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ABsTrACT. This paper aims to study the existence of renormalized solutions for
the anisotropic elliptic problem with a Hardy potential and Fourier boundary
conditions
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REsSUMEN. Este articulo tiene como objetivo estudiar la existencia de soluciones
renormalizadas para el problema eliptico anisotrépico con un potencial de

29



30 M. BENBOUBKER, R. BENTAHAR, Y. HAJJI & H. HJTAJ

Hardy y condiciones de borde de Fourier

N (&)1 |ufPo @) =2y,
*ZDlai(%U,VU)JrOZMT & u:yWJrf(x) in Q,
Nz:l
Z ai(z,u, Vu) - n; + du = g(z) on 99,
i=1

donde Q es un subconjunto abierto y acotado de IR™ (N > 2), los datos f
pertenecen a L'(Q), g € L*(0Q) y a, A\, v > 0. con ai(z, s, &) son funciones de
Carathéodoria que verifican algunas condiciones no estandar.

Palabras y frases clave. Espacio de Sobolev de exponente variable anisotrépico,
problema eliptico cuasilineal, potencial de Hardy, condiciones de contorno de
Fourier, solucién renormalizada, L' —datos.

1. Introduction

In recent years, increasing attention has been paid to anisotropic elliptic prob-
lems in the study of nonlinear elliptic equations involving lower-order terms.
The particular interest in these equations arises from their usefulness in the
mathematical modeling of physical and mechanical processes in anisotropic
continuums. It is recognized that lower-order terms can influence the exis-
tence, uniqueness, regularity, and asymptotic behavior of solutions to partial
differential equations, as evidenced by various studies (see, e.g., [11, 15]).

Let Q be a bounded open subset of RY (N > 2) containing the origin, with
Lipschitz boundary 9. In [24], the authors studied a nonlinear anisotropic
elliptic problem with a Fourier-type boundary condition, formulated as follows:

N
- Z Dia;(z, D'u) + B(u) > in Q,
Ni:l (1)
Z ai(z, D'u) -n; + Au = g(x) on 99,

=1

where f is a maximal monotone graph on R with 0 € 5(0), and 4 is a bounded
Radon measure. They proved the existence and uniqueness of renormalized or
entropy solutions to the general elliptic problem (1). For related results, see
also [6, 8]. In [23], I. Ibrango and S. Ouaro investigated the following nonlinear
elliptic problem with a Fourier-type boundary condition:

N
- ZDiai(Qj, D'u)+b(u) = f inQ,

& @)
Z ai(r, D'u) -n; +  u = g(z) on 99,

i=1
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where f and g belong to L'(Q) and L!(052), respectively. Using monotone
operator techniques in Banach spaces, they established the existence of a weak
solution. Furthermore, via approximation methods, they proved the existence
and uniqueness of entropy solutions. Additional details can be found in [7, 9, 11].

In [2], the authors have studied the nonlinear elliptic problem

u

—+f inQ,

|| 3)
u=0 on 092,

—Au = |Vul> =\

with A > 0, they have demonstrated the existence of positive solutions for the
problem (3) in the absorption case (+|Vu|?) with f € L'(€2). In the diffusion
case (—|Vul?), the non-existence of solution is proved even in a very weak sense,
we refer to [1], [2] and [3]). Porzio has considered in [29] the quasilinear elliptic
problem

u
—div(M (z,u)Vu) +vjul* lu = — +f inQ,

(M (2, 4)u) + vl - "
u=~0 on 012,

with s > 5" the author has established the existence of solution u €

Wy?(Q) for every 1 < g < 2s/(s + 1), we refer the reader also to [30]. The
authors have investigated in [5] the existence of entropy solutions for the quasi-
linear elliptic problem

(z)—2
s(z)-1, _ ‘u|po u :
Au + |u| u=f+ )\7|$|po(m) in Q, (5)
u=0 on 012,
N
in the anisotropic variable exponent Soblev spaces, where Au = — Z a;(z,u,

i=1
Vu) is a Leray-Lions operator, such that the Carathéodory functions a;(z, u, Vu)
verifies sone non-standard assumptions, with A > 0, f € L(Q) and

N(po(z) — 1) 1 )
N —po(z) "po(z) —1

For more results involving Hardy potential, we refer the reader to [15], [16],
and [17].

Since f belongs to L'(Q), we cannot expect a solution in the sense of dis-
tributions, as there is no guarantee that the field a;(x,u, Vu) € L} _(Q). To
address this difficulty, we adopt the framework of renormalized solutions in this
work. The notion of a renormalized solution was introduced for the first time

s(x) > max (
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P.-L. Lions and Di Perna in [20] by studying the Boltzmann equation. This no-
tion was adapted to elliptic problem with L' data in the reference [14] (see also
[27, 28]). Also, this adaptation was applied to elliptic problems with bounded
measure data in [18]. For parabolic equations with L' data, this notion was
adapted by D. Blanchard and F. Murat in [12] and by D. Blanchard et al. in
[13]. At the same time, the equivalent notion of entropy solutions has been
developed independently by Bénilan et al. in [10] for the study of nonlinear
elliptic problems.

In this paper, we study the existence of renormalized solutions for the fol-
lowing quasi-linear anisotropic problem with degenerate coercivity, and the
Fourier boundary condition :

N |u|Po(@) =2y,
- ZDlai(x,u, Vu) 4 alu|" @ty = VW + f(z) inQ,

, x|Pot®
N (6)
Zai(x,u, Vu) - n; + du = g(z) on 99,

i=1
for all f € L*(Q) and g € L'(99) and for all a,v > 0 and XA > 0. We prove
the existence of solutions in the sense of distributions for the case of L>°—data.
Furthermore, we conclude the existence and regularity of renormalized solutions
in the anisotropic variable exponent Soblev spaces for L' —data.

The paper is organized as follows: In Section 2 we recall some definitions
and lemmas concerning the anisotropic Sobolev spaces with variable exponents.
Section 3 is devoted to presenting the assumptions on the Carathéodory func-
tions a;(z,u, Vu) under which our problem has at least one solution. Section 4
is dedicated to study the existence of solution in the sense of distributions for
our elliptic equation with right-hand side F(x) € L*>°(99) and G(z) € L*>*(09Q).
In the last section, we establish the existence of renormalized solutions for the
non-coercive elliptic equation (6) with the right-hand side f(z) € L'(Q) and
g(z) € LY(99).

