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Abstract. This paper aims to study the existence of renormalized solutions for
the anisotropic elliptic problem with a Hardy potential and Fourier boundary
conditions

−
N∑
i=1

Diai(x, u,∇u) + α|u|r(x)−1u = ν
|u|p0(x)−2u

|x|p0(x)
+ f(x) in Ω,

N∑
i=1

ai(x, u,∇u) · ni + λu = g(x) on ∂Ω,

where Ω is an open bounded subset of IRN (N ≥ 2), the data f belongs to
L1(Ω), g ∈ L1(∂Ω) and α, λ, ν > 0. with ai(x, s, ξ) are Carathéodory functions
that verifying some nonstandard conditions.
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renormalizadas para el problema eĺıptico anisotrópico con un potencial de
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Hardy y condiciones de borde de Fourier
−

N∑
i=1

Diai(x, u,∇u) + α|u|r(x)−1u = ν
|u|p0(x)−2u

|x|p0(x)
+ f(x) in Ω,

N∑
i=1

ai(x, u,∇u) · ni + λu = g(x) on ∂Ω,

donde Ω es un subconjunto abierto y acotado de IRN (N ≥ 2), los datos f
pertenecen a L1(Ω), g ∈ L1(∂Ω) y α, λ, ν > 0. con ai(x, s, ξ) son funciones de
Carathéodoria que verifican algunas condiciones no estándar.

Palabras y frases clave. Espacio de Sobolev de exponente variable anisotrópico,
problema eĺıptico cuasilineal, potencial de Hardy, condiciones de contorno de
Fourier, solución renormalizada, L1−datos.

1. Introduction

In recent years, increasing attention has been paid to anisotropic elliptic prob-
lems in the study of nonlinear elliptic equations involving lower-order terms.
The particular interest in these equations arises from their usefulness in the
mathematical modeling of physical and mechanical processes in anisotropic
continuums. It is recognized that lower-order terms can influence the exis-
tence, uniqueness, regularity, and asymptotic behavior of solutions to partial
differential equations, as evidenced by various studies (see, e.g., [11, 15]).

Let Ω be a bounded open subset of RN (N ≥ 2) containing the origin, with
Lipschitz boundary ∂Ω. In [24], the authors studied a nonlinear anisotropic
elliptic problem with a Fourier-type boundary condition, formulated as follows:

−
N∑
i=1

Diai(x,D
iu) + β(u) ∋ µ in Ω,

N∑
i=1

ai(x,D
iu) · ni + λu = g(x) on ∂Ω,

(1)

where β is a maximal monotone graph on R with 0 ∈ β(0), and µ is a bounded
Radon measure. They proved the existence and uniqueness of renormalized or
entropy solutions to the general elliptic problem (1). For related results, see
also [6, 8]. In [23], I. Ibrango and S. Ouaro investigated the following nonlinear
elliptic problem with a Fourier-type boundary condition:

−
N∑
i=1

Diai(x,D
iu) + b(u) = f in Ω,

N∑
i=1

ai(x,D
iu) · ni + λu = g(x) on ∂Ω,

(2)
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where f and g belong to L1(Ω) and L1(∂Ω), respectively. Using monotone
operator techniques in Banach spaces, they established the existence of a weak
solution. Furthermore, via approximation methods, they proved the existence
and uniqueness of entropy solutions. Additional details can be found in [7, 9, 11].

In [2], the authors have studied the nonlinear elliptic problem −△u± |∇u|2 = λ
u

|x|2
+ f in Ω,

u = 0 on ∂Ω,
(3)

with λ > 0, they have demonstrated the existence of positive solutions for the
problem (3) in the absorption case (+|∇u|2) with f ∈ L1(Ω). In the diffusion
case (−|∇u|2), the non-existence of solution is proved even in a very weak sense,
we refer to [1], [2] and [3]). Porzio has considered in [29] the quasilinear elliptic
problem  −div(M(x, u)∇u) + ν|u|s−1u = λ

u

|x|2
+ f in Ω,

u = 0 on ∂Ω,
(4)

with s >
N

N − 2
. the author has established the existence of solution u ∈

W 1,q
0 (Ω) for every 1 < q < 2s/(s + 1), we refer the reader also to [30]. The

authors have investigated in [5] the existence of entropy solutions for the quasi-
linear elliptic problem Au+ |u|s(x)−1u = f + λ

|u|p0(x)−2u

|x|p0(x)
in Ω,

u = 0 on ∂Ω,

(5)

in the anisotropic variable exponent Soblev spaces, where Au = −
N∑
i=1

ai(x, u,

∇u) is a Leray-Lions operator, such that the Carathéodory functions ai(x, u,∇u)
verifies sone non-standard assumptions, with λ ≥ 0, f ∈ L1(Ω) and

s(x) > max
(N(p0(x)− 1)

N − p0(x)
,

1

p0(x)− 1

)
a.e in Ω.

For more results involving Hardy potential, we refer the reader to [15], [16],
and [17].

Since f belongs to L1(Ω), we cannot expect a solution in the sense of dis-
tributions, as there is no guarantee that the field ai(x, u,∇u) ∈ L1

Loc(Ω). To
address this difficulty, we adopt the framework of renormalized solutions in this
work. The notion of a renormalized solution was introduced for the first time
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P.-L. Lions and Di Perna in [20] by studying the Boltzmann equation. This no-
tion was adapted to elliptic problem with L1 data in the reference [14] (see also
[27, 28]). Also, this adaptation was applied to elliptic problems with bounded
measure data in [18]. For parabolic equations with L1 data, this notion was
adapted by D. Blanchard and F. Murat in [12] and by D. Blanchard et al. in
[13]. At the same time, the equivalent notion of entropy solutions has been
developed independently by Bénilan et al. in [10] for the study of nonlinear
elliptic problems.

In this paper, we study the existence of renormalized solutions for the fol-
lowing quasi-linear anisotropic problem with degenerate coercivity, and the
Fourier boundary condition :

−
N∑
i=1

Diai(x, u,∇u) + α|u|r(x)−1u = ν
|u|p0(x)−2u

|x|p0(x)
+ f(x) in Ω,

N∑
i=1

ai(x, u,∇u) · ni + λu = g(x) on ∂Ω,

(6)

for all f ∈ L1(Ω) and g ∈ L1(∂Ω) and for all α, ν > 0 and λ > 0. We prove
the existence of solutions in the sense of distributions for the case of L∞−data.
Furthermore, we conclude the existence and regularity of renormalized solutions
in the anisotropic variable exponent Soblev spaces for L1−data.

The paper is organized as follows: In Section 2 we recall some definitions
and lemmas concerning the anisotropic Sobolev spaces with variable exponents.
Section 3 is devoted to presenting the assumptions on the Carathéodory func-
tions ai(x, u,∇u) under which our problem has at least one solution. Section 4
is dedicated to study the existence of solution in the sense of distributions for
our elliptic equation with right-hand side F (x) ∈ L∞(∂Ω) and G(x) ∈ L∞(∂Ω).
In the last section, we establish the existence of renormalized solutions for the
non-coercive elliptic equation (6) with the right-hand side f(x) ∈ L1(Ω) and
g(x) ∈ L1(∂Ω).

2. Main results

Let Ω be a bounded open subset of IRN (N ≥ 2), with Lipschitz boundary ∂Ω,
we denote

C+(Ω) = {measurable function p(·) : Ω 7−→ IR such that 1 < p− ≤ p+ < N},

where

p− = ess inf{p(x) / x ∈ Ω} and p+ = ess sup{p(x) / x ∈ Ω}.

We define the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all
measurable functions u : Ω 7→ IR for which the convex modular

ρp(·)(u) :=

∫
Ω

|u|p(x)dx
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is finite. If the exponent is bounded, i.e. if p+ < +∞, then the expression

∥u∥p(·) = inf{λ > 0 : ρp(·)(u/λ) ≤ 1}

defines a norm in Lp(·)(Ω), called the Luxemburg norm.

