

Pillai's Problem with Padovan Numbers and Prime Powers

El problema de Pillai con números de Padovan y potencias de primos

LARHLID ABDELGHANI^{1,✉}, CHILLALI ABDELHAKIM¹,
EL HABIBI ABDELAZIZ², M'HAMMED ZIANE^{3,c}

¹Sidi Mohamed Ben Abdellah University, Fez, Morocco

²School of Advanced Engineering Studies, Oujda, Morocco

³Mohammed Premier University, Oujda, Morocco

ABSTRACT. We consider the Padovan sequence $\{P_n\}_{n \geq 0}$, defined by $P_0 = 0$, $P_1 = P_2 = 1$, with subsequent terms given by the recurrence relation $P_{n+3} = P_{n+1} + P_n$ for all $n \geq 0$. In this paper, we use the methods of Baker-Davenport. We demonstrate that the Diophantine equation $P_n - p^m = P_{n_1} - p^{m_1}$ admits only finitely many non-negative integer solutions n, m, n_1, m_1 , where p is a fixed prime number ≥ 5 . Additionally, once the value of p is specified, these solutions can be obtained explicitly. We address the case where $p = 5$.

Key words and phrases. Padovan numbers, Linear form in logarithms, Reduction method.

2020 Mathematics Subject Classification. 11B39, 11J86.

RESUMEN. Consideramos la sucesión de Padovan $\{P_n\}_{n \geq 0}$, definida inducitivamente por $P_0 = 0$, $P_1 = P_2 = 1$ y la relación de recurrencia $P_{n+3} = P_{n+1} + P_n$ para $n \geq 0$. Este artículo utiliza el método de Baker-Davenport. Probamos que la ecuación Diofantina $P_n - p^m = P_{n_1} - p^{m_1}$ admite sólo finitas soluciones enteras positivas n, m, n_1, m_1 , donde p es un número primo fijo ≥ 5 . Más aún, una vez fijo el valor de p , las soluciones pueden ser listadas de manera explícita. Mostramos este proceso para el caso $p = 5$.

Palabras y frases clave. Números de Padovan, Formas lineales en logaritmos, método de reducción.

1. Introduction

Let $U = \{U_n\}_{n \geq 0}$ and $V = \{V_n\}_{n \geq 0}$ be two sequences of integers. We consider the problem of determining the existence of non-negative integer solutions (n, m, n_1, m_1) for the Diophantine equation

$$U_n - V_m = U_{n_1} - V_{m_1}, \quad (n, m) \neq (n_1, m_1). \quad (1)$$

A classical problem consists of finding integers c that can be expressed as the difference between elements of U and V ; that is, solutions to the equation $U_n - V_m = c$. This problem was studied by Pillai for the case when U and V are sequences of powers of a and b , respectively, where a and b are integers greater than 2. This is known as the “Pillai problem” [14].

Herschfeld proved in [8] that this equation for $(a, b) = (2, 3)$ has at most one solution when $|c|$ is sufficiently large. This result was extended by Pillai in the case where a and b are co-prime integers [15]. Pillai conjectured that the equation $2^x - 3^y = 2^{x_1} - 3^{y_1}$ has the unique solutions $(x, y, x_1, y_1) = (3, 2, 1, 1)$, $(5, 3, 3, 1)$ and $(8, 5, 4, 1)$ [16]. This conjecture was proved later by Stroeker and Tijdeman in [19], by using Baker’s theory on linear forms in the logarithm of algebraic numbers. The study of equation (1) in the case where U and V are linear recurrence sequences was initiated by Ddamulira, Luca, and Rakotomalala, who studied the case when U and V are the sequences of Fibonacci numbers and powers of 2, respectively [11]. Other cases of this type of equation have been studied (see [4, 5, 10, 12, 3, 9, 7]).

In this context, we consider the Diophantine equation

$$P_n - p^m = P_{n_1} - p^{m_1} \quad (2)$$

where $\{P_n\}_{n \geq 0}$ is the Padovan recurrence sequence given by the relation

$$P_{n+3} = P_{n+1} + P_n,$$

with $P_0 = 0$, $P_1 = P_2 = 1$ and $p \geq 5$ being a prime number. The first few terms of this sequence are as follows:

$$(P_n)_{n \geq 0} = \{0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, \dots\}.$$

In this paper, we first demonstrate that the Diophantine equation (2) admits only finitely many non-negative integer solutions. This result is obtained by applying Baker’s method to derive lower bounds for linear forms in logarithms of algebraic numbers. Secondly, for $p = 5$, this bound is reduced using a variant of a result by Baker and Davenport [2], and then, using Maple, we explicitly compute the different solutions of (2) in the case $p = 5$.

Since $P_1 = P_2 = P_3 = 1$, and $P_4 = P_5$, we identify P_1 and P_2 with P_3 , and P_4 with P_5 .

Theorem 1.1. *For each prime number $p \geq 5$, the number of non-negative integer solutions (n, m, n_1, m_1) of the equation (2) is finite.*

For $p = 2, 3$, similar results were obtained by Ana Cecilia García Lomelí, Santos Hernández Hernández, and Mahadi Ddamulira (see [6], [9]). For $p = 5$, we have the following theorem:

Theorem 1.2. *The solutions (n, m, n_1, m_1) in non-negative integers for the equation $P_n - 5^m = P_{n_1} - 5^{m_1}$, with $n > n_1$ and $m > m_1$ are*

$$(7, 1, 0, 0), (8, 1, 3, 0), (9, 1, 6, 0), (10, 1, 8, 0), (12, 1, 11, 0),$$

$$(13, 2, 3, 1), (14, 2, 7, 0), (25, 4, 12, 2), (36, 6, 27, 5).$$

As a consequence, we arrive at the following corollary:

Corollary 1.3. *The distinct integers c that have two or more representations in the form $P_n - 5^m$ are limited to $\{0, -1, 2, 4, 11, -4, 3, -9, -2044\}$.*

Additionally, the corresponding representations of these numbers with integers n and m as $P_n - 5^m$ are enumerated as follows,

$$\begin{aligned} -1 &= P_7 - 5^1 = P_0 - 5^0 \\ 0 &= P_8 - 5^1 = P_3 - 5^0 \\ 2 &= P_9 - 5^1 = P_6 - 5^0 \\ 4 &= P_{10} - 5^1 = P_8 - 5^0 \\ 11 &= P_{12} - 5^1 = P_{11} - 5^0 \\ -4 &= P_{13} - 5^2 = P_3 - 5^1 \\ 3 &= P_{14} - 5^2 = P_7 - 5^0 \\ -9 &= P_{25} - 5^4 = P_{12} - 5^2 \\ -2044 &= P_{36} - 5^6 = P_{27} - 5^5. \end{aligned} \tag{3}$$

2. Auxiliary result

We begin by reviewing the fundamental characteristics of the Padovan sequence $\{P_n\}_{n \geq 0}$, as detailed in [17]. Specifically, the characteristic polynomial for this sequence is

$$\psi(x) := x^3 - x - 1.$$

The roots of ψ are α, β , and $\gamma = \bar{\beta}$, (the complex conjugate of β), where

$$\alpha = \frac{r_1 + r_2}{6}, \quad \beta = \frac{-r_1 - r_2 + i\sqrt{3}(r_1 - r_2)}{12},$$

and

$$r_1 = \sqrt[3]{108 + 12\sqrt{69}} \quad \text{and} \quad r_2 = \sqrt[3]{108 - 12\sqrt{69}}.$$

Let

$$\begin{aligned} c_\alpha &= \frac{(1-\beta)(1-\gamma)}{(\alpha-\beta)(\alpha-\gamma)} = \frac{1+\alpha}{-\alpha^2+3\alpha+1}, \\ c_\beta &= \frac{(1-\alpha)(1-\gamma)}{(\beta-\alpha)(\beta-\gamma)} = \frac{1+\beta}{-\beta^2+3\beta+1}, \\ c_\gamma &= \frac{(1-\alpha)(1-\beta)}{(\gamma-\alpha)(\gamma-\beta)} = \frac{1+\gamma}{-\gamma^2+3\gamma+1} = \bar{c}_\beta. \end{aligned}$$

The following is Binet's formula for P_n :

$$P_n = c_\alpha \alpha^n + c_\beta \beta^n + c_\gamma \gamma^n, \text{ for all } n \geq 0. \quad (4)$$

Numerically, we can observe that

$$\begin{aligned} 1.32 &< \alpha < 1.33, \\ 0.86 &< |\beta| = |\gamma| < 0.87, \\ 0.72 &< c_\alpha < 0.73, \\ 0.24 &< |c_\beta| = |c_\gamma| < 0.25. \end{aligned} \quad (5)$$

It is easily verifiable that

$$|\beta| = |\gamma| = \alpha^{-\frac{1}{2}}.$$

We can demonstrate via induction that

$$\alpha^{n-3} \leq P_n \leq \alpha^{n-1} \text{ for all } n \geq 4. \quad (6)$$

Let $K := \mathbb{Q}(\alpha, \beta)$ denote the splitting field of the polynomial ψ over \mathbb{Q} ; this extension has degree $[K : \mathbb{Q}] = 6$. Moreover, the Galois group of K over \mathbb{Q} is represented by $\{(1), (\alpha\beta), (\alpha\gamma), (\beta\gamma), (\alpha\beta\gamma), (\alpha\gamma\beta)\}$ which is isomorphic to S_3 . Thus, we identify the elements of G with the permutations of the zeros of the polynomial ψ . Standard references for transcendental methods in Diophantine equations include ([1], [2], [13], [14]). For any non-zero algebraic number γ of degree d over \mathbb{Q} , with minimal primitive polynomial over \mathbb{Z} given by $a_0 \prod_{j=1}^d (X - \gamma^{(j)})$, where the $\gamma^{(i)}$'s denote the conjugates of γ , and the leading coefficient a_0 is positive, the logarithmic height of γ is defined by

$$h(\gamma) := \frac{1}{d}(\log a_0 + \sum_{i=1}^d \log(\max\{|\gamma^{(i)}|, 1\})).$$

In particular, $h(\gamma) = \log(\max|p|, q)$ if $\gamma = \frac{p}{q}$ is a rational integer with $\gcd(p, q) = 1$ and $q > 0$. In the following sections, we will use the following properties of the logarithmic height function $h(\cdot)$.

$$\begin{aligned} h(\eta \pm \gamma) &\leq h(\eta) + h(\gamma) + \log 2, \\ h(\eta\gamma^{\pm 1}) &\leq h(\eta) + h(\gamma), \\ h(\eta^s) &= |s|h(\eta) \quad (s \in \mathbb{Z}). \end{aligned} \quad (7)$$

A key result in our approach to the Diophantine equation is the following theorem, established by Matveev in [13] (see also Theorem 2 in [10]).

