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Abstract. We consider the Padovan sequence {Pn}n≥0, defined by P0 = 0,
P1 = P2 = 1, with subsequent terms given by the recurrence relation Pn+3 =
Pn+1+Pn for all n ≥ 0. In this paper, we use the methods of Baker-Davenport.
We demonstrate that the Diophantine equation Pn − pm = Pn1 − pm1 admits
only finitely many non-negative integer solutions n,m, n1,m1, where p is a
fixed prime number ≥ 5. Additionally, once the value of p is specified, these
solutions can be obtained explicitly. We address the case where p = 5.
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Resumen. Consideramos la succession de Padovan {Pn}n≥0, definida induc-
tivamente por P0 = 0, P1 = P2 = 1 y la relación de recurrencia Pn+3 =
Pn+1 + Pn para n ≥ 0. Este art́ıculo utiliza el método de Baker-Davenport.
Probamos que la ecuación Diofantina Pn − pm = Pn1 − pm1 admite sólo fini-
tas soluciones enteras positivas n,m, n1,m1, donde p es un número primo fijo
≥ 5. Más aún, una vez fijo el valor de p, las soluciones pueden ser listadas de
manera expĺıcita. Mostramos este proceso para el caso p = 5.

Palabras y frases clave. Números de Padovan, Formas lineales en logaritmos,
método de reducción.
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1. Introduction

Let U = {Un}n≥0 and V = {Vn}n≥0 be two sequences of integers. We con-
sider the problem of determining the existence of non-negative integer solutions
(n,m, n1,m1) for the Diophantine equation

Un − Vm = Un1
− Vm1

, (n,m) ̸= (n1,m1). (1)

A classical problem consists of finding integers c that can be expressed as the
difference between elements of U and V ; that is, solutions to the equation
Un − Vm = c. This problem was studied by Pillai for the case when U and V
are sequences of powers of a and b, respectively, where a and b are integers
greater than 2. This is known as the “Pillai problem” [14].

Herschfeld proved in [8] that this equation for (a, b) = (2, 3) has at most
one solution when |c| is sufficiently large. This result was extended by Pillai
in the case where a and b are co-prime integers [15]. Pillai conjectured that
the equation 2x − 3y = 2x1 − 3y1 has the unique solutions (x, y, x1, y1) =
(3, 2, 1, 1), (5, 3, 3, 1) and (8, 5, 4, 1) [16]. This conjecture was proved later by
Stroeker and Tijdeman in [19], by using Baker’s theory on linear forms in the
logarithm of algebraic numbers. The study of equation (1) in the case where
U and V are linear recurrence sequences was initiated by Ddamulira, Luca,
and Rakotomalala, who studied the case when U and V are the sequences of
Fibonacci numbers and powers of 2, respectively [11]. Other cases of this type
of equation have been studied (see [4, 5, 10, 12, 3, 9, 7]).

In this context, we consider the Diophantine equation

Pn − pm = Pn1
− pm1 (2)

where {Pn}n≥0 is the Padovan recurrence sequence given by the relation

Pn+3 = Pn+1 + Pn,

with P0 = 0, P1 = P2 = 1 and p ≥ 5 being a prime number. The first few terms
of this sequence are as follows:

(Pn)n≥0 = {0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, . . .}.

In this paper, we first demonstrate that the Diophantine equation (2) admits
only finitely many non-negative integer solutions. This result is obtained by
applying Baker’s method to derive lower bounds for linear forms in logarithms
of algebraic numbers. Secondly, for p = 5, this bound is reduced using a variant
of a result by Baker and Davenport [2], and then, using Maple, we explicitly
compute the different solutions of (2) in the case p = 5.

Since P1 = P2 = P3 = 1, and P4 = P5, we identify P1 and P2 with P3, and
P4 with P5.
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Theorem 1.1. For each prime number p ≥ 5, the number of non-negative
integer solutions (n,m, n1,m1) of the equation (2) is finite.