2. Main results

Let © be a bounded open subset of IR (N > 2), with Lipschitz boundary 9<2,
we denote

C1(Q) = {measurable function p(-) : Q — IR such that 1 < p~ < p" < N},
where
p~ =essinf{p(z) [z € Q} and pt = esssup{p(z) /x € Q}.

We define the Lebesgue space with variable exponent LP()(Q) as the set of all
measurable functions u : 2 — IR for which the convex modular

Pp() (W) ::/Q|u|f’(”’)d:c
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is finite. If the exponent is bounded, i.e. if p™ < +o0, then the expression
lullocy = Inf{A > 0+ gy (u/A) < 1}

defines a norm in LP()(Q), called the Luxemburg norm.

The space (LPO(Q), || - [|()) is a separable Banach space. Moreover, if 1 <
p~ < pt < 400, then LPO)(Q) is uniformly convex, hence reflexive, and its

/ 1
dual space is isomorphic to L ()(Q), where — + —— = 1. Finally, we have
p(x)  p'(2)
the Holder type inequality:
[ de| < =+ Ml o] g
wv dx| < (— + —)||wllpy |0l
0 () p() I1YHp" ()

for any u € L) () and v € LP'()(1Q).
An important role in manipulating the generalized Lebesgue spaces is played
by the modular p,.) of the space Lp(')(Q). We have the following result :

Proposition 2.1. (see [21], [31]) If u,,u € LPO)(Q), then the following
properties hold true:

(1) ullpey <1 (resp,=1,>1) <= ppy(u) <1 (resp, =1,>1),

.o - +
() [ulpey >1 = Julfy < ppy@) < [l and  ullyy <1 =
lullZcy < ppey(®) < ullZ,,

(iii) [lunllpey = 0 <= ppy(un) =0, and |juyllp) = 00 <= ppey(un) —
m7

which implies that the norm convergence and the modular convergence are
equivalent.

We refer the reader to [19] for more details concerning Lebesgue space with
variable exponent.

Now, we define the anisotropic variable exponent Sobolev space used in the
study of our quasilinear elliptic problem (6).

Let p1(-),p2(+),-..,pn(-) be N variable exponents in C;(€2). We denote

7 = L, p1()s - pn (), Dou=u and Diu= g“ for i=1,...,N,
z;
and we define
p=min{p,...,py} then  p>1. (8)
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The anisotropic variable exponent Sobolev space Wl’ﬁ(')(Q) is defined as follow
WO Q) = {u e WHH(Q) and Diwe LPO(Q) for i=1,2,...,N},

endowed with the norm

N
1) = lullis + D 1D ullp - (9)

=1

[[ul

The space (WO (Q), [|ull; 5.)) is a reflexive Banach space (cf. [26]).

Lemma 2.2. We have the following continuous and compact embedding

o if p < N then W'PO(Q) —— LIQ) for q € [p,p*[, where p* =
Np
N —]3’

o ifp=N then WLPO(Q) s LI(Q) Vq € [p, +ocf,
o if p> N then WP0O(Q) —— L>(Q) NCO(Q).

The proof of the lemma follows from the fact that the embedding W12() ()
< WH2(Q) is continuous, and in view of the compact embedding theorems of
Sobolev spaces.

Definition 2.3. Let k > 0, we consider the truncation function T(-) : IR —
IR, given by

and we define
THPO)(Q) := {u : Q — IR measurable, such that T},(u) € WP (Q) for any k >
0}.

Proposition 2.4. For any u € Tl’ﬁ(')(ﬂ), there exists a unique measurable
function v; : Q+— IR for any i € {1,..., N} such that

Vk >0 DlTk(u) = Vi-X{|u|<k} a.e. x €S,
where xg represents the characteristic function of a measurable set E. The
functions v; are called the weak partial derivatives of u and are still denoted
D'u. Moreover, if u belongs to WH(Q), then v; coincides with the standard

distributional derivative of u, that is, v; = D'u.
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Definition 2.5. We introduce the set 'Ei’ﬁ(')(Q) as a subset of 747()(Q) for
which a generalized notion of trace may be defined (see also [4] for the case

of constant exponent). More precisely, 7;1’5 (')(Q) is the set of function w in
TLP0)(Q), such that : there exists a sequence (uy,), in W?()(Q) and a mea-
surable function v defined on 92 and verifying

(a) up, — w a.e. in Q.
(b) DTy (u,) — DTy (u) in L1(Q) for every k > 0.
(¢) up — v a.e. on .

The function v is called the trace of u in the generalized sense introduced in

[4].

Proposition 2.6. Let u € W'P0)(Q), the trace of u on OQ will be denoted by
7(u).

For any u € ﬁi’ﬁ(')(w), the trace of w on 0Quwill be denote by tr(u) or u,
the operator tr(-) satisfied the following properties:

() ifu e TEP(Q), then (T (u)) = Ty(tr(w)) for any k > 0.

(i) if p € WEPO)(Q), then, for any u € ﬁ}.’ﬁ(')(Q), we have u— ¢ € ﬁi’ﬁ(')(ﬂ)
and tr(u — @) = tr(u) — 7(p).

In the case where u € WHPC)(Q), tr(u) coincides with T(u). Obviously, we have
WhIO(Q) ¢ TPO(Q) ¢ 7O ().