Theorem 2.1. *In a real algebraic number field \mathbb{K} of degree D , let us consider positive real algebraic numbers $\gamma_1, \dots, \gamma_t$. Let b_1, \dots, b_t be non-zero rational integers. Suppose that*

$$\Lambda := \gamma_1^{b_1} \dots \gamma_t^{b_t} - 1 \quad (8)$$

is non-zero. Then we have

$$\log |\Lambda| > -1.4 \times 30^{t+3} \times t^{4.5} \times D^2(1 + \log D)(1 + \log B)A_1 \dots A_t,$$

where

$$B \geq \max\{|b_1|, \dots, |b_t|\},$$

and

$$A_i \geq \max\{Dh(\gamma_i), |\log \gamma_i|, 0.16\} \quad \text{for all } i = 1, \dots, t.$$

2.1. Baker-Davenport reduction lemma

During our work, we find large upper bounds that should be reduced. Specifically, for a non-homogeneous linear form in two integer variables, we utilize a slightly modified version of a result by Dujella and Pethö (see [2]), which is a generalization of the result of Baker and Davenport [1]. For a real number X , we denote $\|X\| := \min\{|X - n|, n \in \mathbb{Z}\}$ as the distance from X to the nearest integer. Recall that the distance between a real number X and the nearest integer is expressed as follows:

$$\|X\| := \min\{|X - n|, n \in \mathbb{Z}\}.$$

Lemma 2.2 ([2]). *Let τ be a real number and M a positive integer. Let $\frac{p}{q}$ be convergent in the continued fraction of τ such that $q > 6M$, and let μ, A, B be real numbers such that $A > 0$ and $B > 1$. Define $\epsilon = \|\mu q\| - M\|\tau q\|$. If $\epsilon > 0$, the following inequality cannot be solved for positive integers u, v , and k ,*

$$0 < |u\tau - v + \mu| < AB^{-k},$$

where $u \leq M$ and $k \geq \frac{\log(Aq/\epsilon)}{\log B}$.

Additionally, we require the following lemma from [18]:

Lemma 2.3 (Sánchez, Luca). *If $m \geq 1$, $Z \geq (4m^2)^m$ and $Z > \frac{t}{(\log t)^m}$, then*

$$t \leq 2^m Z(\log Z)^m.$$

3. Proof of Theorem 1.1

We notice that when $m = m_1$ then $n = n_1$; therefore, we will assume that $m > m_1$ in the following.

By applying equations (2) and (6), we obtain

$$\alpha^{n-8} \leq P_n - P_{n_1} = p^m - p^{m_1} < p^m,$$

The inequality on the left-hand side is evident for $n_1 = 0$ and $n = 3$. When $n_1 \geq 3$ and $n \geq 5$, we observe that

$$P_n - P_{n_1} \geq P_n - P_{n-1} = P_{n-5} \geq \alpha^{n-8}.$$

These inequalities are straightforward. Consequently, we see that $\alpha^{n-8} < p^m$.

Likewise,

$$\alpha^{n-1} \geq P_n \geq P_n - P_{n_1} = p^m - p^{m_1} > p^{m-1}.$$

Thus,

$$(n-8) \frac{\log \alpha}{\log p} < m < (n-1) \frac{\log \alpha}{\log p} + 1. \quad (9)$$

Finding a bound for n allows us to find a bound for m , which shows that the number of solutions is finite. Thus, establishing an upper bound for n is essential before addressing the Diophantine equation (2).

3.1. Bounding n :

Using (2) and (4) in conjunction with the estimates from (5), we arrive at

$$\begin{aligned} c_\alpha \alpha^n + c_\beta \beta^n + c_\gamma \gamma^n - p^m &= c_\alpha \alpha^{n_1} + c_\beta \beta^{n_1} + c_\gamma \gamma^{n_1} - p^{m_1} \\ |c_\alpha \alpha^n - p^m| &= |c_\alpha \alpha^{n_1} + c_\beta (\beta^{n_1} - \beta^n) + c_\gamma (\gamma^{n_1} - \gamma^n) - p^{m_1}| \\ &< c_\alpha \alpha^{n_1} + |c_\beta| (|\beta|^{n_1} + |\beta|^n) + |c_\gamma| (|\gamma|^{n_1} + |\gamma|^n) + p^{m_1} \\ &< c_\alpha \alpha^{n_1} + 4 |c_\beta| |\beta|^{n_1} + p^{m_1} \\ &< \alpha^{n_1-1} + 1 + p^{m_1} \\ &< 2 \alpha^{n_1} + p^{m_1} \\ &< 2 \max\{\alpha^{n_1+3}, p^{m_1}\}. \end{aligned}$$

Dividing both sides by p^m and using the fact that $2 < \alpha^3$, we obtain

$$\begin{aligned} |c_\alpha \alpha^n p^{-m} - 1| &< \max \left\{ \frac{\alpha^{n_1+6}}{p^m}, \frac{p^{m_1+1}}{p^m} \right\} \\ &< \max \left\{ \alpha^{n_1-n+14}, p^{m_1-m+1} \right\}, \end{aligned} \quad (10)$$

whenever we have made use of $\alpha^{n-8} < p^m$.

We put

$$\Lambda = c_\alpha \alpha^n p^{-m} - 1.$$

Assuming that $\Lambda = 0$, we have $c_\alpha \alpha^n = p^m \in \mathbb{Z}$. By applying the Galois automorphism corresponding to $(\alpha\beta)$, we obtain $c_\beta \beta^n = p^m$. However, since $|c_\beta \beta^n| < 1$, this creates a contradiction. Consequently, we conclude that $\Lambda \neq 0$.