The space (Lp(·)(Ω), ∥ · ∥p(·)) is a separable Banach space. Moreover, if 1 <

p− ≤ p+ < +∞, then Lp(·)(Ω) is uniformly convex, hence reflexive, and its

dual space is isomorphic to Lp′(·)(Ω), where
1

p(x)
+

1

p′(x)
= 1. Finally, we have

the Hölder type inequality:∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ (
1

p−
+

1

(p′)−
)∥u∥p(·)∥v∥p′(·) (7)

for any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).

An important role in manipulating the generalized Lebesgue spaces is played
by the modular ρp(·) of the space Lp(·)(Ω). We have the following result :

Proposition 2.1. (see [21], [31]) If un, u ∈ Lp(·)(Ω), then the following
properties hold true:

(i) ∥u∥p(·) < 1 (resp,= 1, > 1) ⇐⇒ ρp(·)(u) < 1 (resp, = 1, > 1),

(ii) ∥u∥p(·) > 1 =⇒ ∥u∥p
−

p(·) ≤ ρp(·)(u) ≤ ∥u∥p
+

p(·) and ∥u∥p(·) < 1 =⇒

∥u∥p
+

p(·) ≤ ρp(·)(u) ≤ ∥u∥p
−

p(·),

(iii) ∥un∥p(·) → 0 ⇐⇒ ρp(·)(un) → 0, and ∥un∥p(·) → ∞ ⇐⇒ ρp(·)(un) →
∞,

which implies that the norm convergence and the modular convergence are
equivalent.

We refer the reader to [19] for more details concerning Lebesgue space with
variable exponent.

Now, we define the anisotropic variable exponent Sobolev space used in the
study of our quasilinear elliptic problem (6).

Let p1(·), p2(·), . . . , pN (·) be N variable exponents in C+(Ω). We denote

p⃗(·) = (1, p1(·), . . . , pN (·)), D0u = u and Diu =
∂u

∂xi
for i = 1, . . . , N,

and we define

p = min{p−1 , . . . , p
−
N} then p > 1. (8)
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The anisotropic variable exponent Sobolev space W 1,p⃗(·)(Ω) is defined as follow

W 1,p⃗(·)(Ω) = {u ∈ W 1,1(Ω) and Diu ∈ Lpi(·)(Ω) for i = 1, 2, . . . , N},

endowed with the norm

∥u∥1,p⃗(·) = ∥u∥1,1 +
N∑
i=1

∥Diu∥pi(·). (9)

The space
(
W 1,p⃗(·)(Ω), ∥u∥1,p⃗(·)

)
is a reflexive Banach space (cf. [26]).

Lemma 2.2. We have the following continuous and compact embedding

• if p < N then W 1,p⃗(·)(Ω) ↪→↪→ Lq(Ω) for q ∈ [p, p∗[, where p∗ =
Np

N − p
,

• if p = N then W 1,p⃗(·)(Ω) ↪→↪→ Lq(Ω) ∀q ∈ [p,+∞[,

• if p > N then W 1,p⃗(·)(Ω) ↪→↪→ L∞(Ω) ∩ C0(Ω).

The proof of the lemma follows from the fact that the embedding W 1,p⃗(·)(Ω)
↪→ W 1,p(Ω) is continuous, and in view of the compact embedding theorems of
Sobolev spaces.

Definition 2.3. Let k > 0, we consider the truncation function Tk(·) : IR 7−→
IR, given by

Tk(s) =

 s if |s| ≤ k,

k
s

|s|
if |s| > k,

and we define

T 1,p⃗(·)(Ω) := {u : Ω 7→ IR measurable, such that Tk(u) ∈ W 1,p⃗(·)(Ω) for any k >
0}.

Proposition 2.4. For any u ∈ T 1,p⃗(·)(Ω), there exists a unique measurable
function vi : Ω 7→ IR for any i ∈ {1, . . . , N} such that

∀k > 0 DiTk(u) = vi.χ{|u|<k} a.e. x ∈ Ω,

where χE represents the characteristic function of a measurable set E. The
functions vi are called the weak partial derivatives of u and are still denoted
Diu. Moreover, if u belongs to W 1,1(Ω), then vi coincides with the standard
distributional derivative of u, that is, vi = Diu.
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Definition 2.5. We introduce the set T 1,p⃗(·)
tr (Ω) as a subset of T 1,p⃗(·)(Ω) for

which a generalized notion of trace may be defined (see also [4] for the case

of constant exponent). More precisely, T 1,p⃗(·)
tr (Ω) is the set of function u in

T 1,p⃗(·)(Ω), such that : there exists a sequence (un)n in W 1,p⃗(·)(Ω) and a mea-
surable function v defined on ∂Ω and verifying

(a) un −→ u a.e. in Ω.

(b) DiTk(un) −→ DiTk(u) in L1(Ω) for every k > 0.

(c) un −→ v a.e. on ∂Ω.

The function v is called the trace of u in the generalized sense introduced in
[4].

Proposition 2.6. Let u ∈ W 1,p⃗(·)(Ω), the trace of u on ∂Ω will be denoted by
τ(u).

For any u ∈ T 1,p⃗(·)
tr (ω), the trace of u on ∂Ωwill be denote by tr(u) or u,

the operator tr(·) satisfied the following properties:

(i) if u ∈ T 1,p⃗(·)
tr (Ω), then τ(Tk(u)) = Tk(tr(u)) for any k > 0.

(ii) if φ ∈ W 1,p⃗(·)(Ω), then, for any u ∈ T 1,p⃗(·)
tr (Ω), we have u−φ ∈ T 1,p⃗(·)

tr (Ω)
and tr(u− φ) = tr(u)− τ(φ).

In the case where u ∈ W 1,p⃗(·)(Ω), tr(u) coincides with τ(u). Obviously, we have

W 1,p⃗(·)(Ω) ⊂ T 1,p⃗(·)
tr (Ω) ⊂ T 1,p⃗(·)(Ω).

Lemma 2.7. (see [22], Theorem 13.47) Let (un)n be a sequence in L1(Ω) and
u ∈ L1(Ω) such that

(i) un → u a.e. in Ω,

(ii) un ≥ 0 and u ≥ 0 a.e. in Ω,

(iii)

∫
Ω

un dx →
∫
Ω

u dx,

then un → u strongly in L1(Ω).
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3. Essential assumptions

In this paper, we establish the existence of renormalized solutions for the non-
coercive quasilinear anisotropic elliptic equation given by

−
N∑
i=1

Diai(x, u,∇u) + α|u|r(x)−1u = ν
|u|p0(x)−2u

|x|p0(x)
+ f(x) in Ω,

N∑
i=1

ai(x, u,∇u) · ni + λu = g(x) on ∂Ω,

(10)
Let pi(·) : Ω → (1,+∞) measurable for i = 1, . . . , N. We consider the Leray-
Lions operator A, acted from W 1,p⃗(.)(Ω) into its dual, defined by

Au = −
N∑
i=1

Diai(x, u,∇u),

where ai : Ω × IR × IRN 7−→ IR are Carathéodory functions for i = 1, . . . , N
(measurable with respect to x in Ω for every (s, ξ) in IR× IRN , and continuous
with respect to (s, ξ) in IR × IRN for almost every x in Ω), which satisfy the
following conditions :

N∑
i=1

(ai(x, s, ξ)− ai(x, s, ξ
′))(ξi − ξ′i) > 0 for ξi ̸= ξ′i, (11)

|ai(x, s, ξ)| ≤ β(Ki(x) + |s|pi(x)−1 + |ξi|pi(x)−1) for i = 1, . . . , N, (12)

for a.e. x ∈ Ω and all (s, ξ) ∈ IR× IRN , where the nonnegative functions Ki(·)
are assumed to be in Lp′

i(·)(Ω) for i = 1, . . . , N , with
1

pi(x)
+

1

p′i(x)
= 1 and β

is a positive constants.

ai(x, s, ξ)ξi ≥ b(|s|)|ξi|pi(x) for i = 1, . . . , N, (13)

where b(·) : IR+ 7→ IR+ is a decreasing function. Furthermore there exists a
positive constant b0 and δ(·) is a measurable function such that

b(|s|) ≥ b0
(1 + |s|)δ(x)

,

and 0 < δ(x) < pi(x)− 1 a.e. in Ω for i = 1, · · · , N.