Lemma 2.7. (see [22], Theorem 13.47) Let (uy,)n be a sequence in L*(Q) and
u € LY(Q) such that

(1) un, — u a.e. in Q,

(ii) up >0 and u >0 a.e. in Q,

(iii) /un dm—>/udx,
Q )

then u,, — u strongly in L*(£2).
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3. Essential assumptions

In this paper, we establish the existence of renormalized solutions for the non-
coercive quasilinear anisotropic elliptic equation given by

N po(w)—2
- Z Diai(z,u, Vu) + alu| @1y = VM + f(z) in€Q,
e
N
Zai(:n,u, Vu) - n; + du = g(z) on 99,
i=1

(10)
Let p;(-) : Q@ — (1,+00) measurable for i = 1,..., N. We consider the Leray-
Lions operator A, acted from W17()(Q) into its dual, defined by

N
Au = — Z Da;(x,u, Vu),

i=1

where a; : Q x R x RN +—— IR are Carathéodory functions for i = 1,..., N
(measurable with respect to x in Q for every (s,€) in IR x RN, and continuous
with respect to (s,€) in IR x IRYN for almost every z in ), which satisfy the
following conditions :

N

D (ai(@,5,) —ailw,s,E)(& - &) >0 for &£, (11)

i=1
jai(w, 5,6) < BK(2) + s @7+ |G D7) for i=1,...,N, (12)
for a.e. z € Q and all (s,¢) € IR x IRY, where the nonnegative functions K;(-)

/ 1 1
are assumed to be in LP:()(Q) for i = 1,..., N, with +——=1and j8
pi(z)  pi(x)
is a positive constants.
ai(,5,)& 2 b(|s)|&[" ) for i=1,...,N, (13)

where b(+) : Rt — IRT is a decreasing function. Furthermore there exists a
positive constant by and §(-) is a measurable function such that

bo

@+ 5@
and 0 < §(z) < pj(x) —lae inQfori=1,--- N.

The data f(z) € LY(Q) and g(z) € LY(99), the constants o, > 0 and
A > 0, the exponents r(x) and § verifying

Lt dla) Nipu(o) — D))

pi(z) =17 N — po(2)
We are going now to recall the following technical Lemma, useful to prove our
main results.

b(|s[) =

r(z) > max{
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Lemma 3.1. (see [9]) Let k > 0, assuming that (12) — (11) hold true, and let
(n)nen be a sequence in WHPC)(Q) such that u, — u weakly in WP (Q)
and

N | |
;/ﬂ(ai(x,Tk(un),Vun) — a;(z, Ty (uy), Vu))(D'u,, — D'u) dx »

+ / (Jun 22wy — [uf2™2u) (u, —u) dv — 0 as n — oo,
Q

then u,, — u strongly in WPC)(Q) for a subsequence.

4. Existence of solutions in the sense of distributions for L*°— data

We consider the quasilinear elliptic problem
: r(@)— | T3 (w) [P0 )T, (w) :
~div a(a, T (u), V) + aul" e = v R B 4 Fla)

a(z, Ty (u), Vu) - n; + AT, (u) = G(z) on 01},
(15)

with
G(z) € L™ (09) and |F(z)| < Cy forany z €, (16)
where Cy is a positive constant.

Definition 4.1. A measurable function u is called a solution in the sense
of distributions for the quasilinear anisotropic elliptic equation (15), if u €
WP (Q) and |u|"®)+ € L1(Q), such that u verifies the following equality

N
Z/ a;i(z, T, (u), Vu) D' dx + a/ Ju[" @y dz + A T,(u) vdo
— Jo Q o0

| T (u) [P0 ) 2T, (w)

= | Fvde+v vdr + G vdo,
Q o |z[Pe@ +1/n o0
(17)
. N(po(z) — 1) :
for any v € WH70)(Q) N L>(Q), where r(z) > ————2——~ a.e. in Q.
y (@)1 L) (@) >

Theorem 4.2. Assuming that (12)—(11) and (16) hold true. Then there exists
at least one solution in the sense of distributions for the quasilinear elliptic
equation (15).
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Proof of Theorem 4.2
Step 1 : Approximate problem

We consider the following approximate problem for the quasilinear elliptic equa-
tion (15), giving by

N
=3 D'ai(@, Tu(wm), Vttm) + T (1) ") To (1)
i=1
Lo [T 1) )2 (1) .
- P 2 — n m n m
+m|um| Um 14 |m|p0($) + ]./n +F(.’IJ) m Qa

> ai(@, T (um), V)1 + AT (u) = G(x) on 9N

i=1

(18)
We define the operator H,, acted from W1H7()(Q) into its dual (W20)(Q))
by

N
; 1
(Hpu,v)y = Z/ a;(z, Tp(u), Vu)D*vdx + —/ |u|2™2uw dx
pEie) m Jjo (19)
+)\/ T, (uw)v daf/ G(z)v do.
I9) 19)
We consider the operator K,, : W57 (Q) — (WHPO)(Q))’ given by
T, (w)|Po®) =27,
(Kpmu, v) :a/ |Tm(u)\r(”)_1Tm(u)vdx—u/ T ()] (u>vd:v, (20)
Q o |z[Pe@ +1/n
for any u,v € WHP0)(Q), we have
Tn po(xz)—1
(K mu,v)| :a/ | T (w) " 0] da + v %de
0 o [alPo® 1 1/n
(21)

§o¢m”/|v|dx+unp0+/ |v| dx
Q Q

< Cilv

Lp(-)

Lemma 4.3. The bounded operator B,, = H,, + K, acting from W70)(Q)
into it dual (WP0)(Q)) is a pseudo-monotone operator. Moreover, By, is co-
ercive in the following sense :

<Bmva ’U>

— 00 as |[|vl|y 5.y — oo, (22)
[vll1,50)

for any v € WHPO(Q).

Volumen 59, Numero 1, Afio 2025



EXISTENCE OF SOLUTIONS FOR SOME DEGENERATE ... 39

The proof of Lemma 4.3 is similar to the arguments of the proof in [8] (see
also [6]) with very few modifications.

In view of Lemma 4.3 (cf. [25], Theorem 8.2) there exists at least one weak
solution u,, € W'P()(Q) for the problem (18), i.e

Z/ ai(z, Ty (Um), Vi, ) D' dx—l—a/ [T ()" @) =T ()0 di
—/ U |22 0 dm—&—A/ T (tp)v do (23)
pogﬁ -2
:/ vderz// [T (10| T (tm) d:ch/ G(z)v do,
|JU|7”O @) +1/n o0

for any v € WHPO(Q).

