (Py+Ps) + VB (5.2) (P2 +Pa)]

2
[1
~ 7.868182 + 81% V&0 (\/B (5,3) + 4B (4,4) + /B (5,3)e* + B (4,4))

8e?

+ 5 \/;(\/3(6,2) +eiB(5,3) + \/B(6,2)e4+3(5’3))

59.112449
~ 7.868182 + T (0.175330 + 0.343558) = 10.424244.

As 10.430758 is greater than 10.424244, we can conclude that the improved
power mean inequality offers a more accurate estimate compared to the classical
power mean inequality.

— Power Mean
1z — Impraved Power Mean

B power mean
W improved power mean

F1GURE 9. The graphical representa- FIGURE 10. The graphical represen-
tion of Example 2.17 for o1 = 1,02 = 2 tation of Example 2.17 for o1 €
and ¢ € [1.1,10]. [1,2], 02 € [3,4].
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3. Applications
3.1. Special Means

Next, we will explore the means for arbitrary real numbers g1 and g5 (01 # 02).
Let us consider the following ones.

(1) Arithmetic mean:

01+ 02
A(01,02) = 5 01,02 ceR.
(2) Logarithmic mean:
01 — 02
L(o1,02) = ———————» o1l #lez2|, 01,00 #0, 01,02 €R.
In[o1] — In o]

(3) Generalized log-mean:

1
n+1 n+1 n
09 — 01 "

=2 %1 | neZ\{-1,0}, 01,00 € R, 01 < 0o.
(n+1)(e2 — a1) \{~1,0}, 01,02 o1 < 02

Ln(le 92) =

(4) Harmonic mean

20100

H=H(o1,02) =
(01, 2) 01+ 02

) 01,02 > 0.
We present some applications to special means of real numbers using our
main results.

Proposition 3.1. Let g1, 02 € [0,00), 01 < 02. We have

_ 3
|A (e, e%) — L (e, e%)| < 02 1291 (e92 — e21) + (921251) A (e, e2).

Proof. This is a consequence of applying Corollary 2.4 to the convex function

U:[0,00) 2> R, U(o) =e".

v
Proposition 3.2. Let 01,02 € [0,00), 01 < g2, n € Z*, n >3, > 1. We
have
n n n n(QQ_Ql) Qn_l _Qn_l
|A (QlaQQ) 7Ln (91792)‘ < (122 ! )
n(n—1)(n—2 —01)3 1 e e t
g = D=2 =00 (g gt (4 (o0 o))
where B(.,.) is the Euler Beta function and % + % =1.
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Proof. This is a consequence of applying Corollary 2.6 to the convex function
U:[0,00) > R, ¥(o) =0".
vf
Proposition 3.3. Let 01,02 € [0,00), 01 < 02, £ > 1, %—&— % = 1. We have
A (e e) = L (e, )]

<20 o)y w (BBCHLCHD)E - (A (€, e29)) ¢

Proof. This is a consequence of applying Corollary 2.6 to the convex function
U:[0,00) = R, ¥(o) =e°.
o

Proposition 3.4. Let 91,00 € [0,00), 01 < g2, n € ZT, n >3, £ > 1. We
have

< n(oy—o01) (08 ' =o'  n(n—1)(n—2)(02— 01)° (2>

=

= 12 + 120 3

ca((a () (a (o)) ),

Proof. This is a consequence of applying Corollary 2.10 to the convex function
U:[0,00) > R, ¥(o) =0".
™

3.2. Quadrature formula

Now, we present an application related to a quadrature formula. Assume d is
a partition where o1 = 09 < 01... < Om_1 < O = 02, Which represents the
interval [01, 02]. Let us take a look at the associated quadrature formula:

/92 U(0)do = T(V, d) + E(V, d).