The data f(x) ∈ L1(Ω) and g(x) ∈ L1(∂Ω), the constants α, ν > 0 and
λ > 0, the exponents r(x) and δ verifying

r(x) > max
{ 1 + δ(x)

pi(x)− 1
,
N(p0(x)− 1)

N − p0(x)

}
.

We are going now to recall the following technical Lemma, useful to prove our
main results.
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Lemma 3.1. (see [9]) Let k > 0, assuming that (12)− (11) hold true, and let
(un)n∈IN be a sequence in W 1,p⃗(·)(Ω) such that un ⇀ u weakly in W 1,p⃗(·)(Ω)
and

N∑
i=1

∫
Ω

(ai(x, Tk(un),∇un)− ai(x, Tk(un),∇u))(Diun −Diu) dx

+

∫
Ω

(|un|p−2un − |u|p−2u)(un − u) dx → 0 as n → ∞,

(14)

then un → u strongly in W 1,p⃗(·)(Ω) for a subsequence.

4. Existence of solutions in the sense of distributions for L∞− data

We consider the quasilinear elliptic problem

−div a(x, Tn(u),∇u) + α|u|r(x)−1u = ν
|Tn(u)|p0(x)−2Tn(u)

|x|p0(x) + 1/n
+ F (x) in Ω,

a(x, Tn(u),∇u) · ni + λTn(u) = G(x) on ∂Ω,
(15)

with

G(x) ∈ L∞(∂Ω) and |F (x)| ≤ C0 for any x ∈ Ω, (16)

where C0 is a positive constant.

Definition 4.1. A measurable function u is called a solution in the sense
of distributions for the quasilinear anisotropic elliptic equation (15), if u ∈
W 1,p⃗(·)(Ω) and |u|r(x)+1 ∈ L1(Ω), such that u verifies the following equality

N∑
i=1

∫
Ω

ai(x, Tn(u),∇u)Div dx+ α

∫
Ω

|u|r(x)−1uv dx+ λ

∫
∂Ω

Tn(u) v dσ

=

∫
Ω

F v dx+ ν

∫
Ω

|Tn(u)|p0(x)−2Tn(u)

|x|p0(x) + 1/n
v dx+

∫
∂Ω

G v dσ,

(17)

for any v ∈ W 1,p⃗(·)(Ω) ∩ L∞(Ω), where r(x) >
N(p0(x)− 1)

N − p0(x)
a.e. in Ω.

Theorem 4.2. Assuming that (12)−(11) and (16) hold true. Then there exists
at least one solution in the sense of distributions for the quasilinear elliptic
equation (15).
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Proof of Theorem 4.2

Step 1 : Approximate problem

We consider the following approximate problem for the quasilinear elliptic equa-
tion (15), giving by

−
N∑
i=1

Diai(x, Tn(um),∇um) + α|Tm(um)|r(x)−1Tm(um)

+
1

m
|um|p−2um = ν

|Tn(um)|p0(x)−2Tn(um)

|x|p0(x) + 1/n
+ F (x) in Ω,

N∑
i=1

ai(x, Tn(um),∇um).ni + λTn(um) = G(x) on ∂Ω.

(18)
We define the operator Hm acted from W 1,p⃗(·)(Ω) into its dual (W 1,p⃗(·)(Ω))′

by

⟨Hmu, v⟩ =

N∑
i=1

∫
Ω

ai(x, Tn(u),∇u)Divdx+
1

m

∫
Ω

|u|p−2uv dx

+λ

∫
∂Ω

Tn(u)v dσ −
∫
∂Ω

G(x)v dσ.

(19)

We consider the operator Km : W 1,p⃗(·)(Ω) 7−→ (W 1,p⃗(·)(Ω))′ given by

⟨Kmu, v⟩ = α

∫
Ω

|Tm(u)|r(x)−1Tm(u)vdx−ν

∫
Ω

|Tn(u)|p0(x)−2Tn(u)

|x|p0(x) + 1/n
vdx, (20)

for any u, v ∈ W 1,p⃗(·)(Ω), we have

|⟨Kmu, v⟩| = α

∫
Ω

|Tm(u)|r(x)|v| dx+ ν

∫
Ω

|Tn(u)|p0(x)−1

|x|p0(x) + 1/n
|v| dx

≤ αmr+

∫
Ω

|v| dx+ νnp+
0

∫
Ω

|v| dx

≤ C1∥v∥1,p⃗(·).

(21)

Lemma 4.3. The bounded operator Bm = Hm +Km acting from W 1,p⃗(·)(Ω)
into it dual (W 1,p⃗(·)(Ω))′ is a pseudo-monotone operator. Moreover, Bm is co-
ercive in the following sense :

⟨Bmv, v⟩
∥v∥1,p⃗(·)

−→ ∞ as ∥v∥1,p⃗(·) −→ ∞, (22)

for any v ∈ W 1,p⃗(·)(Ω).
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The proof of Lemma 4.3 is similar to the arguments of the proof in [8] (see
also [6]) with very few modifications.

In view of Lemma 4.3 (cf. [25], Theorem 8.2) there exists at least one weak
solution um ∈ W 1,p⃗(·)(Ω) for the problem (18), i.e.

N∑
i=1

∫
Ω

ai(x, Tn(um),∇um)Div dx+ α

∫
Ω

|Tm(um)|r(x)−1Tm(um)v dx

+
1

m

∫
Ω

|um|p−2umv dx+ λ

∫
∂Ω

Tn(um)v dσ

=

∫
Ω

F (x)v dx+ ν

∫
Ω

|Tn(um)|p0(x)−2Tn(um)

|x|p0(x) + 1/n
v dx+

∫
∂Ω

G(x)v dσ,

(23)

for any v ∈ W 1,p⃗(·)(Ω).

Step 2: Weak convergence of the sequence (um)m

Let m ≥ n ≥ 1, by taking v = um as a test function for the approximate
problem (18), we have

N∑
i=1

∫
Ω

ai(x, Tn(um),∇um)Dium dx+ α

∫
Ω

|Tm(um)|r(x) |um| dx

+
1

m

∫
Ω

|um|p dx+ λ

∫
∂Ω

|Tn(um)| |um| dσ

=

∫
Ω

F (x)um dx+ ν

∫
Ω

|Tn(um)|p0(x)−1|um|
|x|p0(x) + 1/n

dx+

∫
∂Ω

G(x)um dσ.

(24)

We set δ+ = max{δ+i , for i = 1, · · · , N}, in view of (13) and (16) we obtain

b0
(1 + n)δ+

N∑
i=1

∫
Ω

|Dium|pi(x) dx+ α

∫
Ω

|Tm(um)|r(x) |um| dx

+
1

m

∫
Ω

|um|p dx+ λ

∫
∂Ω

|Tn(um)| |um| dσ

≤ C0

∫
Ω

|um| dx+ ν

∫
Ω

|Tn(um)|p0(x)−1|um|
|x|p0(x) + 1

n

dx+ ∥G∥L∞(∂Ω)

∫
∂Ω

|um| dσ.

(25)
For the first and the second terms on the right-hand side of (25), by applying
Young’s inequality we have
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C0

∫
Ω

|um|dx ≤ C0

∫
{|um|≤m}

|um| dx+ C0

∫
{|um|>m}

|um| dx

≤ C1 + ε

∫
{|um|<m}

|Tm(um)|r(x) |um| dx+ C0

∫
{|um|>m}

|um| dx

≤ C1 + ε

∫
Ω

|Tm(um)|r(x) |um| dx+ C0

∫
{|um|>m}

|um| dx.