Step 2: Weak convergence of the sequence (un,)m

Let m > n > 1, by taking v = u,, as a test function for the approximate
problem (18), we have

N

)» / 032 T 1), F) D't di - [ [To(1) " |

7/ |t |2 dx+)\/ T ()| |t | do (24)
o

T ( )‘pO(w |
= [ F(x)u,, dr + / dr + G(z)up, do.
/Q ()t dx + v |:1:|P0(x)+1/ i . (), do

We set 0+ = max{5;", fori=1,---,N}, in view of (13) and (16) we obtain

[P (®) dx+a/ T (1) 7@ [t d

I b
(1+n5+z |

—/ [t |2 dm+)\/ [T ()| |ttm| do

\T Tt o)~ |
E onN

|x|P0(T
(25)
For the first and the second terms on the right-hand side of (25), by applying
Young’s inequality we have
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Co/\um|dx SC()/ |um|dx+Co/ [t | dx
Q {lum Sm} {\um\>m}

< +5/ (T (1) 7@ |um|da:+Co/ | dz
{|um|<m} {|wm|>m}
<Cy+ s/ T ()" |t | daz + Cop |ty | daz.
o {um|>m}
(26)
and
T Po(l) 1 m
‘ m)| |u ‘dm <vn |T ) [P |, | d
|z|p0(9ﬂ =
g |T (um)r(m |t | dzz 4 C3(n / |ty | da:
< % 2e) [ o)l d
+C'3(n) |t | dz 4+ Cy(n).
{Jtm |>m}

(27)
On the other hand, For the last term on the right-hand side of (25), in view of
the trace theorem, and thanks to (26) and Young’s inequality, we obtain

N
nGnmmI/ | d < C. /1W¢m+ / Diu,.| de
L()ag 5(Q|| ;Q| |>

Cs
< ?E/ ‘Tm(um)|r(ﬂc)|um| dz + C5/ |um| dxr (28)
0 Q {lum[>m}

N

bo - ,

—> Dy [P d :
Jr2(1+n)‘5+ i—l/ﬂ D =+ Gin)

Cs(n)  Cs
—_— <
Co TGS

By taking & > 0 small enough such that (1 +
(25) and (26) — (28) together, we conclude that

b i\/:/ |Diu
2(1+n)"" = Jo
+l/ |um\£d:v+>\/ T ()| [t | dor (29)
mJjo o0
< Cs(n) + (Co + C3(n) + Cs) (U | d.

{lum|>m}

o .
1 and putting

e dx+%/ T (1)@ [ttyn| dt
Q
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Therefore, by taking m > 1 large enough, for example %mTJr —(Cp + C3(n) +
C5)) > 0, a.e. in Q, we get

N
bo / ; . «
_— Dy, [P @) dg + f/ T ()" |ty | dox

1
+7/ |um\ﬂda:+/\/ (T ()| [tn] dor
m Jo 0

(30)

Moreover, Thanks to (30), there exists a positive constant Co(n) that not de-
pending on m such that

[umll1 ) < Co(n). (31)

Thus, the sequence (ty, ), is uniformly bounded in W) (Q), and there exists
a subsequence still denoted by (u, )., such that

Uy — U weakly in W1HPO)(Q),
U —> U strongly in  L2(Q)) and a.e. in Q, (32)
Um —u  weakly in L'(0Q) and a.e. on 9.

It follows that
1, , ,
— U B %2y — 0 strongly in L2 (Q) (33)
m

and in view of Lebesgue’s dominated convergence theorem we deduce that

po(x)—2 po(x)—2
1T (um)| Ty (um) N T (u)] Ty (u)

. p/
jz|po@) 4 & jfpo@) + strongly in - LE (£2).

(34)

Moreover, in view of (29) we conclude that (T}, (t, ))m is bounded in L") +1(Q),
and since Ty, (u,) — u almost everywhere in Q, we get

T (um) — v weakly in LT(')'H(Q). (35)
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Step 3 : The convergence almost everywhere of the gradient

By taking v = u,, — u as a test function for the approximated problem (15) we
obtain

N
Z / ai(a:, Tn(”m), Vum)(Dlum — Dlu)dx
; Q

+ a/ (T (1) [ LT (1) (1, — )

—/ U |22 Uy (U — 1) d + X Tn(um) (U —u) do

. T (u |p0(w 2T (um) ) dx
_/Q () (tm dx—i—l// |x|p”)+ (U — ) d

+ G(z) (uy, —u) do, (36)
o0

it follows that
Z/ (ai (2, Ty (tm), Vi) — ai(x, Ty (tm), V1)) (D', — D) dx
Q
) O T () = [T ()] 7 Ty () (i = ) d

—|—)\f n(tm) — Tn(w)) (U, —u) do
o0

N
Z ai(z, Ty (um), Vu) (D', — D'u)dr — o

i=17%
/ | T (w)|" @)=, (1) (i, — ) da
——/ | [P 2 Uy (1 — 1) dz — X Tn(u) (U, — u) do
To( I)o(l) 2T m
—l—/Fx (U, —u)dz+v /| | (u )(um—u)dx
Q |g;|170 (z) +

+/89G x) (U — u) do

< Z/ lai(x, T (tm), V)| | Dy, — Diul dm—i—a/ | T (u) ") |ty — |

/ [um |27 | —u|dx+)\/ | T ()] |, — u| do
T30 () [P0 (=)- 1‘um — ul
R e

|G ()| |tm — ul do.
o0
(37)
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For the first term on the right-hand side of (37), we have T),(um) — T (u)
strongly in LP:()(Q) then |a;(x, Ty (um), Vu)| — |ai(z, T,,(u), Vu)| strongly
in LPi()(Q), and since D'u,, — D'u weakly in LPi()(Q), it follows that

N
Z/ |ai(x, T (t), V)| | Dy, — D'ul dz — 0 as m —oo. (38)
i=17%

Concerning the second term on the right-hand side of (37), we have |T}, (u)|"®) —

|u|"(®) strongly in L5 (Q) and since u,, — u weakly in L")+1(Q), it follows
that

a/ | T ()| @ |ty — u| dzz — 0 as  m — oo. (39)
Q

Moreover, in view of (33) and (34), we deduce that

1
m Jo
T po(w)—1
and
/|F(:c)| U —uldz — 0 as m — . (42)
Q

Furthermore, we have T, (u) and G(x) belongs to L>°(9f), and since u, — u
strongly in L(09), it follows that

)\/ | T (w)| |t — u| do — 0 as m — 0o (43)
o9

and
/ |G ()| |ty — u|do — 0 as m — oo. (44)
I9)

By combining (37) and (38) — (44) we conclude that

N . .
lim (Z/Q (ai(z, Tn(tum), V) — ai(z, Ty (), Vu)) (D't — D*u) dx

m—r o0

+/ (|t |22t — 27 %0) (w, — w) dl‘) =0.
Q

(45)
In view of Lemma 3.1, we conclude that
Uy, — u  strongly in Wl’ﬁ(')(Q), (46)
D'u,, — D'u ae.in Q for i=1,...,N.
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Thus, we have a;(z, T, (tum), V) = ai(z, T, (u), Vu) almost everywhere in €Q,
and since (a;(z, Ty, (Um ), Vi) )m is uniformly bounded in LP:()(Q), it follows
that

ai (%, Ty (), V) = ai(z, T (u), Vu) weakly in  LPi()(0Q), (47)

fori=1,...,N.