01

Here

m—1
T(V,d)=>" [W (Oip1 =0,
=0

and it computes the approximation error E(¥,d). In this context, we provide
certain error evaluations applicable to the quadrature formula.
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Proposition 3.5. According to the stipulations in Corollary 2.4, the following
inequality holds:

/92 U(o)do — T(T, d)’

01

—

'« [(oig1—0i)? oir1—o;)?
< 3 [0 0 1o ) - w4 T (0 0 ).
= 12 240
Proof. By applying Corollary 2.4, the desired result is achieved. of

3.3. ¢-digamma function

The ¢-digamma mapping is determined by the next expression:

(o) = ~ (G~ 1) +n(@) [ 0~ 5 —Zlq_q 7
with ¢ > 1 and o > 0 (see [27]).
Proposition 3.6. For 0 < p; < 02, we have
d(02) +05(e1)  d4(02) — da(e1)
2 02 — 01
< 28 [5200) - 3(00)] + 2 O {157 0)] 4 |6 )]

Proof. Applying Corollary 2.4 to the function W(o) = 05(c) for o > 0 yields
the desired result. [

Proposition 3.7. For 0 < g1 < g2, £ > 1, we have

05(02) +05(e1)  85(02) — J5(e1)

02 — 01 tep 7
< 0~ — o7
: 2= i) 22 (51 ) - )]

12

1627 (01)|*" + |62 (02)|* ] ¢
. .

ple—a)r _6"1)3 (B(B3C+1,¢+1))¢ l

Proof. Applying ¥(o) = 5‘%(0) for o > 0 to Corollary 2.6 and obtains the
desired result. [
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3.4. Modified Bessel function

Let the function Z, : R — [1,0) be defined by
Z,(0) =2°T(1 4 p)o~PI,(0),

where we used the modified Bessel function of the first kind I},, which is defined

as 9
(g)r=

L(0) =) o
b nZZO nl'(p+n+1)
in which p > —1 and I'(.) is the Euler Gamma function (see [25]).
The first-, second-, and nth-order derivative formulas of Z,(o) are respec-
tively given by (see [15])

g

(o) = ———T
P(U) 2(1+p) 1+p(0)7
TH0) = Ty (0) + - Tp1a(0)
P )T o o P Ap? +12p + 87 PT2)
"L, (0) o _ 1+p 2+p 1+p—n 2+p—n o?
— L =" P PrT(1 F: ; 1+p;, —
5‘”0 \/EO- ( +p)2 3 2 3 2 ) 2 ) 2 B +p7 4 )

where o F3(.; .;.) is the hyper-geometric function defined by (see [15])

Sk

. L) — S (a1)k(az)k
o F3 (al,az,bl,bg,bg,,z)_gmg.

Proposition 3.8. Let 01,02 € R with 0 < 91 < g2. For each p > —1, we have

9211+p(92) + lel+p(91) _ IP(QZ) _Ip(gl) < 02 — 01 ’I;,/,/(Q2) _I;;/(Ql)’
4(1+ p) 02 — 01 12
(02—01)® 4s 4 14+p 24p p—3 p—2 o
—= L Q%P I'(1 p F: ; 1 ;==
+ 240 \/E ( +p) |Ql‘ 243 2 ) 2 ) 2 ) 2 ) +p7 4
_ 1+p 24+p p—3 p—2 03
4| . 1 L2 )
+|92‘ 2 3( 2 ) 2 ) 2 ) 2 ) +p7 4

Proof. Applying Corollary 2.4 to ¥(o) = I}, (o) yields the desired result. o]

4. Conclusion

To the best of our knowledge, the current investigation provides new perspec-
tives of fractional Hermite-Hadamard integral inequalities involving three times
differentiable functions. We develop a new fractional integral identity for three
times differentiable functions via Riemann-Liouville fractional integral oper-
ators. Taking advantage of the established identity, combining with classical
convexity, we achieve a series of new Hadamard-type integral inequalities.
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It is also worth noting that the main results obtained here are transformed

into results of classical calculus, which are also new. It should be emphasized
that the extended versions of Holder’s inequality perform slightly better than
the classical version. With the ideas developed in this paper, we hope to moti-
vate interested researchers to further explore other types of results by consid-
ering fractional integral operators other than Riemann-Liouville, or, by con-
sidering general convexity instead of convexity, or, by considering higher-order
derivatives (greater than third). Moreover, one can explore such extensions in
Fractal, Fractal-Fractional and Quantum calculus.
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