For p = 2, 3, similar results were obtained by Ana Cecilia Garćıa Lomeĺı,
Santos Hernández Hernández, and Mahadi Ddamulira (see [6], [9]). For p = 5,
we have the following theorem:

Theorem 1.2. The solutions (n,m, n1,m1) in non-negative integers for the
equation Pn − 5m = Pn1 − 5m1 , with n > n1 and m > m1 are

(7, 1, 0, 0), (8, 1, 3, 0), (9, 1, 6, 0), (10, 1, 8, 0), (12, 1, 11, 0),

(13, 2, 3, 1), (14, 2, 7, 0), (25, 4, 12, 2), (36, 6, 27, 5).

As a consequence, we arrive at the following corollary:

Corollary 1.3. The distinct integers c that have two or more representations
in the form Pn − 5m are limited to {0,−1, 2, 4, 11,−4, 3,−9,−2044}.

Additionally, the corresponding representations of these numbers with inte-
gers n and m as Pn − 5m are enumerated as follows,

−1 = P7 − 51 = P0 − 50

0 = P8 − 51 = P3 − 50

2 = P9 − 51 = P6 − 50

4 = P10 − 51 = P8 − 50

11 = P12 − 51 = P11 − 50

−4 = P13 − 52 = P3 − 51

3 = P14 − 52 = P7 − 50

−9 = P25 − 54 = P12 − 52

−2044 = P36 − 56 = P27 − 55.

(3)

2. Auxiliary result

We begin by reviewing the fundamental characteristics of the Padovan sequence
{Pn}n≥0, as detailed in [17]. Specifically, the characteristic polynomial for this
sequence is

ψ(x) := x3 − x− 1.

The roots of ψ are α, β, and γ = β, (the complex conjugate of β), where

α =
r1 + r2

6
, β =

−r1 − r2 + i
√
3(r1 − r2)

12
,

and

r1 =
3

√
108 + 12

√
69 and r2 =

3

√
108− 12

√
69.
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Let

cα =
(1− β)(1− γ)

(α− β)(α− γ)
=

1 + α

−α2 + 3α+ 1
,

cβ =
(1− α)(1− γ)

(β − α)(β − γ)
=

1 + β

−β2 + 3β + 1
,

cγ =
(1− α)(1− β)

(γ − α)(γ − β)
=

1 + γ

−γ2 + 3γ + 1
= c̄β .

The following is Binet’s formula for Pn:

Pn = cαα
n + cββ

n + cγγ
n, for all n ≥ 0. (4)

Numerically, we can observe that

1.32 < α < 1.33,

0.86 < |β| = |γ| < 0.87,

0.72 < cα < 0.73,

0.24 < |cβ | = |cγ | < 0.25.

(5)

It is easily verifiable that
|β| = |γ| = α− 1

2 .

We can demonstrate via induction that

αn−3 ≤ Pn ≤ αn−1 for all n ≥ 4. (6)

Let K := Q(α, β) denote the splitting field of the polynomial ψ over Q; this
extension has degree [K : Q] = 6. Moreover, the Galois group of K over Q
is represented by {(1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} which is isomorphic to
S3. Thus, we identify the elements of G with the permutations of the zeros
of the polynomial ψ. Standard references for transcendental methods in Dio-
phantine equations include ([1], [2], [13], [14]). For any non-zero algebraic num-
ber γ of degree d over Q, with minimal primitive polynomial over Z given by
a0

∏d
j=1(X−γ(j)), where the γ(i)’s denote the conjugates of γ, and the leading

coefficient a0 is positive, the logarithmic height of γ is defined by

h(γ) :=
1

d
(log a0 +

d∑
i=1

log(max{|γ(i)|, 1})).

In particular, h(γ) = log(max |p|, q) if γ =
p

q
is a rational integer with gcd(p, q) =

1 and q > 0. In the following sections, we will use the following properties of
the logarithmic height function h(·).

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηs) = |s|h(η) (s ∈ Z).

(7)
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A key result in our approach to the Diophantine equation is the following
theorem, established by Matveev in [13] (see also Theorem 2 in [10]).

Theorem 2.1. In a real algebraic number field K of degree D, let us consider
positive real algebraic numbers γ1, . . . , γt. Let b1, . . . , bt be non-zero rational
integers. Suppose that

Λ := γb11 . . . γbtt − 1 (8)

is non-zero. Then we have

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 . . . At,

where

B ≥ max{|b1|, . . . , |bt|},

and

Ai ≥ max{Dh(γi), | log γi|, 0.16} for all i = 1, . . . , t.