Step 4 : Passage to the limit

By taking v € WHPO(Q) N L=(Q) as a test function for the approximate
problem (15) we have

N
Z/ a; (%, Ty (tm ), V) D'v dx+a/ T ()" T ()0 d
Q

—/ |t |B™ lumvd:c—l—)\/ T (um) vdo (48)

T,( po(w) T (g
:/ ()vdm—l—u/' )| (u )vdx—i— G(z) v do.
Q |z[Pol@) + L o9

In view of (33) — (35) and (47), then letting m tends to infinity we conclude
that

oN

T (w)|Po @) =1, (u
:/ vdx+u/| wl ()vdx—l— G(z) vdo.
|z[Po(®) + L o9

N
Z/ai(x,Tn(u),Vu)Div dm—i—a/ Ju|"@) =Ly da:+)\/ T, (u)v do

Thus, the proof of the theorem 4.2 is concluded.

5. Main result

Let Q be a bounded open subset of RN (N > 2) containing the origin, with
Lipschitz boundary 052,

Let p;(-) € C4(Q) for i = 0,1,...,N where po(z) = max{p;(z), i =
0,1,...,N} ae. in Q.

Definition 5.1. A measurable function u is called a renormalized solution of
the quasilinear elliptic problem (6) if u € 7,5 2 )( ), such that

lim / a;(x,u, Vu)D'u dx = 0,
h—mz {h<|u|<h+1}
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and verifying the following equality

N . .
Z /Q a;(z,u, Vu)(D'uS' (u)p + S(u)D*p)dz +

/ IUIT(“‘luS(u)wderA/ uS(u)pdo (50)
1)
[ufrt) =2y
f uw)edz + v @ S(u)edx + g(z)S(u)pdo,
Q |zl Be)

for every p € WO (Q)NL>®(Q). and for any smooth function S(-) € W ()
with a compact support.

We will establish the following result

Theorem 5.2. Let a,\,v > 0 and f € L'(Q), g € L'(09Q), assuming that
(12)-(11) hold true. Then there exists at least one renormalized solution u for
quasilinear elliptic problem (6). Moreover, we have u € W4()(Q) with

pi(x)r(z)

(j'() = (r(-),q1(~),...,qN(-)) and 1 < qi(m) < m

fori=1,2,...,N.
(51)

Proof of Theorem 5.2

Step 1: Approximate problem

Let (fn)nen+ be a sequence of smooth functions in L'(Q) N L>°(Q) such that
fn — f strongly in LY(Q2) (for example f,(z) = T,,(f(x))), and let (gn(x))n
be a sequence in L'(9Q) N L>=(99Q) such that g, — g strongly in L'(99Q). We
consider the approximate problem of the equation (6), giving by

N
) B T (un) PO @) 2T, (uy,
—ZDlai(a:,Tn(un),Vun)—&—a\un\T(w lun:fn(ac)—FV' (un)| (un) inQ,
i=1 n
Z ai(z, Tn(un), Vun)ni + AXTn(un) = gn(x) on 992,

=1
(52)
In view of theorem 4.2, there exists at least one solution in the sense of distri-
butions u,, € WP0)(Q) N L7O+1(Q) for the approximate problem (52), i.e

Z/ ai(x, T (un), Vuy) D' dx—l—a/ |, |7 Ly de—i—)\/ T (uy)v do

o0

Ty, () |Po ™) =215,
/fn vdx—l—u/' ol (un)vdx—i—/ gn(2)v do,
\95 n o0

|p0(17

(53)
for every v € WHP1)(Q) N L>2(Q).
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Step 2 : A priori estimates

Lemma 5.3. Let u, be a solution in the sense of distributions for the approx-
imate problem (53), then the following regularity results hold true:

up € WHI(Q) - with G() = (r(), @), an (), (54)

1+ 6(x) N(po(x)—l)}
po(r)—1" N—po(z)

almost everywhere in 2. Then

where the exponents r(-) and q;(-) verifies r(x) > max {

r(z)pi()
r(z)+0(x) +1

and we have 1 < g;(z) <

D pi ()
Z/ 1|+|Z|0+5 )dng for all 6> 1, (55)
N ; +
Z/ | DT, (u) P dz < C(1 4+ k)P forall k>0, (56)
- Q

with C s a positive constant that does not depend on k and n, where 6+ =
max{d;", fori=1,--- N}.
Proof of Lemma 5.3.
Let 6 > 1, we consider the function ¢(t) : R — R defined by
1
Up) = (1 — —————)sign(uy, ).
() = (1 = s sienn)

By taking ¢(u,) as a test function for the approximate problem (53), and since
©(uy) has the same sign as u,, we get

aZxT ), V) Diuy,
-1 / dx —i—a/ unr(I)gaun dx
Z TEaTIL [l ()|

A [T ol o

Jpole)-1 (57)
[ 15u@ fotuldo v [ Tl o) s
n SO n o |1'|p0 I) + QO n
. |gn ()] l(un)| do-
We have 0 < |¢(u,)| <1, and in view of (13) we obtain
o(6 — 1) Z |Druy de+a [ |un|"@|o(u,)| de + A
1+ |u,L (1 + [u )70 |, in "
|Tn(un)||@(un)‘ do (58)
< [ it | DO 4y [ 1 1
|z[Pol®) + 2 89
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For the second term on the right hand side of (58) and by using Young’s
inequality, we have

[T () [P0 1|90(Un)| a (o dz
/ dz < 3 QIunl @) | (up)|dz+Cho e

|~”C|p°(””) + = Q || T -ro@FT
(59)
Thus, we have
N N
| D, [P () ey /
bo(6 — 1 ————dz + — un|"® o(u,)|dz + M
o0-03 [ et [ el et
T (un)|l(un)| do (60)
89 &
< [1f@ldescn | —Grm+ [ lgta)lo
Q2 )= po (@) F1 a0
N -1 1
Having in mind r(z) > M, then —— ———— € LY(Q). Tt follows
N —po(z) || T po (17T

that

};/ Pl [ ol [ (T ou)ldo < O
(1 + [up])fHo(@ Q ! oo " -
(1)

Then we conclude that estimate (55). For the estimate (56), in view of (55) we
have

N .
Z/ | DT ()
=179

Pi(w)

(@ oot \D Ty, (u

<Cu(l+ k)‘9+5 for all 9 > 1.