(26)
and

ν

∫
Ω

|Tn(um)|p0(x)−1|um|
|x|p0(x) + 1

n

dx ≤ νn

∫
Ω

|Tm(um)|p0(x)−1|um| dx

≤ α

4

∫
Ω

|Tm(um)|r(x)|um| dx+ C3(n)

∫
Ω

|um| dx

≤ (
α

4
+

C3(n)

C0
ε)

∫
Ω

|Tm(um)|r(x)|um| dx

+C3(n)

∫
{|um|>m}

|um| dx+ C4(n).

(27)
On the other hand, For the last term on the right-hand side of (25), in view of
the trace theorem, and thanks to (26) and Young’s inequality, we obtain

∥G∥L∞(∂Ω)

∫
∂Ω

|um| dx ≤ C5

(∫
Ω

|um| dx+

N∑
i=1

∫
Ω

|Dium| dx
)

≤ C5

C0
ε

∫
Ω

|Tm(um)|r(x)|um| dx+ C5

∫
{|um|>m}

|um| dx

+
b0

2(1 + n)δ+

N∑
i=1

∫
Ω

|Dium|pi(x) dx+ C7(n).

(28)

By taking ε > 0 small enough such that (1 +
C3(n)

C0
+

C5

C0
)ε ≤ α

4
and putting

(25) and (26)− (28) together, we conclude that

b0
2(1 + n)δ+

N∑
i=1

∫
Ω

|Dium|pi(x) dx+
α

2

∫
Ω

|Tm(um)|r(x) |um| dx

+
1

m

∫
Ω

|um|p dx+ λ

∫
∂Ω

|Tn(um)| |um| dσ

≤ C8(n) + (C0 + C3(n) + C5)

∫
{|um|>m}

|um| dx.

(29)
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Therefore, by taking m ≥ 1 large enough, for example
α

4
mr+ − (C0 +C3(n) +

C5)) > 0, a.e. in Ω, we get

b0
2(1 + n)δ+

N∑
i=1

∫
Ω

|Dium|pi(x) dx+
α

4

∫
Ω

|Tm(um)|r(x) |um| dx

+
1

m

∫
Ω

|um|p dx+ λ

∫
∂Ω

|Tn(um)| |um| dσ

≤ C8(n).

(30)

Moreover, Thanks to (30), there exists a positive constant C9(n) that not de-
pending on m such that

∥um∥1,p⃗(·) ≤ C9(n). (31)

Thus, the sequence (um)m is uniformly bounded in W 1,p⃗(·)(Ω), and there exists
a subsequence still denoted by (um)m such that


um ⇀ u weakly in W 1,p⃗(·)(Ω),

um −→ u strongly in Lp(Ω) and a.e. in Ω,

um ⇀ u weakly in L1(∂Ω) and a.e. on ∂Ω.

(32)

It follows that

1

m
|um|p−2um −→ 0 strongly in Lp′

(Ω) (33)

and in view of Lebesgue’s dominated convergence theorem we deduce that

|Tn(um)|p0(x)−2Tn(um)

|x|p0(x) + 1
n

−→ |Tn(u)|p0(x)−2Tn(u)

|x|p0(x) + 1
n

strongly in Lp′
(Ω).

(34)
Moreover, in view of (29) we conclude that (Tm(um))m is bounded in Lr(·)+1(Ω),
and since Tm(um) → u almost everywhere in Ω, we get

Tm(um) ⇀ u weakly in Lr(·)+1(Ω). (35)
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Step 3 : The convergence almost everywhere of the gradient

By taking v = um−u as a test function for the approximated problem (15) we
obtain

N∑
i=1

∫
Ω

ai(x, Tn(um),∇um)(Dium −Diu)dx

+ α

∫
Ω

|Tm(um)|r(x)−1Tm(um)(um − u)dx

+
1

m

∫
Ω

|um|p−2um(um − u) dx+ λ

∫
∂Ω

Tn(um) (um − u) dσ

=

∫
Ω

F (x) (um − u) dx+ ν

∫
Ω

|Tn(um)|p0(x)−2Tn(um)

|x|p0(x) + 1
n

(um − u) dx

+

∫
∂Ω

G(x) (um − u) dσ, (36)

it follows that

N∑
i=1

∫
Ω

(ai(x, Tn(um),∇um)− ai(x, Tn(um),∇u)) (Dium −Diu) dx

+α

∫
Ω

(
|Tm(um)|r(x)−1Tm(um)− |Tm(u)|r(x)−1Tm(u)

)
(um − u) dx

+λ

∫
∂Ω

(Tn(um)− Tn(u)) (um − u) dσ

= −
N∑
i=1

∫
Ω

ai(x, Tn(um),∇u)(Dium −Diu)dx− α∫
Ω

|Tm(u)|r(x)−1Tm(u)(um − u) dx

− 1

m

∫
Ω

|um|p−2um(um − u) dx− λ

∫
∂Ω

Tn(u) (um − u) dσ

+

∫
Ω

F (x)(um − u) dx+ ν

∫
Ω

|Tn(um)|p0(x)−2Tn(um)

|x|p0(x) + 1
n

(um − u) dx

+

∫
∂Ω

G(x)(um − u) dσ

≤
N∑
i=1

∫
Ω

|ai(x, Tn(um),∇u)| |Dium−Diu| dx+ α

∫
Ω

|Tm(u)|r(x) |um−u|dx

+
1

m

∫
Ω

|um|p−1 |um − u| dx+ λ

∫
∂Ω

|Tn(u)| |um − u| dσ

+

∫
Ω

|F (x)| |um − u| dx+

∫
Ω

|Tn(um)|p0(x)−1|um − u|
|x|p0(x) + 1

n

dx+∫
∂Ω

|G(x)| |um − u| dσ.

(37)
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For the first term on the right-hand side of (37), we have Tn(um) → Tn(u)
strongly in Lpi(·)(Ω) then |ai(x, Tn(um),∇u)| −→ |ai(x, Tn(u),∇u)| strongly
in Lp′

i(·)(Ω), and since Dium → Diu weakly in Lpi(·)(Ω), it follows that

N∑
i=1

∫
Ω

|ai(x, Tn(um),∇u)| |Dium −Diu| dx −→ 0 as m → ∞. (38)

Concerning the second term on the right-hand side of (37), we have |Tm(u)|r(x)→
|u|r(x) strongly in L

r(·)+1
r(·) (Ω) and since um ⇀ u weakly in Lr(·)+1(Ω), it follows

that

α

∫
Ω

|Tm(u)|r(x)|um − u| dx −→ 0 as m → ∞. (39)

Moreover, in view of (33) and (34), we deduce that

1

m

∫
Ω

|um|p−1 |um − u| dx −→ 0 as m → ∞, (40)

∫
Ω

|Tn(um)|p0(x)−1

|x|p0(x) + 1
n

|um − u| dx −→ 0 as m → ∞ (41)

and ∫
Ω

|F (x)| |um − u| dx −→ 0 as m → ∞. (42)

Furthermore, we have Tn(u) and G(x) belongs to L∞(∂Ω), and since um → u
strongly in L1(∂Ω), it follows that

λ

∫
∂Ω

|Tn(u)| |um − u| dσ −→ 0 as m → ∞ (43)

and ∫
∂Ω

|G(x)| |um − u| dσ −→ 0 as m → ∞. (44)

By combining (37) and (38)− (44) we conclude that

lim
m→∞

( N∑
i=1

∫
Ω

(ai(x, Tn(um),∇um)− ai(x, Tn(um),∇u)) (Dium −Diu) dx

+

∫
Ω

(
|um|p−2um − |u|p−2u

)
(um − u) dx

)
= 0.