2.1. Baker-Davenport reduction lemma

During our work, we find large upper bounds that should be reduced. Specifi-
cally, for a non-homogeneous linear form in two integer variables, we utilize a
slightly modified version of a result by Dujella and Pethö (see [2]), which is a
generalization of the result of Baker and Davenport [1]. For a real number X,
we denote ∥X∥:=min{|X − n|, n ∈ Z} as the distance from X to the nearest
integer. Recall that the distance between a real number X and the nearest
integer is expressed as follows:

∥X∥ := min{|X − n|, n ∈ Z}.

Lemma 2.2 ([2]). Let τ be a real number and M a positive integer. Let
p

q
be

convergent in the continued fraction of τ such that q > 6M , and let µ,A,B be
real numbers such that A > 0 and B > 1. Define ϵ = ∥µq∥ −M∥τq∥. If ϵ > 0,
the following inequality cannot be solved for positive integers u, v, and k,

0 < |uτ − v + µ| < AB−k,

where u ≤M and k ≥ log(Aq/ϵ)

logB
.

Additionally, we require the following lemma from [18]:

Lemma 2.3 (Sánchez, Luca). If m ≥ 1 , Z ≥ (4m2)m and Z >
t

(log t)m
,

then

t ≤ 2mZ(logZ)m.
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3. Proof of Theorem 1.1

We notice that when m = m1 then n = n1; therefore, we will assume that
m > m1 in the following.

By applying equations (2) and (6), we obtain

αn−8 ≤ Pn − Pn1
= pm − pm1 < pm,

The inequality on the left-hand side is evident for n1 = 0 and n = 3. When
n1 ≥ 3 and n ≥ 5, we observe that

Pn − Pn1
≥ Pn − Pn−1 = Pn−5 ≥ αn−8.

These inequalities are straightforward. Consequently, we see that αn−8 < pm.

Likewise,

αn−1 ≥ Pn ≥ Pn − Pn1
= pm − pm1 > pm−1.

Thus,

(n− 8)
logα

log p
< m < (n− 1)

logα

log p
+ 1. (9)

Finding a bound for n allows us to find a bound for m, which shows that
the number of solutions is finite. Thus, establishing an upper bound for n is
essential before addressing the Diophantine equation (2).

3.1. Bounding n:

Using (2) and (4) in conjunction with the estimates from (5), we arrive at

cαα
n + cββ

n + cγγ
n − pm = cαα

n1 + cββ
n1 + cγγ

n1 − pm1

|cααn−pm| = |cααn1 + cβ(β
n1 − βn) + cγ(γ

n1 − γn)− pm1 |
< cαα

n1+|cβ |(|β|n1+|β|n)+|cγ |(|γ|n1 + |γ|n) + pm1

< cαα
n1 + 4|cβ ||β|n1 + pm1

< αn1−1 + 1 + pm1

< 2αn1 + pm1

< 2max{αn1+3, pm1}.

Dividing both sides by pm and using the fact that 2 < α3, we obtain

|cααnp−m − 1| < max

{
αn1+6

pm
,
pm1+1

pm

}
< max

{
αn1−n+14, pm1−m+1

}
,

(10)

whenever we have made use of αn−8 < pm.
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We put
Λ = cαα

np−m − 1.

Assuming that Λ = 0, we have cαα
n = pm ∈ Z. By applying the Galois

automorphism corresponding to (αβ), we obtain cββ
n = pm. However, since

|cββn| < 1 , this creates a contradiction. Consequently, we conclude that Λ ̸= 0.

By applying Matveev’s inequality, we calculate Λ by taking

t = 3, γ1 = cα, γ2 = α, γ3 = p,

b1 = 1, b2 = n, b3 = −m.

We often use D = 3 and the field K = Q(α) in our study. We choose B := n

since max{1, n,m} ≤ n. Moreover, cα =
α(α+ 1)

3α2 − 1
. The polynomial 23x3 −

23x2 + 6x − 1 is the minimal polynomial of cα, with roots cα, cβ and cγ .

According to (5), we also have max{|cα|, |cβ |, |cγ |} < 1. Thus, h(γ1) =
1

3
log 23.