By applying Matveev's inequality, we calculate Λ by taking

$$t = 3, \quad \gamma_1 = c_\alpha, \quad \gamma_2 = \alpha, \quad \gamma_3 = p,$$

$$b_1 = 1, \quad b_2 = n, \quad b_3 = -m.$$

We often use $D = 3$ and the field $\mathbb{K} = \mathbb{Q}(\alpha)$ in our study. We choose $B := n$ since $\max\{1, n, m\} \leq n$. Moreover, $c_\alpha = \frac{\alpha(\alpha+1)}{3\alpha^2-1}$. The polynomial $23x^3 - 23x^2 + 6x - 1$ is the minimal polynomial of c_α , with roots c_α , c_β and c_γ . According to (5), we also have $\max\{|c_\alpha|, |c_\beta|, |c_\gamma|\} < 1$. Thus, $h(\gamma_1) = \frac{1}{3} \log 23$. Subsequently, we choose $A_1 = 3h(\gamma_1) = \log 23$. In the same way, $A_2 = 3h(\gamma_2) = \log(\alpha)$ and $A_3 = 3h(\gamma_3) = 3 \log p$.

We prove that the left-hand side of (10) is bounded by using the theorem of Matveev,

$$\log |\Lambda| > -1.4 \times 30^6 \times 3^{4.5} \times 9 \times (1 + \log 3) \times (1 + \log n) \times \log 23 \times \log \alpha \times 3 \log p$$

and we compare this with (10), we get

$$\min\{(n - n_1 - 14) \log \alpha, (m - m_1 - 1) \log p\} < 7.154 \times 10^{12} \times (1 + \log n) \times \log p.$$

Thus, this leads to

$$\min\{(n - n_1) \log \alpha, (m - m_1) \log p\} < 7.16 \times 10^{12} \times (1 + \log n) \times \log p. \quad (11)$$

Now, let us examine each of these two cases individually.

Case 1 : $\min\{(n - n_1) \log \alpha, (m - m_1) \log p\} = (n - n_1) \log \alpha$.

Under these conditions, we state (2) as

$$\begin{aligned} |c_\alpha \alpha^n - c_\alpha \alpha^{n_1} - p^m| &< |c_\beta|(|\beta|^{n_1} + |\beta|^n) + |c_\gamma|(|\gamma|^{n_1} + |\gamma|^n) + p^{m_1} \\ &< 4|c_\beta| |\beta|^{n_1} + p^{m_1} \\ &< p^{m_1+1} \end{aligned}$$

leading to

$$|c_\alpha \alpha^{n_1} (\alpha^{n-n_1} - 1) p^{-m} - 1| < p^{m_1-m+1}. \quad (12)$$

We put

$$\Lambda_1 = c_\alpha (\alpha^{n-n_1} - 1) \alpha^{n_1} p^{-m} - 1.$$

To demonstrate that $\Lambda_1 \neq 0$, suppose for contradiction that $\Lambda_1 = 0$. Then, we have $c_\alpha \alpha^{n_1} (\alpha^{n-n_1} - 1) = p^m$.

By applying the Galois automorphism corresponding to $(\alpha\beta)$ to the previous relation, we obtain

$$|c_\beta \beta^{n_1} (\beta^{n-n_1} - 1)| \leq |c_\beta| (|\beta|^n + |\beta^{n_1}|) < 2|c_\beta| |\beta|^{n_1} < 1,$$

which contradicts $p^m \geq 1$ for all $m \geq 0$. Hence $\Lambda_1 \neq 0$.

We can use Matveev's theorem on Λ_1 , let us take

$$\gamma_1 = c_\alpha (\alpha^{n-n_1} - 1), \quad \gamma_2 = \alpha, \quad \gamma_3 = p,$$

$$b_1 = 1, \quad b_2 = n_1, \quad b_3 = -m.$$

By (9) we have $\max\{1, n_1, m\} < n$, we can choose $B = n$.

Since

$$\begin{aligned} h(\gamma_1) &\leq h(c_\alpha) + h(\alpha^{n-n_1} - 1) \\ &< \frac{1}{3} \log 23 + (n - n_1) h(\alpha) + \log 2 \\ &= \frac{1}{3} (\log 23 + \log 8 + (n - n_1) \log \alpha) \\ &= \frac{1}{3} (\log 184 + (n - n_1) \log \alpha) \\ &< \frac{1}{3} (5.22 + (n - n_1) \log \alpha) \\ &< \frac{1}{3} (5.22 + 7.16 \times 10^{12} \times (1 + \log n) \times \log p), \quad \text{by (11),} \end{aligned}$$

then

$$3h(\gamma_1) < 7.17 \times 10^{12} \times (1 + \log n) \times \log p,$$

therefore, we can select $A_1 = 7.17 \times 10^{12} \times (1 + \log n) \times \log p$. Additionally, as before, we choose $A_2 = 3h(\alpha) = \log \alpha$ and $A_3 = 3 \log p$.

As a result of Matveev's theorem, we may conclude that

$$\begin{aligned} \log |\Lambda_1| &> -1.4 \times 30^6 \times 3^{4.5} \times 9 \times (1 + \log 3) \times (1 + \log n) \times 7.17 \times 10^{12} \\ &\quad \times (1 + \log n) \times \log p \times \log \alpha \times 3 \log p \end{aligned}$$

$$\log |\Lambda_1| > -1.64 \times 10^{25} \times (1 + \log n)^2 \times (\log p)^2.$$

By comparing the above relation with (12), we notice that

$$(m - m_1) \log p < 1.65 \times 10^{25} \times (1 + \log n)^2 (\log p)^2. \quad (13)$$

Case 2 : $\min\{(n - n_1) \log \alpha, (m - m_1) \log p\} = (m - m_1) \log p$.