We have |¢(s)| > £ for |s| > R = 25F large enough, we obtain

qlz/mw@wmmm+/|nwmwwmw
Q o0

1 1
2o [ g | T ()| dor

2 J{jun|>R} . 2 Joon{|un|>R}
> / |un|r(m) dz + 7/ [T (uy)| do — RT+IHGS(Q) — Rmes(09Q).

2 Ja 2 Joq

(63)
It follows that
Q 9

r(@)pi(z)
i ety D

r(x)(pi(T) — q;\T o
(@) —d(x) fori=1,...,N

Now, taking ¢;(-) € C+(£2) such that 1 < ¢;(z) < 1=

., N, and by choosing 1 < 0 <

)
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we have
) Di. |2i(2) (%) (0+5(x))
/‘Dzun (@) g S/ | uzv(m(e%(z)) (1+|Un|)q pi T da
o %1+ ) IO
| D*u,, [P (%) / a; () (0+6(2))
< = " _dx+ 1+ |u pi(@)—a;(@) dg
_/Q(1+|un|)9+5(m) [0+ )
; () (0+5(x))

< Cll + / (1 —+ |un|) pi(@)—a; (@) dg

Q
<Ciz+ 014/ |t ") daz
Q
< Cis.
(65)
According to (63) and (65), we deduce that u, € V[/OLq(')(Q)7 where ¢(-) =
(r(-),q1(-),- -+ ,an(-)), such that

r(2)pi(z)
1+ r(z)+d6(x)

1+6(x) N(po(z) - 1)}

1 <gi(z) < po(x) =1 N —po(x)

and r(z) > max{

a.e. in €.

Step 8 : The weak convergence of (Ty(uy)), in WHP)(Q)

To show the weak convergence of (Tg(uy)), in WHP()(Q), we shall show that
(un)n is a Cauchy sequence. Indeed, in view of (62) we have

1Tk (un)ll1p0y - < C(R), (66)

where C(k) is a positive constant not depending on n. Then, the sequence
(Tx () is uniformly bounded in W#()(Q), it follows that : there exists a
subsequence still denoted (T (u,,)), and a measurable function vy € WP()(Q)
such that

Tr(up) — v, weakly in WLﬁ(‘)(Q)
Ti(un) — v strongly in LE(Q) and a.e.in (67)
Ti(up) — v, weakly in Ll(aQ).

Let k > 1, in view of (63) we have
k- meas{[un| > k} < / '@ da < Cys, (68)
{lun|>k}
it follows that

Ci1

meas{|u,| > k} < T 0 as k — oo. (69)
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For all n > 0, we have

meas{|tun—um|>n} <meas{|un| > k}+meas{|um| > k}+meas{|Tx(un)—Tk(um)| >n}.
(70)

Let € > 0, using (69) we can choose k = k(e) large enough such that

meas{|u,| > k} < % and meas{|u,| >k} < % (71)

On the other hand, thanks to (67) we can assume that (Tj(un))nen is a Cauchy
sequence in measure. Thus, for any & > 0 and n,e > 0, there exists ng =
no(k,n, e) such that

meas{|Tx(un) — Tk (um)| > n} < % Vn,m > ng(k,n, ). (72)

By combining (70) and (71) — (72), we conclude that : for any 1 > 0 and € > 0,
there exists ng(n, ) such that

meas{|u, — up| >n}t <e Vn,m >ng(k,n,e). (73)

Thus, the sequence (u, ), is a Cauchy sequence in measure, and there exists
a measurable function v and a subsequence, still denoted by (uy)n, such that
u, — u almost everywhere in 2. Consequently, we deduce that

T(un) = Ti(u) weakly in leﬁ(')<Q)
Tk(un) — Tk(u) strongly in LB(Q) and a.e. in Q (74)
Ti(un) — Tp(u) weakly in  L'(99).

ITn(un)l’”“(m)_QTn(un))

Step 4: The equi-integrability of (|u.|" " 'u,), and ( ojro@ 1 1
x x =

We shall prove that

|un|r(“") 1un%|u|r(1) Yu  strongly in  L'(Q), (75)
(z)-2 (z)—2
T (up,) [POY) 2T, (u u|Po®) ™2y, .
£ |nx)||1’0(70) 1”( n) | ||33|PD($) strongly in  L'(Q). (76)

By using 77 (u, — Th(u,)) as a test function in (53), we obtain

N
Z/ ai(x,Tn(un),Vun)Diun dz
= Jih<lun|<ht1}

i
ta i || T (1t — T ()| dz + )\/ (T ()| dor
{lun|>h} {|ttn|>h+1}NOQ
| T, (y, ) [Po (@) =1

- /{unzh} hldey V/{unZh} EEEEET T

+ lg(x)] do.
{Jun|>h}N0Q
(77)
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Thanks to Young’s inequality, we have

T, po(z)—1
V/{ . %m(un — Th(un))| da

jefpo) +
a dz
<@ n T = Talwn ) do+ Cos [
3 J{junlzh} {lun|>h} |g| 7T po 17T
(78)
Then

N
Z/ ai(x, Ty (un), Vin ) D'y, do + 2 / |un|"® dz
{h<lun|<h+1} 3 J{jun|zh+1)

=1
+I// %dw-i-)\/ |7 (uy)| do
(un|zht1}  |@[PO®) + {\un|§h+1}ﬂaﬂ
X

< |f(z)| dz 4 2C15 ——mr@ T ()l do
{lun|=h} Hun|2h} || 7@ =po=)+1 {lun|>h}NOQ

(79)