(45)
In view of Lemma 3.1, we conclude that{

um → u strongly in W 1,p⃗(·)(Ω),

Dium → Diu a.e. in Ω for i = 1, ..., N.
(46)
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Thus, we have ai(x, Tn(um),∇um) → ai(x, Tn(u),∇u) almost everywhere in Ω,
and since (ai(x, Tn(um),∇um))m is uniformly bounded in Lp′

i(·)(Ω), it follows
that

ai(x, Tn(um),∇um) ⇀ ai(x, Tn(u),∇u) weakly in Lp′
i(·)(Ω), (47)

for i = 1, . . . , N.

Step 4 : Passage to the limit

By taking v ∈ W 1,p⃗(·)(Ω) ∩ L∞(Ω) as a test function for the approximate
problem (15) we have

N∑
i=1

∫
Ω

ai(x, Tn(um),∇um)Div dx+ α

∫
Ω

|Tm(um)|r(x)−1Tm(um)v dx

+
1

m

∫
Ω

|um|p−1umv dx+ λ

∫
∂Ω

Tn(um) v dσ

=

∫
Ω

F (x) v dx+ ν

∫
Ω

|Tn(um)|p0(x)−1Tn(um)

|x|p0(x) + 1
n

v dx+

∫
∂Ω

G(x) v dσ.

(48)

In view of (33) − (35) and (47), then letting m tends to infinity we conclude
that

N∑
i=1

∫
Ω

ai(x, Tn(u),∇u)Div dx+ α

∫
Ω

|u|r(x)−1uv dx+ λ

∫
∂Ω

Tn(u)v dσ

=

∫
Ω

F (x) v dx+ ν

∫
Ω

|Tn(u)|p0(x)−1Tn(u)

|x|p0(x) + 1
n

v dx+

∫
∂Ω

G(x) v dσ.

(49)
Thus, the proof of the theorem 4.2 is concluded.

5. Main result

Let Ω be a bounded open subset of RN (N ≥ 2) containing the origin, with
Lipschitz boundary ∂Ω,

Let pi(·) ∈ C+(Ω) for i = 0, 1, . . . , N where p0(x) = max{pi(x), i =
0, 1, . . . , N} a.e. in Ω.

Definition 5.1. A measurable function u is called a renormalized solution of
the quasilinear elliptic problem (6) if u ∈ T 1,p⃗(·)

tr (Ω), such that

lim
h→∞

N∑
i=1

∫
{h<|u|≤h+1}

ai(x, u,∇u)Diu dx = 0,
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and verifying the following equality

N∑
i=1

∫
Ω

ai(x, u,∇u)(DiuS′(u)φ+ S(u)Diφ)dx+ α∫
Ω

|u|r(x)−1uS(u)φdx+ λ

∫
∂Ω

uS(u)φdσ

=

∫
Ω

f(x)S(u)φdx+ ν

∫
Ω

|u|p0(x)−2u

|x|p0(x)
S(u)φdx+

∫
∂Ω

g(x)S(u)φdσ,

(50)

for every φ ∈ W 1,p⃗(·)(Ω)∩L∞(Ω). and for any smooth function S(·) ∈ W 1,∞(Ω)
with a compact support.

We will establish the following result

Theorem 5.2. Let α, λ, ν > 0 and f ∈ L1(Ω), g ∈ L1(∂Ω), assuming that
(12)-(11) hold true. Then there exists at least one renormalized solution u for
quasilinear elliptic problem (6). Moreover, we have u ∈ W 1,q⃗(·)(Ω) with

q⃗(·) = (r(·), q1(·), ..., qN (·)) and 1 < qi(x) <
pi(x)r(x)

1 + r(x) + δ(x)
for i = 1, 2, . . . , N.

(51)

Proof of Theorem 5.2

Step 1: Approximate problem

Let (fn)n∈N∗ be a sequence of smooth functions in L1(Ω) ∩ L∞(Ω) such that
fn → f strongly in L1(Ω) (for example fn(x) = Tn(f(x))), and let (gn(x))n
be a sequence in L1(∂Ω) ∩ L∞(∂Ω) such that gn → g strongly in L1(∂Ω). We
consider the approximate problem of the equation (6), giving by
−

N∑
i=1

Diai(x, Tn(un),∇un)+α|un|r(x)−1un=fn(x)+ν
|Tn(un)|p0(x)−2Tn(un)

|x|p0(x) + 1
n

inΩ,

N∑
i=1

ai(x, Tn(un),∇un)ni + λTn(un) = gn(x) on ∂Ω,

(52)
In view of theorem 4.2, there exists at least one solution in the sense of distri-
butions un ∈ W 1,p⃗(·)(Ω) ∩ Lr(·)+1(Ω) for the approximate problem (52), i. e.

N∑
i=1

∫
Ω

ai(x, Tn(un),∇un)D
iv dx+ α

∫
Ω

|un|r(x)−1unv dx+ λ

∫
∂Ω

Tn(un)v dσ

=

∫
Ω

fn(x)v dx+ ν

∫
Ω

|Tn(un)|p0(x)−2Tn(un)

|x|p0(x) + 1
n

v dx+

∫
∂Ω

gn(x)v dσ,

(53)
for every v ∈ W 1,p⃗(·)(Ω) ∩ L∞(Ω).
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Step 2 : A priori estimates

Lemma 5.3. Let un be a solution in the sense of distributions for the approx-
imate problem (53), then the following regularity results hold true:

un ∈ W 1,q⃗(·)(Ω) with q⃗(·) = (r(·), q1(·), . . . , qN (·)), (54)

where the exponents r(·) and qi(·) verifies r(x) > max
{1 + δ(x)

p0(x)−1
,
N(p0(x)−1)

N−p0(x)

}
and we have 1 < qi(x) <

r(x)pi(x)

r(x) + δ(x) + 1
almost everywhere in Ω. Then

N∑
i=1

∫
Ω

|Diun|pi(x)

(1 + |un|)θ+δ(x)
dx ≤ C for all θ > 1, (55)

N∑
i=1

∫
Ω

|DiTk(un)|pi(x) dx ≤ C(1 + k)θ+δ+ for all k > 0, (56)

with C is a positive constant that does not depend on k and n, where δ+ =
max{δ+i , for i = 1, · · · , N}.

Proof of Lemma 5.3.

Let θ > 1, we consider the function φ(t) : R 7→ R defined by

φ(un) = (1− 1

(1 + |un|)θ−1
)sign(un).

By taking φ(un) as a test function for the approximate problem (53), and since
φ(un) has the same sign as un, we get

(θ − 1)

N∑
i=1

∫
Ω

ai(x, Tn(un),∇un)D
iun

(1 + |un|)θ
dx+ α

∫
Ω

|un|r(x)|φ(un)|dx

+λ

∫
∂Ω

|Tn(un)| |φ(un)|dσ

≤
∫
Ω

|fn(x)| |φ(un)| dx+ ν

∫
Ω

|Tn(un)|p0(x)−1

|x|p0(x) + 1
n

|φ(un)| dx

+

∫
∂Ω

|gn(x)| |φ(un)| dσ.

(57)

We have 0 ≤ |φ(un)| ≤ 1, and in view of (13) we obtain

b0(θ − 1)

N∑
i=1

∫
Ω

|Diun|pi(x)

(1 + |un|)θ+δ(x)
dx+ α

∫
Ω

|un|r(x)|φ(un)| dx+ λ∫
∂Ω

|Tn(un)||φ(un)| dσ

≤
∫
Ω

|fn(x)| dx+ ν

∫
Ω

|Tn(un)|p0(x)−1|φ(un)|
|x|p0(x) + 1

n

dx+

∫
∂Ω

|gn(x)| dσ.