In this case, we rewrite our equation as,

$$\begin{aligned}
 |c_\alpha \alpha^n - p^m + p^{m_1}| &= |c_\alpha \alpha^{n_1} + c_\beta \beta^{n_1} + c_\gamma \gamma^{n_1} - c_\beta \beta^n - c_\gamma \gamma^n| \\
 |c_\alpha \alpha^n - (p^{m-m_1} - 1)p^{m_1}| &< c_\alpha \alpha^{n_1} + |c_\beta|(|\beta|^{n_1} + |\beta|^n) + |c_\gamma|(|\gamma|^{n_1} + |\gamma|^n) \\
 &< \frac{3}{4} \alpha^{n_1} + 4|c_\beta| |\beta|^{n_1} \\
 &\leq \frac{3}{4} \alpha^{n_1} + 1 \\
 &\leq \frac{3}{4} \alpha^{n_1} + \alpha^{n_1} \\
 &= \frac{7}{4} \alpha^{n_1} \\
 &< \alpha^{n_1+2}.
 \end{aligned}$$

It suggests that

$$\begin{aligned}
 \left| \frac{c_\alpha}{p^{m-m_1} - 1} \cdot \alpha^n \cdot p^{-m_1} - 1 \right| &< \frac{\alpha^{n_1+2}}{p^m - p^{m_1}} \\
 &< \frac{p \cdot \alpha^{n_1+2}}{p^m} \\
 &< \frac{p \cdot \alpha^{n_1+2}}{\alpha^{n-8}} \\
 &< p \cdot \alpha^{n_1-n+10}
 \end{aligned}$$

$$\left| \frac{c_\alpha}{p^{m-m_1} - 1} \alpha^n \cdot p^{-m_1} - 1 \right| < p \cdot \alpha^{n_1-n+10}. \quad (14)$$

On the left-hand side of the absolute value, the expression (14) should be represented by Λ_2 . To demonstrate that, $\Lambda_2 \neq 0$, assume otherwise. We derive $c_\beta \beta^n = p^m - p^{m_1}$ by applying the Galois automorphism $(\alpha\beta)$ to the previously described connection, we obtain $c_\beta \beta^n = p^m - p^{m_1}$. This leads to a contradiction by taking the absolute value, indeed, $|c_\beta \beta^n| < \frac{1}{4}$ and $|p^m - p^{m_1}| = |p^{m_1}(p^{m-m_1} - 1)| \geq 4$. We use Λ_2 and Matveev's theorem again. For this, we take into consideration

$$t = 3, \quad \gamma_1 = \frac{c_\alpha}{p^{m-m_1} - 1}, \quad \gamma_2 = \alpha, \quad \gamma_3 = p,$$

$$b_1 = 1, \quad b_2 = n, \quad b_3 = -m_1.$$

Therefore, $B = n$. The heights of γ_2 and γ_3 had previously been determined. Using the height for γ_1 , we derive,

$$\begin{aligned}
 h(\gamma_1) &\leq h(c_\alpha) + h(p^{m-m_1} - 1) \\
 &\leq \frac{1}{3} \log 23 + (m - m_1)h(p) + \log 2 \\
 &< \log(p^{m-m_1+1}) \\
 &< 7.17 \times 10^{12} \times (1 + \log n) \times \log p \quad \text{by (11).}
 \end{aligned}$$

We can select, as a result $A_1 = 2.16 \times 10^{13} \times (1 + \log n) \times \log p$. Furthermore, we set $A_2 = \log \alpha$ and $A_3 = 3 \log p$, similar to the preceding cases.

Since $\max\{1, n, m_1\} \leq n$, we can fix $B := n$.

After that, we obtain

$$\begin{aligned} \log |\Lambda_2| &> -1.4 \times 30^6 \times 3^{4.5} \times 9 \times (1 + \log 3) \times (1 + \log n) \times 2.16 \times 10^{13} \\ &\quad \times (1 + \log n) \times \log p \times \log \alpha \times 3 \log p, \end{aligned}$$

thus

$$\log |\Lambda_2| > -4.93 \dots \times 10^{25} \times (1 + \log n)^2 \times (\log p)^2.$$

By contrasting the aforementioned relation with (14), we conclude that

$$(n - n_1 - 10) \log(\alpha) < \log p + 4.93 \times 10^{25} \times (1 + \log n)^2 \times (\log p)^2,$$

subsequently

$$(n - n_1) \log \alpha < 4.94 \times 10^{25} \times (1 + \log n)^2 \times (\log p)^2. \quad (15)$$

Therefore, let us combine the two cases

$$\min\{(n - n_1) \log \alpha, (m - m_1) \log p\} < 7.16 \times 10^{12} \times (1 + \log n) \times \log p,$$

and

$$\max\{(n - n_1) \log \alpha, (m - m_1) \log p\} < 4.94 \times 10^{25} \times (1 + \log n)^2 \times (\log p)^2. \quad (16)$$

Finally, we can represent equation (2) as follows

$$\begin{aligned} |c_\alpha \alpha^n - c_\alpha \alpha^{n_1} - p^m + p^{m_1}| &= |c_\beta \beta^{n_1} - c_\beta \beta^n + c_\gamma \gamma^{n_1} - c_\gamma \gamma^n| \\ &< |c_\beta \beta^{n_1}| + |c_\beta \beta^n| + |c_\gamma \gamma^{n_1}| + |c_\gamma \gamma^n| \\ &< 4|c_\beta| |\beta|^{n_1} < 1. \end{aligned}$$

We obtain the following by dividing both sides by $p^m - p^{m_1}$,

$$\begin{aligned} \left| \frac{c_\alpha (\alpha^{n-n_1} - 1) \alpha^{n_1} p^{-m_1}}{p^{m-m_1} - 1} - 1 \right| &< \frac{1}{p^m - p^{m_1}} \\ &< \frac{p}{p^m} \\ &< \frac{p}{\alpha^{n-8}}. \end{aligned}$$

Then

$$\left| \frac{c_\alpha (\alpha^{n-n_1} - 1) \alpha^{n_1} p^{-m_1}}{p^{m-m_1} - 1} - 1 \right| < \frac{p}{\alpha^{n-8}}, \quad (17)$$

Here, we applied the inequality $\alpha^{n-8} < p^m$.