Subsequently, we choose A1 = 3h(γ1) = log 23. In the same way, A2 = 3h(γ2) =
log(α) and A3 = 3h(γ3) = 3 log p.

We prove that the left-hand side of (10) is bounded by using the theorem
of Matveev,

log |Λ| > −1.4×306×34.5×9× (1+ log 3)× (1+ log n)× log 23× logα×3 log p

and we compare this with (10), we get

min{(n−n1− 14) logα, (m−m1− 1) log p} < 7.154× 1012× (1+ log n)× log p.

Thus, this leads to

min{(n− n1) logα, (m−m1) log p} < 7.16× .1012 × (1 + log n)× log p. (11)

Now, let us examine each of these two cases individually.

Case 1 : min{(n− n1) logα, (m−m1) log p} = (n− n1) logα.

Under these conditions, we state (2) as

|cααn − cαα
n1 − pm| < |cβ |(|β|n1 + |β|n) + |cγ |(|γ|n1 + |γ|n) + pm1

< 4|cβ ||β|n1 + pm1

< pm1+1

leading to
|cααn1(αn−n1 − 1)p−m − 1| < pm1−m+1. (12)

We put
Λ1 = cα(α

n−n1 − 1)αn1p−m − 1.
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To demonstrate that Λ1 ̸= 0, suppose for contradiction that Λ1 = 0. Then, we
have cαα

n1(αn−n1 − 1) = pm.

By applying the Galois automorphism corresponding to (αβ) to the previous
relation, we obtain

|cββn1(βn−n1 − 1)| ≤ |cβ |(|β|n + |βn1 |) < 2|cβ ||β|n1 < 1,

which contradicts pm ≥ 1 for all m ≥ 0. Hence Λ1 ̸= 0.

We can use Matveev’s theorem on Λ1, let us take

γ1 = cα(α
n−n1 − 1), γ2 = α, γ3 = p,

b1 = 1, b2 = n1, b3 = −m.

By (9) we have max{1, n1,m} < n, we can choose B = n.

Since

h(γ1) ≤ h(cα) + h(αn−n1 − 1)

<
1

3
log 23 + (n− n1)h(α) + log 2

=
1

3
(log 23 + log 8 + (n− n1) logα)

=
1

3
(log 184 + (n− n1) logα)

<
1

3
(5.22 + (n− n1) logα)

<
1

3
(5.22 + 7.16× 1012 × (1 + log n)× log p, by (11),

then
3h(γ1) < 7.17× 1012 × (1 + log n)× log p,

therefore, we can select A1 = 7.17× 1012 × (1 + log n)× log p. Additionally, as
before, we choose A2 = 3h(α) = logα and A3 = 3 log p.

As a result of Matveev’s theorem, we may conclude that

log |Λ1| > −1.4× 306 × 34.5 × 9× (1 + log 3)× (1 + log n)× 7.17× 1012

× (1 + log n)× log p× logα× 3 log p

log |Λ1| > −1.64× 1025 × (1 + log n)2 × (log p)2.

By comparing the above relation with (12), we notice that

(m−m1) log p < 1.65× 1025 × (1 + log n)2(log p)2. (13)

Case 2 : min{(n− n1) logα, (m−m1) log p} = (m−m1) log p.
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In this case, we rewrite our equation as,

|cααn − pm + pm1 | = |cααn1 + cββ
n1 + cγγ

n1 − cββ
n − cγγ

n|
|cααn − (pm−m1 − 1)pm1 | < cαα

n1 + |cβ |(|β|n1 + |β|n) + |cγ |(|γ|n1 + |γ|n)

<
3

4
αn1 + 4|cβ ||β|n1

≤ 3

4
αn1 + 1

≤ 3

4
αn1 + αn1

=
7

4
αn1

< αn1+2.