(58)
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For the second term on the right hand side of (58) and by using Young’s
inequality, we have

2ν

∫
Ω

|Tn(un)|p0(x)−1|φ(un)|
|x|p0(x) + 1

n

dx ≤ α

2

∫
Ω

|un|r(x)|φ(un)|dx+C10

∫
Ω

dx

|x|
r(x)p0(x)

r(x)−p0(x)+1

.

(59)
Thus, we have

b0(θ − 1)

N∑
i=1

∫
Ω

|Diun|pi(x)

(1 + |un|)θ+δ(x)
dx+

α

2

∫
Ω

|un|r(x)|φ(un)|dx+ λ∫
∂Ω

|Tn(un)||φ(un)| dσ

≤
∫
Ω

|f(x)| dx+ C10

∫
Ω

dx

|x|
r(x)p0(x)

r(x)−p0(x)+1

+

∫
∂Ω

|g(x)| dσ.

(60)

Having in mind r(x) >
N(p0(x)− 1)

N − p0(x)
, then

1

|x|
r(x)p0(x)

r(x)−p0(x)+1

∈ L1(Ω). It follows

that

N∑
i=1

∫
Ω

|Diun|pi(x)

(1 + |un|)θ+δ(x)
dx+

∫
Ω

|un|r(x) |φ(un)|dx+
∫
∂Ω

|Tn(un)| |φ(un)|dσ ≤ C11.

(61)
Then we conclude that estimate (55). For the estimate (56), in view of (55) we
have

N∑
i=1

∫
Ω

|DiTk(un)|pi(x) dx ≤ (1 + k)θ+δ+
N∑
i=1

∫
Ω

|DiTk(un)|pi(x)

(1 + |un|)θ+δ(x)
dx

≤ C11(1 + k)θ+δ+ for all θ > 1.

(62)

We have |φ(s)| ≥ 1
2 for |s| ≥ R = 2

1

δ+ large enough, we obtain

C11 ≥
∫
Ω

|un|r(x) |φ(un)| dx+

∫
∂Ω

|Tn(un)| |φ(un)| dσ

≥ 1

2

∫
{|un|≥R}

|un|r(x) dx+
1

2

∫
∂Ω∩{|un|≥R}

|Tn(un)| dσ

≥ 1

2

∫
Ω

|un|r(x) dx+
1

2

∫
∂Ω

|Tn(un)| dσ −Rr+mes(Ω)−Rmes(∂Ω).

(63)
It follows that ∫

Ω

|un|r(x) dx+

∫
∂Ω

|Tn(un)| dσ ≤ C12. (64)

Now, taking qi(·) ∈ C+(Ω) such that 1 < qi(x) <
r(x)pi(x)

1 + r(x) + δ(x)
for i =

1, . . . , N, and by choosing 1 < θ <
r(x)(pi(x)− qi(x))

qi(x)
− δ(x) for i = 1, . . . , N,
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we have∫
Ω

|Diun|qi(x) dx ≤
∫
Ω

|Diun|qi(x)

(1 + |un|)
qi(x)(θ+δ(x))

pi(x)

(1 + |un|)
qi(x)(θ+δ(x))

pi(x) dx

≤
∫
Ω

|Diun|pi(x)

(1 + |un|)θ+δ(x)
dx+

∫
Ω

(1 + |un|)
qi(x)(θ+δ(x))

pi(x)−qi(x) dx

≤ C11 +

∫
Ω

(1 + |un|)
qi(x)(θ+δ(x))

pi(x)−qi(x) dx

≤ C13 + C14

∫
Ω

|un|r(x) dx

≤ C15.
(65)

According to (63) and (65), we deduce that un ∈ W
1,q⃗(·)
0 (Ω), where q⃗(·) =

(r(·), q1(·), · · · , qN (·)), such that

1 < qi(x) <
r(x)pi(x)

1 + r(x) + δ(x)
and r(x) > max

{ 1 + δ(x)

p0(x)− 1
,
N(p0(x)− 1)

N − p0(x)

}
a.e. in Ω.

Step 3 : The weak convergence of (Tk(un))n in W 1,p⃗(·)(Ω)

To show the weak convergence of (Tk(un))n in W 1,p⃗(·)(Ω), we shall show that
(un)n is a Cauchy sequence. Indeed, in view of (62) we have

∥Tk(un)∥1,p⃗(·) ≤ C(k), (66)

where C(k) is a positive constant not depending on n. Then, the sequence
(Tk(un))n is uniformly bounded in W 1,p⃗(·)(Ω), it follows that : there exists a
subsequence still denoted (Tk(un))n and a measurable function vk ∈ W 1,p⃗(·)(Ω)
such that 

Tk(un) ⇀ vk weakly in W 1,p⃗(·)(Ω)

Tk(un) → vk strongly in Lp(Ω) and a.e. in Ω

Tk(un) ⇀ vk weakly in L1(∂Ω).

(67)

Let k ≥ 1, in view of (63) we have

kr−meas{|un| > k} ≤
∫
{|un|>k}

|un|r(x) dx ≤ C11, (68)

it follows that

meas{|un| > k} ≤ C11

kr−
→ 0 as k → ∞. (69)
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For all η > 0, we have

meas{|un−um|>η}≤meas{|un|>k}+meas{|um| > k}+meas{|Tk(un)−Tk(um)|>η}.
(70)

Let ε > 0, using (69) we can choose k = k(ε) large enough such that

meas{|un| > k} ≤ ε

3
and meas{|um| > k} ≤ ε

3
. (71)

On the other hand, thanks to (67) we can assume that (Tk(un))n∈N is a Cauchy
sequence in measure. Thus, for any k > 0 and η, ε > 0, there exists n0 =
n0(k, η, ε) such that

meas{|Tk(un)− Tk(um)| > η} ≤ ε

3
∀n,m ≥ n0(k, η, ε). (72)

By combining (70) and (71)− (72), we conclude that : for any η > 0 and ε > 0,
there exists n0(η, ε) such that

meas{|un − um| > η} ≤ ε ∀n,m ≥ n0(k, η, ε). (73)

Thus, the sequence (un)n is a Cauchy sequence in measure, and there exists
a measurable function u and a subsequence, still denoted by (un)n, such that
un → u almost everywhere in Ω. Consequently, we deduce that

Tk(un) ⇀ Tk(u) weakly in W 1,p⃗(·)(Ω)

Tk(un) → Tk(u) strongly in Lp(Ω) and a.e. in Ω

Tk(un) ⇀ Tk(u) weakly in L1(∂Ω).

(74)

Step 4: The equi-integrability of (|un|r(x)−1un)n and
( |Tn(un)|p0(x)−2Tn(un)

|x|p0(x) + 1
n

)
.

We shall prove that

|un|r(x)−1un → |u|r(x)−1u strongly in L1(Ω), (75)

and
|Tn(un)|p0(x)−2Tn(un)

|x|p0(x) + 1
n

→ |u|p0(x)−2u

|x|p0(x)
strongly in L1(Ω). (76)

By using T1(un − Th(un)) as a test function in (53), we obtain

N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)D
iun dx

+α

∫
{|un|≥h}

|un|r(x)|T1(un − Th(un))| dx+ λ

∫
{|un|≥h+1}∩∂Ω

|Tn(un)| dσ

≤
∫
{|un|≥h}

|fn(x)| dx+ ν

∫
{|un|≥h}

|Tn(un)|p0(x)−1

|x|p0(x) + 1
n

|T1(un − Th(un))| dx

+

∫
{|un|≥h}∩∂Ω

|g(x)| dσ.

(77)
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Thanks to Young’s inequality, we have

ν

∫
{|un|≥h}

|Tn(un)|p0(x)−1

|x|p0(x) + 1
n

|T1(un − Th(un))| dx

≤ α

3

∫
{|un|≥h}

|un|r(x)|T1(un − Th(un))| dx+ C15

∫
{|un|≥h}

dx

|x|
p0(x)r(x)

r(x)−p0(x)+1

.