We have f(z) € LY(Q) and ———5— € L'(Q), having in mind that

‘x‘ r(xz)—po(xz)+1

meas({|u,| > h}) — 0 as h tends to infinity, we obtain

d
/ |fn(£17)|d17+2015/ % — 0 as h — oo. (80)
{lunl=h} |un|>h} |g| 7 =rotI 1

{ o(z)+1

Similarly, we have g(z) € L*(99) and since meas({|u,| > h} NIN) — 0 as h
tends to infinity, it follows that

/ lg(x)| do — 0 as h — oo. (81)
{|un|>h}NOQ

By combining (79) and (80) — (81) we conclude that
N .
lim limsup » / ai(z, Ty (), Vi) Diu,, dz = 0. (82)
h {h<un|<h+1}

—0 n—ooo X
=1

and

Tn n po()—1
3 (/ o)1 d -+ / % dx) =0. (83)
"o M lun iz (unlzny  |2[Po@) + 5

Thus, for any n > 0, there exists h(n) > 0 such that

Tn n po(z)—1
{lun|Zh(m)} {lunlh(py 2P + 5 2
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On the other hand, for any measurable subset E C €2, we have

|Tn(un)|po(fc)—1
B |zl + 4
T ()P0
< r(x) | h(n)\Un
< [ ()@ az+ [ e (85)
|Tn(“n)|p0($)_1

+/ T, ()| @) da +/ o da.
{Jun=h(m)} {lunlzh()y  |2[PE) 4+ 5

Then, in view of (74) there exists S(n,h) > 0 such that : for any E C Q we
have

Ty () |P0*) 1
r(x) | h(n) \Un
/E ‘Th(rl)(un)‘ dx+/E |$|p0($) S

Finally, by combining (84), (85) and (86), it yields

/ T ()@ e + i
E

for meas(E) < (n,h). (86)

N3

\Tn(un)|p°(z)_1 )
W dz <n for any ECQ with meas(E) <S(n).
B |z|Pot o

(87)
|Tn(un)|p0(m)72Tn(un)> are

el 1 L

/ (T (1) [+
E

We deduce that (|Ty(un)["® Ty (1n))n, and (
equi-integrable. Having in mind that
1T ()@ 0 (1) — u™ @ 2 ae.in Q,

and
|Tn(un)|Po(x)*2Tn(un) |u|po(z)—2u

|1~|P0(Z) +% |x\P0(w) a.e. in ).

Thus, in view of Vitali’s theorem, the convergence (75) and (76) are concluded.

Step 5 : Strong convergence of truncations

In the sequel, we denote by ¢;(n) for i = 1,2,... some various functions of real
variables that converges to 0 as n tends to infinity, respectively, we define ¢;(h)
and &;(n, h).

Let h > k > 0, we set z,, =ty — T (tn) + Tk () — Tk (u) and wy, := Tog(24).
By using w,, as a test function for the approximate problem (53), we obtain

N
Z/ ai(x, T (un),V, ) D'w, dx—l—a/ |un\r(z)_1unwn dz+X | T,(up)w, do
/o Q Ele)

_ [T 1) P22 (1)
_/an(a?)wn dnc—l—u/Q [afpo + Wy, dx+/ag gn(z)w,, do.
(88)
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For M = 4k + h, it is easy to check that D'w,, = 0 on the set {|u,| > M}. we
get

N

/ ai(x, Tag(un), VT (un)) Diw, da + )\/ T, (uy)wy, do
i=1 Y {lun|<M} Fle)

</ @) a4y [ Tl |d~””+/ |n(@)lwn| d
n n n n g
~Ja o |z 4 & o9 I

|r(:1:

+a/|un )wy| dz.
Q

(89)
For the first term on the right hand side of (89), we have w,, = Tay(u —Th(u))
weak—x in L>°((2), and since f(z) € L'(2) we deduce that

n—oQ

lim /Qlf(w)llwn\dw ZAIf(x)\ITzk(u—Th(U))ldx

<2k |f(z)| de — 0 as h — oo.
{lun|>h}
(90)

Similarly, in view of (75) and (76) we have

I T, (uy, ) |Po®) =1 Ju[Po (@)1
im En®n)l 7 "

n—oo [ ‘x|1)o(z) + % |T2k(u B Th(u))‘ dz (91)

|1.Un| dx = o 7|x|p0(37)

|u|Po(®)—1
§2k‘/ ﬁdx—>0ash—>oo.
(ul>hy  |2[Pel®

and

lim / t |"® | wy, | dz < 2k/ Ju|"®) dz — 0 as h — oo.
n—eo Jo {lul>h}

(92)
Moreover, since w,, — Tor(u — Th(u)) weak—x in L>°(09), and since g(z) €
L' (09) we deduce that
lim lg(2)||wp| do < 2k lg(z)| do — 0 as h — oc.
=0 J o0 a0N{|u|>h}
(93)

For the second term on the left-hand side of (89), since w,, has the same sign as
uy, on the set {|u,| > k}, and since w,, = T (uy,) — Tk (u) on the set {|u,| < k}
we have

/ T (uy)wpdo :/ Uy Wn d0+/ |te ||, | do
20 {Jun|<k}NOQ {Jun|>k}NOQ

> Tk (un) (T (un) — Tk (u))do — 0 as n — oo.
{lun|<k}NOQ
(94)
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By combining (89) and (90) — (94), we deduce that

N .

Z/ a;(x, Thr(un), VI (uy)) D'wy de < e1(n, h). (95)
{lun|<M}

i=1
On the other hand, we have a(z,s,0) = 0 then

N .
a;(x, T (up), VI (uy)) D' w, dx
S [ e T, T )
N .
:Z / a5, Ty (), VT (1)) D' (T (tn) — To(w)) da

/ ai(x, Ty (un), V) (D*uy — DTy, (wy ) — D' Ty (u) )da:
{k<lun|<M}N{|zn|<2k}

MZH

/( i (2, T (), VT () — ai (@, Th (1), V Tk (w)) (D Ty, () — D' T (u)) dae

(2, Ti(un), Vi (w)) (D' Ty (uy) — D'T(u)) dz

2|M2H

h<|tun | <MIN{|z,|<2k}

N

ai(z, Th(un), VTM(un))DiTk(u) dx
{k<|un|<M}IN{|zn| <2k}

“3 f o

/{ a;(x, Tar (un), VT (uy)) Dy, dz
/

h

(96)
It follows that

N

Z/ﬂ(ai(x,Tk(un),VTk(un))—ai(x,Tk(un),VTk(u)))(DiTk(un)—DiTk(u))da:
N

< Z / las(, T (un), VT ()] | DT () — DT ()| da

+Z/ (5@, Tar (), VTar (wn))] |D*Te(w)| dz + 1(n, B).