It suggests that ∣∣∣∣ cα
pm−m1 − 1

.αn.p−m1 − 1

∣∣∣∣ <
αn1+2

pm − pm1

<
p.αn1+2

pm

<
p.αn1+2

αn−8

< p.αn1−n+10∣∣∣∣ cα
pm−m1 − 1

αn.p−m1 − 1

∣∣∣∣ < p.αn1−n+10. (14)

On the left-hand side of the absolute value, the expression (14) should be rep-
resented by Λ2. To demonstrate that, Λ2 ̸= 0, assume otherwise. We derive
cββ

n = pm− pm1 by applying the Galois automorphism (αβ) to the previously
described connection, we obtain cββ

n = pm − pm1 . This leads to a contra-

diction by taking the absolute value, indeed, |cββn| < 1

4
and |pm − pm1 | =

|pm1(pm−m1 − 1)| ≥ 4. We use Λ2 and Matveev’s theorem again. For this, we
take into consideration

t = 3, γ1 =
cα

pm−m1 − 1
, γ2 = α, γ3 = p,

b1 = 1, b2 = n, b3 = −m1.

Therefore, B = n. The heights of γ2 and γ3 had previously been determined.
Using the height for γ1, we derive,

h(γ1) ≤ h(cα) + h(pm−m1 − 1)

≤ 1

3
log 23 + (m−m1)h(p) + log 2

< log(pm−m1+1)

< 7.17× 1012 × (1 + log n)× log p by (11).
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We can select, as a result A1 = 2.16× 1013 × (1 + log n)× log p. Furthermore,
we set A2 = logα and A3 = 3 log p, similar to the preceding cases.

Since max{1, n,m1} ≤ n, we can fix B := n.

After that, we obtain

log |Λ2| > −1.4× 306 × 34.5 × 9× (1 + log 3)× (1 + log n)× 2.16× 1013

× (1 + log n)× log p× logα× 3 log p,

thus
log |Λ2| > −4.93 . . .× 1025 × (1 + log n)2 × (log p)2.

By contrasting the aforementioned relation with (14), we conclude that

(n− n1 − 10) log(α) < log p+ 4.93× 1025 × (1 + log n)2 × (log p)2,

subsequently

(n− n1) logα < 4.94× 1025 × (1 + log n)2 × (log p)2. (15)

Therefore, let us combine the two cases

min{(n− n1) logα, (m−m1) log p} < 7.16× 1012 × (1 + log n)× log p,

and

max{(n−n1) logα, (m−m1) log p} < 4.94×1025×(1+log n)2×(log p)2. (16)

Finally, we can represent equation (2) as follows

|cααn − cαα
n1 − pm + pm1 | = |cββn1 − cββ

n + cγγ
n1 − cγγ

n|
< |cββn1 |+ |cββn|+ |cγγn1 |+ |cγγn|
< 4|cβ ||β|n1 < 1.

We obtain the following by dividing both sides by pm − pm1 ,∣∣∣∣cα(αn−n1 − 1)αn1p−m1

pm−m1 − 1
− 1

∣∣∣∣ <
1

pm − pm1

<
p

pm

<
p

αn−8
.

Then ∣∣∣∣cα(αn−n1 − 1)αn1p−m1

pm−m1 − 1
− 1

∣∣∣∣ < p

αn−8
, (17)

Here, we applied the inequality αn−8 < pm.
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If we put

Λ3 =
cα(α

n−n1 − 1)

pm−m1 − 1
αn1p−m1 − 1.

We must show that Λ3 ̸= 0. Assuming the opposite, Λ3 = 0, implies

cα(α
n − αn1) = pm − pm1 .

On the above equation, we apply the Galois automorphism (αβ) and discover
that

cβ(β
n − βn1) = pm − pm1 .

Subsequently

|cβ(βn − βn1)| ≤ |cβ |(|β|n + |β|n1) <
1

2

and

|pm − pm1 | = pm1(pm−m1 − 1) ≥ 4

which is a contradiction. It follows that Λ3 ̸= 0. Applying Matveev’s theorem
to it using the given parameters

t = 3, γ1 =
cα(α

n−n1 − 1)

pm−m1 − 1
, γ2 = α, γ3 = p,

b1 = 1, b2 = n1, b3 = −m1.

Using the logarithmic height function, we can derive

h(γ1) ≤ h(cα(α
n−n1 − 1)) + h(pm−m1 − 1)

≤ h(cα) + (n− n1)h(α) + log 2 + (m−m1)h(p) + log 2

≤ 1

3
log 23 +

1

3
(n− n1) logα+ (m−m1) log p+ 2 log 2.