If we put

$$\Lambda_3 = \frac{c_\alpha(\alpha^{n-n_1} - 1)}{p^{m-m_1} - 1} \alpha^{n_1} p^{-m_1} - 1.$$

We must show that $\Lambda_3 \neq 0$. Assuming the opposite, $\Lambda_3 = 0$, implies

$$c_\alpha(\alpha^n - \alpha^{n_1}) = p^m - p^{m_1}.$$

On the above equation, we apply the Galois automorphism $(\alpha\beta)$ and discover that

$$c_\beta(\beta^n - \beta^{n_1}) = p^m - p^{m_1}.$$

Subsequently

$$|c_\beta(\beta^n - \beta^{n_1})| \leq |c_\beta|(|\beta|^n + |\beta|^{n_1}) < \frac{1}{2}$$

and

$$|p^m - p^{m_1}| = p^{m_1}(p^{m-m_1} - 1) \geq 4$$

which is a contradiction. It follows that $\Lambda_3 \neq 0$. Applying Matveev's theorem to it using the given parameters

$$t = 3, \quad \gamma_1 = \frac{c_\alpha(\alpha^{n-n_1} - 1)}{p^{m-m_1} - 1}, \quad \gamma_2 = \alpha, \quad \gamma_3 = p,$$

$$b_1 = 1, \quad b_2 = n_1, \quad b_3 = -m_1.$$

Using the logarithmic height function, we can derive

$$\begin{aligned} h(\gamma_1) &\leq h(c_\alpha(\alpha^{n-n_1} - 1)) + h(p^{m-m_1} - 1) \\ &\leq h(c_\alpha) + (n - n_1)h(\alpha) + \log 2 + (m - m_1)h(p) + \log 2 \\ &\leq \frac{1}{3} \log 23 + \frac{1}{3}(n - n_1) \log \alpha + (m - m_1) \log p + 2 \log 2. \end{aligned}$$

Then, using (16) we have

$$\begin{aligned} 3h(\gamma_1) &< \log 23 + (n - n_1) \log \alpha + 3(m - m_1) \log p + 6 \log 2 \\ &< 2 \times 10^{26} \times (1 + \log n)^2 + (\log p)^2. \end{aligned}$$

We can choose $A_1 := 2 \times 10^{26} \times (1 + \log n)^2 (\log p)^2$ and as before $A_2 := \log \alpha$ and $A_3 := 3 \log(p)$.

we get,

$$\log |\Lambda_3| > -1.4 \times 30^6 \times 3^{4.5} \times 9 \times (1 + \log 3) \times (1 + \log n) \times 2 \times 10^{26} \times (1 + \log n)^2 \times (\log p)^2 \log \alpha \times 3 \log p.$$

Then,

$$\log |\Lambda_3| > -4.57 \times 10^{38} \times (1 + \log n)^3 \times (\log p)^3.$$

Comparing those yields to those from (17),

$$\begin{aligned} (n-8)\log\alpha &< 4.58 \times 10^{38} \times (1+\log n)^3 \times (\log p)^3 \\ n &< 1.63 \times 10^{39} \times (1+\log n)^3 \times (\log p)^3 \\ n &< 10^{41} \times (\log n)^3 \times (\log p)^3. \end{aligned}$$

From Lemma 2.3, we can now deduce

$$n < 8 \times 10^{41} \times (\log p)^3 \times \log(10^{40} \times (\log p)^3). \quad (18)$$

Therefore, for each prime number p , n is bounded. This proves, Theorem 1.1.

3.2. Proof of Theorem 1.2

Now, let us take $p = 5$. By 18 we obtain the bound

$$n < 3.63224 \cdot 10^{47}$$

Assuming $n \leq 500$, then $m \leq 88$, we use (9). Within the range $0 \leq n_1 < n \leq 500$ and $0 \leq m_1 < m \leq 88$, We executed a Maple program, and all solutions as in Theorem 1.2, were obtained. Assuming $500 < n$ in what follows, we can deduce $m > 88$ based on (9). Hence, it is crucial to establish an upper bound for n before tackling the Diophantine equation (2) when $p = 5$.

To reduce the previously mentioned constraint for n , we use Lemma 2.2 iteratively.

Let's revisit (10) again

$$\Gamma := n \log \alpha - m \log 5 + \log c_\alpha.$$

We assume $\min\{n-n_1, m-m_1\} \geq 20$, (If not, we use (12) in the case $n-n_1 \leq 20$ and $m-m_1 \geq 20$, we use (14) in the case $n-n_1 \geq 20$ and $m-m_1 \leq 20$, and finally if $n-n_1 > 20$ and $m-m_1 > 20$ we use formula (17)).

Keep in mind that $e^\Gamma - 1 = \Lambda \neq 0$, therefore $\Gamma \neq 0$.

If $\Gamma > 0$, we have

$$0 < \Gamma < e^\Gamma - 1 = |\Lambda| < \max\{\alpha^{n_1-n+14}, 5^{m_1-m+1}\}.$$

If $\Gamma < 0$, we have $1 - e^\Gamma = |e^\Gamma - 1| < \frac{1}{4}$, thus $e^{|\Gamma|} < \frac{4}{3}$, and we obtain

$$0 < |\Gamma| < e^{|\Gamma|} - 1 = e^{|\Gamma|}|\Lambda| < \frac{4}{3} \max\{\alpha^{n_1-n+14}, 5^{m_1-m+1}\}.$$