(k< |un| <M}

(97)
For the first term on the right-hand side of (97), we have Ty (uy,) tends strongly to
Ti(u) in LPi () then |a;(z, Tk (un), VT (w))| = |ai(z, Ti(un), VTi(u))| strongly
in LPi(Q), and since D*Ty(u,,) — DT}, (u) weakly in LPi (), it follows that

Z/Q |a;(z, Ti(un), VT (w)| | D' T (un) — D'Ti(u)|dz — 0 as n — oo,
(98)
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Concerning the second term on the right-hand side of (97), Thanks to (12) we
have (a;(, Tas (tn), VTaz (tn)))n is uniformly bounded in LP() (), then there
exists a measurable function ¢; € LPi()(Q) such that |a;(z, Tas (un ), Vs (un))]
— ¢; weakly in LPi()(Q), it follows that

N
lim / |ai(x,TM(un),VTM(un))HDiTk(uﬂ dx
n—)oo; {k<|un|<M}

N .
_ Z/ i DT (u)| dz = 0.
i=1 {k<|un|<M}

By combining (97) and (98) — (99), we conclude that

N
;/Q(ai(;v,Tk(un),VTk(un)) —a;(z, Tk (un), VT (w))) (100)
(DTy,(up) — DTy (u))dz < e3(n, h).

According to (74), and letting n and h tend to infinity, we obtain

lim (;/g(ai(m,Tk(un),VTk(un))—ai(w,Tk(u),VTk(u)))(DiTk(un)—DiTk(u))da:

n— 00\ 4

+/(|Tk(un)|£_2Tk(Un) = | T (@) |2~ Tho(w) ) (T (un) — T (u)) dx) =0.

Q
(101)
In view of Lemma 3.1, we conclude that
Ti(un) = Ti(u) strongly in - WHPO(Q), (102)
D'u, — D'u a.e.in Q for ¢=1...,N.

Therefore, for i = 1,---,N we have a;(z, T}, (uy,),Vu,) - Diu, tends to
a;(z,u, Vu) - D'u almost everywhere in 2. Thanks to Fatou’s Lemma and (82),
we conclude that

lim ai(x,u, Vu) - D'u dx

h=00 J{h<|u|<h+1}

< lim liminf a;i(z, Ty (un), Vuy,) - D'u, d (103)
h—o00 n—o0 [h<|un|<h+1}

< lim limsup ai(x, Tn(un), V) - Du, dz = 0.

h=00 n—oo J{h<|u,|<h+1}

Step 6: Passage to the limit.

Let p € WHP0)(Q) N L>=(N), and let S(-) be a smooth function in W (IR)
such that supp (S(-)) C [-M, M] for some M > 0.
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By choosing S(u,)p as a test function for the approximate problem (53),
we obtain

Z /sz ai(x, Ty (un), Vun ) (S () oDty + S(un) Do) dz

—|—a/ | |7 lunS(un)gadJ:+>\/ n(un)S(un)p do

T( po(fc) 2T "
/fn gad:c—!—l// |75 (un)| @ (u )S(un)tpdx—&—/ gn(2)S(un)p do.
|z[po(® + 1 o9
(104)

For the first term on the left-hand side of (104) we have

/Qai(:c, T (un), Vun)(S/(un)goDiun + S(un)Dicp) dx

= /Qai(x,TM(un), VT (un)) (S’(un)goDiTM(un) + S(TM(un))Digo) dz.

In view of (12), we have (a;(z, Tar(un), VIas(un)))n is uniformly bounded in
LPi()(Q), and since a;(x, Tas(un), VTar(u,)) tends to a;(x, Tas(u), VIar(u))
almost everywhere in €2, it follows that

ai(2, Tar(un), Vs (un)) = ai(z, Tar(u), VT (v))  weakly in - LPiO)(Q),

and since S'(u,)pDTas(un) + S(Thr(un))Die tends to S'(u)eD Tas(u)+
S(Ta(u)) D strongly in LPi()(Q), we obtain

Jim Z/ 052, T (1), Vi) (S () D't + S(un) D'p) dz

n—o0 4

—1im Y /Q s, Tor(02). T (1)) (' (1) D T () + (Do () D' ) de

n—o0 4
=

- Z /Q ai(z, Tar (u), Vs (w)) (S’(u)goDiTM(u)+S(TM(u))Diap) da

EJ_V:/ ai(z,u, Vu) (Sl(u)chiu+S(u)Di4p) de.

(105)
On the other hand, we have f,, — f strongly in L*(9), and since S(Tas(u,))p —
S(Th(u))p weak—x in L°(§2), we deduce that

lirf /fn S(Tar(un)) cpdxf/f S(Ths(u) godmf/f u)p de.
n—-—+oo

(106)
Similarly, in view of (75) and (76) we obtain

lim /|un|r(1)_1unS(TM(un))gpdm:/ lu|"@ =S (u)p da, (107)
Q

n—-+00 Q
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and
1 ‘Tn(u?L)‘po($)_lT7z(un) o |U|PO($)_1UJ
ngl—ll-loo/g |{E|p0($) n % S(TM(UTL))QO dz = o WS(U)@ dx.
(108)

Moreover, we have S(Tar(un))p — S(Th(u))p weak—x in L°(9€) then

lim gn(2)S(Thr (un))e do :/
n—=o0 Jaq o

9(2)S(Tar (u))g do = /a g(@)S(u)p dor
(109)
and

lim | Tn(un)S(Th(un))pdo= lim TM(un)S(TM(un))nde:/ uS(u)pdo.

By combining (104) and (105) — (110) together, we obtain

N
Z/ ai(x,u,Vu)S(u)cpdx—i—a/ |u\r(w)_1u5(u)g0dx+)\/uS(u)ade
= Ja Q Q
1 -2
:/f(x)S(u)apdx+V/ ﬁS(u)godx—i-/ g(x)S(u)p do,
Q o |zl o9

(111)
which conclude the proof of the theorem 5.2.
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