Then, using (16) we have

3h(γ1) < log 23 + (n− n1) logα+ 3(m−m1) log p+ 6 log 2

< 2× 1026 × (1 + log n)2 + (log p)2.

We can choose A1 := 2× 1026 × (1 + log n)2(log p)2 and as before A2 := logα
and A3 := 3 log(p).

we get,

log |Λ3| > −1.4 × 306 × 34.5 × 9 × (1 + log 3) × (1 + log n) × 2 × 1026 × (1 +
log n)2 × (log p)2 logα× 3 log p.

Then,

log |Λ3| > −4.57× 1038 × (1 + log n)3 × (log p)3.
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72 L. ABDELGHANI, C. ABDELHAKIM, E.H. ABDELAZIZ & M. ZIANE

Comparing those yields to those from (17),

(n− 8) logα < 4.58× 1038 × (1 + log n)3 × (log p)3

n < 1.63× 1039 × (1 + log n)3 × (log p)3

n < 1041 × (log n)3 × (log p)3.

From Lemma 2.3, we can now deduce

n < 8× 1041 × (log p)3 × log(1040 × (log p)3. (18)

Therefore, for each prime number p, n is bounded. This proves, Theorem 1.1.

3.2. Proof of Theorem 1.2

Now, let us take p = 5. By 18 we obtain the bound

n < 3.63224 · 1047

Assuming n ≤ 500, then m ≤ 88, we use (9). Within the range 0 ≤ n1 < n ≤
500 and 0 ≤ m1 < m ≤ 88, We executed a Maple program, and all solutions
as in Theorem 1.2, were obtained. Assuming 500 < n in what follows, we can
deduce m > 88 based on (9). Hence, it is crucial to establish an upper bound
for n before tackling the Diophantine equation (2) when p = 5.

To reduce the previously mentioned constraint for n, we use Lemma 2.2
iteratively.

Let’s revisit (10) again

Γ := n logα−m log 5 + log cα.

We assume min{n−n1,m−m1} ≥ 20, (If not, we use (12) in the case n−n1 ≤ 20
and m−m1 ≥ 20, we use (14) in the case n− n1 ≥ 20 and m−m1 ≤ 20, and
finally if n− n1 > 20 and m−m1 > 20 we use formula (17)).

Keep in mind that eΓ − 1 = Λ ̸= 0, therefore Γ ̸= 0.

If Γ > 0, we have

0 < Γ < eΓ − 1 = |Λ| < max{αn1−n+14, 5m1−m+1}.

If Γ < 0, we have 1− eΓ = |eΓ − 1| < 1

4
, thus e|Γ| <

4

3
, and we obtain

0 < |Γ| < e|Γ| − 1 = e|Γ||Λ| < 4

3
max{αn1−n+14, 5m1−m+1}.

Therefore, in each case, we arrive at

0 < |Γ| < 4

3
max{αn1−n+14, 5m1−m+1}.
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After dividing by log 5, we obtain

0 <

∣∣∣∣n logαlog 5
−m+

log cα
log 5

∣∣∣∣ < max{43× α−(n−n1), 5× 5−(m−m1)}.

Lemma 2.2 is utilized with the given data

τ =
logα

log 5
, µ =

log cα
log 5

, (A,B) = (43, α) or (5, 5).

The 89− th convergent of τ is examined, and M := 3.63224× 1047 is taken as
the upper bound on n to accomplish this

p

q
=
p89
q89

=
30602146832395551481582205917878973105695669902464

175150532971168634103969412154716075682118915824011
,

q > 6M is satisfied by the chosen value of q. It also yields ϵ = ∥qµ∥−M∥qτ∥=
0.04071840822609 . . . > 0, Lemma 2.2 enables us to deduce that either

n−n1<
log( 43×q

ϵ )

logα
=436.17422133 . . . , or m−m1<

log( 5×q
ϵ )

log 5
= 74.87101070 . . .

Then
n− n1 ≤ 436, or m−m1 ≤ 74.

We now examine each of these two instances separately.

The first assumption is that n− n1 ≤ 436. In this instance, we consider

Γ1 = n1 logα−m log 5 + log(cα(α
n−n1 − 1)).