Therefore, in each case, we arrive at

$$0 < |\Gamma| < \frac{4}{3} \max\{\alpha^{n_1-n+14}, 5^{m_1-m+1}\}.$$

After dividing by $\log 5$, we obtain

$$0 < \left| n \frac{\log \alpha}{\log 5} - m + \frac{\log c_\alpha}{\log 5} \right| < \max\{43 \times \alpha^{-(n-n_1)}, 5 \times 5^{-(m-m_1)}\}.$$

Lemma 2.2 is utilized with the given data

$$\tau = \frac{\log \alpha}{\log 5}, \quad \mu = \frac{\log c_\alpha}{\log 5}, \quad (A, B) = (43, \alpha) \text{ or } (5, 5).$$

The $89 - th$ convergent of τ is examined, and $M := 3.63224 \times 10^{47}$ is taken as the upper bound on n to accomplish this

$$\frac{p}{q} = \frac{p_{89}}{q_{89}} = \frac{30602146832395551481582205917878973105695669902464}{175150532971168634103969412154716075682118915824011},$$

$q > 6M$ is satisfied by the chosen value of q . It also yields $\epsilon = \|q\mu\| - M\|q\tau\| = 0.04071840822609\dots > 0$, Lemma 2.2 enables us to deduce that either

$$n-n_1 < \frac{\log(\frac{43 \times q}{\epsilon})}{\log \alpha} = 436.17422133\dots, \text{ or } m-m_1 < \frac{\log(\frac{5 \times q}{\epsilon})}{\log 5} = 74.87101070\dots$$

Then

$$n - n_1 \leq 436, \quad \text{or} \quad m - m_1 \leq 74.$$

We now examine each of these two instances separately.

The first assumption is that $n - n_1 \leq 436$. In this instance, we consider

$$\Gamma_1 = n_1 \log \alpha - m \log 5 + \log(c_\alpha(\alpha^{n-n_1} - 1)).$$

Here, when we proceed to (12), we observe that $e^{\Gamma_1} - 1 = \Lambda_1 \neq 0$, indicating that $\Gamma_1 \neq 0$. Since $|e^{\Gamma_1} - 1| = |\Lambda_1| < 5^{m_1-m+1} < \frac{1}{4}$, then $|\Gamma_1| < \frac{1}{4}$.

As $|x| < 2|e^x - 1|$ for all $x \in \left(\frac{-1}{2}; \frac{1}{2}\right)$, we derive

$$|\Gamma_1| < 2|e^{\Gamma_1} - 1| = 2|\Lambda_1|,$$

then

$$|\Gamma_1| < 2 \times 5^{m_1-m+1} = \frac{10}{5^{m-m_1}}.$$

When we divide both sides by $\log 5$, we get

$$0 < |n_1 \tau - m + \mu_k| < 7 \times 5^{-(m-m_1)},$$

where τ remains the same as before, and for every value of $k := n - n_1 \in \{1, 2, \dots, 436\}$, we have $\mu_k = \frac{\log(c_\alpha(\alpha^k - 1))}{\log 5}$ instead of μ .

For all values of k , we get $\epsilon > 0.001728193$.

Therefore, we use the 87-th convergent $\frac{p}{q} = \frac{p_{87}}{q_{87}}$ of τ that satisfies $q_{87} > 6M$, as stated by Lemma 2.2. As a result, for all $k = 1, 2, \dots, 421$, we compute $\frac{\log(\frac{7 \times q_{87}}{\epsilon_k})}{\log 5}$, we discover that the greatest value of these is at most 75. Consequently, $m - m_1 \leq 75$. Let us now consider the case where $m - m_1 \leq 74$, let us take

$$\Gamma_2 = n \log \alpha - m_1 \log 5 + \log \left(\frac{c_\alpha}{5^{m-m_1} - 1} \right).$$

Next, we have

$$|e^{\Gamma_2} - 1| = |\Lambda_2| < \alpha^{n_1 - n + 16} < \frac{1}{4}.$$

Then $|\Gamma_2| < \frac{1}{2}$ as previously, we can conclude that

$$0 < |\Gamma_2| < \alpha^{n_1 - n + 19}.$$

The result of dividing by $\log 5$ is

$$0 < \left| n \frac{\log \alpha}{\log 5} - m_1 + \frac{\log \left(\frac{c_\alpha}{5^{m-m_1} - 1} \right)}{\log 5} \right| < 130 \times \alpha^{-(n-n_1)}.$$

Using the same τ , $q = q_{88}$, M , and taking $A = 130$, $B = \alpha$ and $\mu_l = \frac{\log \left(\frac{c_\alpha}{5^l - 1} \right)}{\log 5}$ for $l = 1, 2, \dots, 74$, we reiterate the application of Lemma 2.2.

We verify, using Maple, that for every $l = 1, 2, \dots, 72$, the 88-th convergent of τ , represented as q_{88} , satisfies, $q_{88} > 6M$ and $\epsilon_l > 0.014094654$. For every

$l = 1, 2, \dots, 74$, we calculated $\frac{\log \left(\frac{130 \times q_{88}}{\epsilon_l} \right)}{\log \alpha} = 435.511774064 \dots$, and discovered that the maximum value is < 436 .

Finally, our analysis gives the combined results $n - n_1 \leq 435$ and $m - m_1 \leq 75$.

In the last step, we consider the inequality involving Λ_3 . Let

$$\Gamma_3 = n_1 \log \alpha - m_1 \log 5 + \log \left(\frac{c_\alpha (\alpha^{n-n_1} - 1)}{5^{m-m_1} - 1} \right).$$

Since $n \geq 500$, we utilize $\frac{\alpha^{14}}{\alpha^n} < \frac{1}{4}$, and apply (17), to obtain $0 < |\Gamma_3| < \frac{1}{2}$, consequently, we have $|\Gamma_3| < 2 \times \frac{\alpha^{14}}{\alpha^n}$.