(78)
Then

N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)D
iun dx+

α

3

∫
{|un|≥h+1}

|un|r(x) dx

+ν

∫
{|un|≥h+1}

|Tn(un)|p0(x)−1

|x|p0(x) + 1
n

dx+ λ

∫
{|un|≥h+1}∩∂Ω

|Tn(un)| dσ

≤
∫
{|un|≥h}

|f(x)| dx+ 2C15

∫
{|un|≥h}

dx

|x|
p0(x)r(x)

r(x)−p0(x)+1

+

∫
{|un|≥h}∩∂Ω

|g(x)| dσ.

(79)
We have f(x) ∈ L1(Ω) and 1

|x|
p0(x)r(x)

r(x)−p0(x)+1

∈ L1(Ω), having in mind that

meas({|un| ≥ h}) → 0 as h tends to infinity, we obtain∫
{|un|≥h}

|fn(x)|dx+2C15

∫
{|un|≥h}

dx

|x|
p0(x)r(x)

r(x)−p0(x)+1

−→ 0 as h → ∞. (80)

Similarly, we have g(x) ∈ L1(∂Ω) and since meas({|un| ≥ h} ∩ ∂Ω) → 0 as h
tends to infinity, it follows that∫

{|un|≥h}∩∂Ω

|g(x)| dσ −→ 0 as h → ∞. (81)

By combining (79) and (80)− (81) we conclude that

lim
h→∞

lim sup
n→∞

N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)D
iun dx = 0. (82)

and

lim
h→∞

(∫
{|un|≥h}

|Tn(un)|r(x) dx+

∫
{|un|≥h}

|Tn(un)|p0(x)−1

|x|p0(x) + 1
n

dx
)
= 0. (83)

Thus, for any η > 0, there exists h(η) > 0 such that∫
{|un|≥h(η)}

|Tn(un)|r(x) dx+

∫
{|un|≥h(η)}

|Tn(un)|p0(x)−1

|x|p0(x) + 1
n

dx ≤ η

2
. (84)
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On the other hand, for any measurable subset E ⊆ Ω, we have∫
E

|Tn(un)|r(x) dx+

∫
E

|Tn(un)|p0(x)−1

|x|p0(x) + 1
n

dx

≤
∫
E

|Th(η)(un)|r(x) dx+

∫
E

|Th(η)(un)|p0(x)−1

|x|p0(x) + 1
n

dx

+

∫
{|un|≥h(η)}

|Tn(un)|r(x) dx+

∫
{|un|≥h(η)}

|Tn(un)|p0(x)−1

|x|p0(x) + 1
n

dx.

(85)

Then, in view of (74) there exists β(η, h) > 0 such that : for any E ⊆ Ω we
have∫

E

|Th(η)(un)|r(x)dx+
∫
E

|Th(η)(un)|p0(x)−1

|x|p0(x)
≤ η

2
for meas(E) ≤ β(η, h). (86)

Finally, by combining (84), (85) and (86), it yields∫
E

|Tn(un)|r(x)dx+
∫
E

|Tn(un)|p0(x)−1

|x|p0(x)+ 1
n

dx≤η for any E⊆Ω with meas(E)≤β(η).

(87)

We deduce that (|Tn(un)|r(x)−1Tn(un))n, and
( |Tn(un)|p0(x)−2Tn(un)

|x|p0(x) + 1
n

)
are

equi-integrable. Having in mind that

|Tn(un)|r(x)−1Tn(un) → |u|r(x)−1u a.e. in Ω,

and
|Tn(un)|p0(x)−2Tn(un)

|x|p0(x) + 1
n

→ |u|p0(x)−2u

|x|p0(x)
a.e. in Ω.

Thus, in view of Vitali’s theorem, the convergence (75) and (76) are concluded.

Step 5 : Strong convergence of truncations

In the sequel, we denote by εi(n) for i = 1, 2, . . . some various functions of real
variables that converges to 0 as n tends to infinity, respectively, we define εi(h)
and εi(n, h).

Let h > k > 0, we set zn = un−Th(un)+Tk(un)−Tk(u) and wn := T2k(zn).
By using wn as a test function for the approximate problem (53), we obtain

N∑
i=1

∫
Ω

ai(x, Tn(un),∇un)D
iwn dx+α

∫
Ω

|un|r(x)−1unwn dx+λ

∫
∂Ω

Tn(un)wn dσ

=

∫
Ω

fn(x)wn dx+ ν

∫
Ω

|Tn(un)|p0(x)−2Tn(un)

|x|p0(x) + 1
n

wn dx+

∫
∂Ω

gn(x)wn dσ.

(88)
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For M = 4k + h, it is easy to check that Diwn = 0 on the set {|un| ≥ M}. we
get

N∑
i=1

∫
{|un|≤M}

ai(x, TM (un),∇TM (un))D
iwn dx+ λ

∫
∂Ω

Tn(un)wn dσ

≤
∫
Ω

|f(x)||wn| dx+ ν

∫
Ω

|Tn(un)|p0(x)−1

|x|p0(x) + 1
n

|wn| dx+

∫
∂Ω

|gn(x)||wn| dσ

+α

∫
Ω

|un|r(x)|wn| dx.

(89)
For the first term on the right hand side of (89), we have wn ⇀ T2k(u−Th(u))
weak−∗ in L∞(Ω), and since f(x) ∈ L1(Ω) we deduce that

lim
n→∞

∫
Ω

|f(x)||wn| dx =

∫
Ω

|f(x)||T2k(u− Th(u))| dx

≤ 2k

∫
{|un|>h}

|f(x)| dx −→ 0 as h → ∞.

(90)
Similarly, in view of (75) and (76) we have

lim
n→∞

∫
Ω

|Tn(un)|p0(x)−1

|x|p0(x) + 1
n

|wn| dx =

∫
Ω

|u|p0(x)−1

|x|p0(x)
|T2k(u− Th(u))| dx (91)

≤ 2k

∫
{|u|>h}

|u|p0(x)−1

|x|p0(x)
dx −→ 0 as h → ∞.

and

lim
n→∞

∫
Ω

|un|r(x)|wn| dx ≤ 2k

∫
{|u|>h}

|u|r(x) dx −→ 0 as h → ∞.

(92)
Moreover, since wn ⇀ T2k(u − Th(u)) weak−∗ in L∞(∂Ω), and since g(x) ∈
L1(∂Ω) we deduce that

lim
n→∞

∫
∂Ω

|g(x)||wn| dσ ≤ 2k

∫
∂Ω∩{|u|>h}

|g(x)| dσ −→ 0 as h → ∞.

(93)
For the second term on the left-hand side of (89), since wn has the same sign as
un on the set {|un| > k}, and since wn = Tk(un)− Tk(u) on the set {|un| ≤ k}
we have∫

∂Ω

Tn(un)wndσ =

∫
{|un|≤k}∩∂Ω

unwn dσ +

∫
{|un|>k}∩∂Ω

|un||wn| dσ

≥
∫
{|un|≤k}∩∂Ω

Tk(un)(Tk(un)− Tk(u))dσ → 0 as n → ∞.

(94)
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By combining (89) and (90)− (94), we deduce that

N∑
i=1

∫
{|un|≤M}

ai(x, TM (un),∇TM (un))D
iwn dx ≤ ε1(n, h). (95)

On the other hand, we have a(x, s, 0) = 0 then

N∑
i=1

∫
{|un|≤M}

ai(x, TM (un),∇TM (un))D
iwn dx

=

N∑
i=1

∫
Ω

ai(x, Tk(un),∇Tk(un))D
i(Tk(un)− Tk(u)) dx

+

N∑
i=1

∫
{k<|un|≤M}∩{|zn|≤2k}

ai(x, Tn(un),∇un)(D
iun−DiTh(un)−DiTk(u))dx

=

N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))−ai(x, Tk(un),∇Tk(u)))(D
iTk(un)−DiTk(u))dx

+

N∑
i=1

∫
Ω

ai(x, Tk(un),∇Tk(u))(D
iTk(un)−DiTk(u)) dx

+

N∑
i=1

∫
{h<|un|≤M}∩{|zn|≤2k}

ai(x, TM (un),∇TM (un))D
iun dx

−
N∑
i=1

∫
{k<|un|≤M}∩{|zn|≤2k}

ai(x, TM (un),∇TM (un))D
iTk(u) dx

≤ ε1(n, h).
(96)

It follows that

N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))−ai(x, Tk(un),∇Tk(u)))(D
iTk(un)−DiTk(u))dx

≤
N∑
i=1

∫
Ω

|ai(x, Tk(un),∇Tk(u))| |DiTk(un)−DiTk(u)| dx

+

N∑
i=1

∫
{k<|un|≤M}

|ai(x, TM (un),∇TM (un))| |DiTk(u)| dx+ ε1(n, h).