Here, when we proceed to (12), we observe that eΓ1 − 1 = Λ1 ̸= 0, indicating

that Γ1 ̸= 0. Since |eΓ1 − 1| = |Λ1| < 5m1−m+1 <
1

4
, then |Γ1| <

1

4
.

As |x| < 2|ex − 1| for all x ∈
(
−1

2
;
1

2

)
, we derive

|Γ1| < 2|eΓ1 − 1| = 2|Λ1|,

then

|Γ1| < 2× 5m1−m+1 =
10

5m−m1
.

When we divide both sides by log 5, we get

0 < |n1τ −m+ µk| < 7× 5−(m−m1),

where τ remains the same as before, and for every value of k := n − n1 ∈

{1, 2, . . . , 436}, we have µk =
log(cα(α

k − 1))

log 5
instead of µ.
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For all values of k, we get ϵ > 0.001728193.

Therefore, we use the 87−th convergent p
q = p87

q87
of τ that satisfies q87 > 6M ,

as stated by Lemma 2.2. As a result, for all k = 1, 2, . . . , 421, we compute
log( 7×q87

ϵk
)

log 5
, we discover that the greatest value of these is at most 75. Conse-

quently, m −m1 ≤ 75. Let us now consider the case where m −m1 ≤ 74, let
us take

Γ2 = n logα−m1 log 5 + log

(
cα

5m−m1 − 1

)
.

Next, we have

|eΓ2 − 1| = |Λ2| < αn1−n+16 <
1

4
.

Then |Γ2| <
1

2
as previously, we can conclude that

0 < |Γ2| < αn1−n+19.

The result of dividing by log 5 is

0 <

∣∣∣∣∣∣∣∣n
logα

log 5
−m1 +

log

(
cα

5m−m1 − 1

)
log 5

∣∣∣∣∣∣∣∣ < 130× α−(n−n1).

Using the same τ , q = q88, M, and taking A = 130, B = α and µl =

log

(
cα

5l − 1

)
log 5

for l = 1, 2, . . . , 74, we reiterate the application of Lemma 2.2.

We verify, using Maple, that for every l = 1, 2, . . . , 72, the 88-th convergent of
τ , represented as q88, satisfies, q88 > 6M and ϵl > 0.014094654. For every

l = 1, 2, . . . , 74, we calculated

log

(
130× q88

ϵl

)
logα

= 435.511774064 · · · , and
discovered that the maximum value is < 436.

Finally, our analysis gives the combined results n−n1 ≤ 435 and m−m1 ≤
75.

In the last step, we consider the inequality involving Λ3. Let

Γ3 = n1 logα−m1 log 5 + log

(
cα(α

n−n1 − 1)

5m−m1 − 1

)
.

Since n ≥ 500, we utilize
α14

αn
<

1

4
, and apply (17), to obtain 0 < |Γ3| <

1

2
,

consequently, we have |Γ3| < 2× α14

αn
.
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After dividing by log 5, we arrive at

|n1τ −m1 + µk,l| < 64× α−n,

where τ is as defined earlier, µk,l :=

log

(
cα(α

k − 1)

5l − 1

)
log 5

for k := n − n1 ∈

{1, 2, . . . 435}, and l := m−m1 ∈ {1, 2, . . . , 75}.
As a result, we can use Lemma 2.2. The same 88-th convergent above of

τ , satisfy q88 > 6M . And ϵk,l ≥ 0.01409465477 for 1 ≤ k ≤ 435 and 1 ≤ l ≤
75, works well in this case based on our analysis. Using Maple, we set A :=

64, B := α, we computed

log

(
64× q88
ϵk,l

)
logα

for all k in the set {1, 2, . . . , 435},

and l ∈ {1, 2, . . . , 75}, and found that the highest value is < 432.

Therefore, n ≤ 431, which contradicts our assumption that n ≥ 500. Thus,
Theorem 1.2 is now fully proven.

In conclusion, the general problem remains widely open for arbitrary values
of the prime p. In this regard, it would be relevant to extend the analysis to
a broader set of prime numbers, for instance considering values p ∈ [5, 1000].
Such an extension would constitute a natural direction for future research.
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