After dividing by $\log 5$, we arrive at

$$|n_1\tau - m_1 + \mu_{k,l}| < 64 \times \alpha^{-n},$$

$$\log \left(\frac{c_\alpha(\alpha^k - 1)}{5^l - 1} \right)$$

where τ is as defined earlier, $\mu_{k,l} := \frac{\log \left(\frac{c_\alpha(\alpha^k - 1)}{5^l - 1} \right)}{\log 5}$ for $k := n - n_1 \in \{1, 2, \dots, 435\}$, and $l := m - m_1 \in \{1, 2, \dots, 75\}$.

As a result, we can use Lemma 2.2. The same 88-th convergent above of τ , satisfy $q_{88} > 6M$. And $\epsilon_{k,l} \geq 0.01409465477$ for $1 \leq k \leq 435$ and $1 \leq l \leq 75$, works well in this case based on our analysis. Using Maple, we set $A := 64$, $B := \alpha$, we computed $\frac{\log \left(\frac{64 \times q_{88}}{\epsilon_{k,l}} \right)}{\log \alpha}$ for all k in the set $\{1, 2, \dots, 435\}$, and $l \in \{1, 2, \dots, 75\}$, and found that the highest value is < 432 .

Therefore, $n \leq 431$, which contradicts our assumption that $n \geq 500$. Thus, Theorem 1.2 is now fully proven.

In conclusion, the general problem remains widely open for arbitrary values of the prime p . In this regard, it would be relevant to extend the analysis to a broader set of prime numbers, for instance considering values $p \in [5, 1000]$. Such an extension would constitute a natural direction for future research.

References

- [1] B. Alan and D. Harold, *The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$* , The Quarterly Journal of Mathematics **20** (1969), no. 1, 129–137.
- [2] D. Andrej and P. Attila, *A generalization of a theorem of Baker and Davenport*, The Quarterly Journal of Mathematics **49** (1998), no. 195, 291–306.
- [3] J. J. Bravo, L. Florian, and K. Yazán., *On Pillai's problem with Lucas numbers and powers of 3.*, Bulletin of the Korean Mathematical Society **54** (2017), 1069–1080.
- [4] C. Kwok Chi, P. István, and Z. Volker, *On a variant of pillai's problem*, Int. J. Number Theory **13** (2017), 1711–1727.
- [5] ———, *On a variant of pillai's problem II*, Journal of number theory **183** (2018), 269–290.
- [6] A. M. García and S. Hernández, *Pillai's problem with padovan numbers and powers of two*, Revista Colombiana de Matemáticas (2019), 1–14.
- [7] S. Hernández, L. Florian, and L. M. Rivera, *On pillai's problem with the fibonacci and pell sequences*, Boletín de la sociedad matemática Mexicana **25** (2019), 495–507.

- [8] A. Herschfeld, *The equation $2^x - 3^y = d$* , Bull. Amer. Math. Soc. **42** (1936), 231–234.
- [9] D. Mahadi, *On the problem of Pillai with Padovan numbers and powers of 3*, Studia Scientiarum Mathematicarum Hungarica **56** (2019), 364–379.
- [10] ———, *On a problem of Pillai with Fibonacci numbers and powers of 3*, Boletín de la Sociedad Matemática Mexicana **26** (2020), no. 2, 263–277.
- [11] D. Mahadi, L. Florian, and R. Mihaja, *On a problem of Pillai with Fibonacci numbers and powers of 2*, Proceedings-Mathematical Sciences **127** (2017), 411–421.
- [12] D. Mahadi, C. Gómez, and L. Florian, *On a problem of Pillai with k -generalized Fibonacci numbers and powers of 2*, Monatshefte für Mathematik **187** (2018), 635–664.
- [13] E. Matveev, *An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. ii*, Izvestiya: Mathematics **64** (2000), no. 6, 1217.
- [14] S. S. Pillai, *On $a^x - b^y = c$* , J. Indian Math. Soc.(NS) **2** (1936), 119–122.
- [15] ———, *A correction to the Paper "On $a^x - b^y = c$* , The Journal of the Indian Mathematical Society (1937), 215–215.
- [16] ———, *On the equation $2^x - 3^y = 2^X + 3^Y$* , Bull. Calcutta Math. (1945), 15–20.
- [17] R. Salah, K. Bir, and T. Alain, *Padovan and Perrin numbers of the form $x^a \pm x^b + 1$* , Annales Mathematicae et Informaticae **55** (2022).
- [18] S. Sanchez and L. Florian, *Linear combinations of factorials and s-units in a binary recurrence sequence*, Annales mathématiques du Québec **38** (2014), no. 2, 169–188.
- [19] R. J. Stroeker and R. Tijdeman, *Diophantine equations, Computational methods in number theory*, Math. Centre Tracts (1982).

(Recibido en noviembre de 2024. Aceptado en junio de 2025)

LSI, POLYDISCIPLINARY FACULTY OF TAZA
 SIDI MOHAMED BEN ABDALLAH UNIVERSITY,
 FEZ, MOROCCO
e-mail: abdelghani.larhli@usmba.ac.ma

LSI, POLYDISCIPLINARY FACULTY OF TAZA
SIDI MOHAMED BEN ABDALLAH UNIVERSITY,
FEZ, MOROCCO
e-mail: abdelhakim.chillali@usmba.ac.ma

DEPARTMENT OF MATHEMATICS
RESEARCH CENTER OF THE SCHOOL OF ADVANCED ENGINEERING STUDIES,
(EHEI) OUJDA, MOROCCO
e-mail: a.elhabibi@ump.ac.ma

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE, MOHAMMED PREMIER UNIVERSITY,
OUJDA, MOROCCO
e-mail: ziane12001@yahoo.fr