(97)
For the first term on the right-hand side of (97), we have Tk(un) tends strongly to
Tk(u) in Lpi(Ω) then |ai(x, Tk(un),∇Tk(u))| → |ai(x, Tk(un),∇Tk(u))| strongly
in Lp′

i(Ω), and since DiTk(un) ⇀ DiTk(u) weakly in Lpi(Ω), it follows that

N∑
i=1

∫
Ω

|ai(x, Tk(un),∇Tk(u))| |DiTk(un)−DiTk(u)| dx −→ 0 as n → ∞,

(98)
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Concerning the second term on the right-hand side of (97), Thanks to (12) we
have (ai(x, TM (un),∇TM (un)))n is uniformly bounded in Lp′

i(·)(Ω), then there
exists a measurable function φi ∈ Lp′

i(·)(Ω) such that |ai(x, TM (un),∇TM (un))|
⇀ φi weakly in Lp′

i(·)(Ω), it follows that

lim
n→∞

N∑
i=1

∫
{k<|un|≤M}

|ai(x, TM (un),∇TM (un))||DiTk(u)| dx

=

N∑
i=1

∫
{k<|un|≤M}

φi|DiTk(u)| dx = 0.

(99)

By combining (97) and (98)− (99), we conclude that

N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u)))

(DiTk(un)−DiTk(u))dx ≤ ε2(n, h).

(100)

According to (74), and letting n and h tend to infinity, we obtain

lim
n→∞

( N∑
i=1

∫
Ω

(ai(x, Tk(un),∇Tk(un))−ai(x, Tk(u),∇Tk(u)))(D
iTk(un)−DiTk(u))dx

+

∫
Ω

(|Tk(un)|p−2Tk(un)− |Tk(u)|p−2Tk(u))(Tk(un)− Tk(u)) dx
)
= 0.

(101)

In view of Lemma 3.1, we conclude that{
Tk(un) → Tk(u) strongly in W 1,p⃗(·)(Ω),

Diun → Diu a.e. in Ω for i = 1 . . . , N.
(102)

Therefore, for i = 1, · · · , N we have ai(x, Tn(un),∇un) · Diun tends to
ai(x, u,∇u) ·Diu almost everywhere in Ω. Thanks to Fatou’s Lemma and (82),
we conclude that

lim
h→∞

∫
{h<|u|≤h+1}

ai(x, u,∇u) ·Diu dx

≤ lim
h→∞

lim inf
n→∞

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un) ·Diun dx

≤ lim
h→∞

lim sup
n→∞

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un) ·Diun dx = 0.

(103)

Step 6: Passage to the limit.

Let φ ∈ W 1,p⃗(·)(Ω) ∩ L∞(Ω), and let S(·) be a smooth function in W 1,∞(IR)
such that supp (S(·)) ⊆ [−M,M ] for some M ≥ 0.
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By choosing S(un)φ as a test function for the approximate problem (53),
we obtain

N∑
i=1

∫
Ω

ai(x, Tn(un),∇un)(S
′(un)φD

iun + S(un)D
iφ) dx

+α

∫
Ω

|un|r(x)−1unS(un)φ dx+ λ

∫
Ω

Tn(un)S(un)φ dσ

=

∫
Ω

fn(x)S(un)φdx+ ν

∫
Ω

|Tn(un)|p0(x)−2Tn(un)

|x|p0(x) + 1
n

S(un)φdx+

∫
∂Ω

gn(x)S(un)φ dσ.

(104)

For the first term on the left-hand side of (104) we have∫
Ω

ai(x, Tn(un),∇un)(S
′(un)φD

iun + S(un)D
iφ) dx

=

∫
Ω

ai(x, TM (un),∇TM (un))
(
S′(un)φD

iTM (un) + S(TM (un))D
iφ
)
dx.

In view of (12), we have (ai(x, TM (un),∇TM (un)))n is uniformly bounded in
Lp′

i(·)(Ω), and since ai(x, TM (un),∇TM (un)) tends to ai(x, TM (u),∇TM (u))
almost everywhere in Ω, it follows that

ai(x, TM (un),∇TM (un)) ⇀ ai(x, TM (u),∇TM (u)) weakly in Lp′
i(·)(Ω),

and since S′(un)φD
iTM (un) + S(TM (un))D

iφ tends to S′(u)φDiTM (u)+
S(TM (u))Diφ strongly in Lpi(·)(Ω), we obtain

lim
n→∞

N∑
i=1

∫
Ω

ai(x, Tn(un),∇un)(S
′(un)φD

iun + S(un)D
iφ) dx

= lim
n→∞

N∑
i=1

∫
Ω

ai(x, TM (un),∇TM (un))
(
S′(un)φD

iTM (un) + S(TM (un))D
iφ

)
dx

=

N∑
i=1

∫
Ω

ai(x, TM (u),∇TM (u))
(
S′(u)φDiTM (u) + S(TM (u))Diφ

)
dx

=

N∑
i=1

∫
Ω

ai(x, u,∇u)
(
S′(u)φDiu+ S(u)Diφ

)
dx.

(105)

On the other hand, we have fn → f strongly in L1(Ω), and since S(TM (un))φ →
S(TM (u))φ weak−∗ in L∞(Ω), we deduce that

lim
n→+∞

∫
Ω

fn(x)S(TM (un))φ dx =

∫
Ω

f(x)S(TM (u))φ dx =

∫
Ω

f(x)S(u)φ dx.

(106)
Similarly, in view of (75) and (76) we obtain

lim
n→+∞

∫
Ω

|un|r(x)−1unS(TM (un))φ dx =

∫
Ω

|u|r(x)−1uS(u)φ dx, (107)
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and

lim
n→+∞

∫
Ω

|Tn(un)|p0(x)−1Tn(un)

|x|p0(x) + 1
n

S(TM (un))φ dx =

∫
Ω

|u|p0(x)−1u

|x|p0(x)
S(u)φ dx.

(108)
Moreover, we have S(TM (un))φ ⇀ S(TM (u))φ weak−∗ in L∞(∂Ω) then

lim
n→∞

∫
∂Ω

gn(x)S(TM (un))φ dσ =

∫
∂Ω

g(x)S(TM (u))φ dσ =

∫
∂Ω

g(x)S(u)φ dσ.

(109)
and

lim
n→∞

∫
∂Ω

Tn(un)S(TM (un))φdσ= lim
n→∞

∫
∂Ω

TM (un)S(TM (un))φdσ=

∫
∂Ω

uS(u)φdσ.

(110)

By combining (104) and (105)− (110) together, we obtain

N∑
i=1

∫
Ω

ai(x, u,∇u)S(u)φ dx+ α

∫
Ω

|u|r(x)−1uS(u)φ dx+ λ

∫
Ω

uS(u)φ dσ

=

∫
Ω

f(x)S(u)φ dx+ ν

∫
Ω

|u|p0(x)−2u

|x|p0(x)
S(u)φ dx+

∫
∂Ω

g(x)S(u)φ dσ,

(111)
which conclude the proof of the theorem 5.2.
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