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ABstracT. We consider the Padovan sequence {Py}n>0, defined by Py = 0,
P, = P> = 1, with subsequent terms given by the recurrence relation P43 =
Pp11+ P, for all n > 0. In this paper, we use the methods of Baker-Davenport.
We demonstrate that the Diophantine equation P, —p™ = P,,;, — p™*' admits
only finitely many non-negative integer solutions n,m,ni, mi1, where p is a
fixed prime number > 5. Additionally, once the value of p is specified, these
solutions can be obtained explicitly. We address the case where p = 5.

Key words and phrases. Padovan numbers, Linear form in logarithms, Reduction
method.
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ResuMeN. Consideramos la succession de Padovan {P,},>0, definida induc-
tivamente por Py = 0, P, = P, = 1 y la relaciéon de recurrencia Pp,y3 =
P,11 + P, para n > 0. Este articulo utiliza el método de Baker-Davenport.
Probamos que la ecuacién Diofantina P, — p™ = P,; — p™! admite sdlo fini-
tas soluciones enteras positivas n, m,ni, mi1, donde p es un nimero primo fijo
> 5. Mas aun, una vez fijo el valor de p, las soluciones pueden ser listadas de
manera explicita. Mostramos este proceso para el caso p = 5.

Palabras y frases clave. Numeros de Padovan, Formas lineales en logaritmos,
método de reduccion.
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1. Introduction

Let U = {U,}n>0 and V = {V,, },,>0 be two sequences of integers. We con-
sider the problem of determining the existence of non-negative integer solutions
(n,m,n1,my) for the Diophantine equation

Un - Vm = Un1 - Vmu (TL, m) 7é (nlaml)' (1)

A classical problem consists of finding integers ¢ that can be expressed as the
difference between elements of U and V; that is, solutions to the equation
U, — V;, = c. This problem was studied by Pillai for the case when U and V
are sequences of powers of a and b, respectively, where a and b are integers
greater than 2. This is known as the “Pillai problem” [14].

Herschfeld proved in [8] that this equation for (a,b) = (2,3) has at most
one solution when |c| is sufficiently large. This result was extended by Pillai
in the case where a and b are co-prime integers [15]. Pillai conjectured that
the equation 2% — 3¥ = 271 — 3% has the unique solutions (z,y,%1,y1) =
(3,2,1,1), (5,3,3,1) and (8,5,4,1) [16]. This conjecture was proved later by
Stroeker and Tijdeman in [19], by using Baker’s theory on linear forms in the
logarithm of algebraic numbers. The study of equation (1) in the case where
U and V are linear recurrence sequences was initiated by Ddamulira, Luca,
and Rakotomalala, who studied the case when U and V are the sequences of
Fibonacci numbers and powers of 2, respectively [11]. Other cases of this type
of equation have been studied (see [4, 5, 10, 12, 3, 9, 7]).

In this context, we consider the Diophantine equation
Py —p™" =Py —p™ (2)
where {P,},,>0 is the Padovan recurrence sequence given by the relation
Pois = Poy1+ P,

with Py =0, P, = P, = 1 and p > 5 being a prime number. The first few terms
of this sequence are as follows:

(Po)nso = {0,1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49, .. .}.

In this paper, we first demonstrate that the Diophantine equation (2) admits
only finitely many non-negative integer solutions. This result is obtained by
applying Baker’s method to derive lower bounds for linear forms in logarithms
of algebraic numbers. Secondly, for p = 5, this bound is reduced using a variant
of a result by Baker and Davenport [2], and then, using Maple, we explicitly
compute the different solutions of (2) in the case p = 5.

Since P, = P, = P3 =1, and P, = Ps, we identify P; and P, with P3, and
P4 with P5.
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PILLAT’S PROBLEM WITH PADOVAN NUMBERS AND PRIME POWERS 63

Theorem 1.1. For each prime number p > 5, the number of non-negative
integer solutions (n,m,n1,m1) of the equation (2) is finite.

For p = 2,3, similar results were obtained by Ana Cecilia Garcia Lomeli,
Santos Herndndez Hernandez, and Mahadi Ddamulira (see [6], [9]). For p = 5,
we have the following theorem:

Theorem 1.2. The solutions (n,m,ni,my) in non-negative integers for the
equation Pp, — 5™ = P, — 5™, with n > n; and m > my are

(7.1,0,0),(8,1,3,0),(9,1,6,0), (10, 1,8,0), (12,1, 11,0),
(13,2,3,1),(14,2,7,0), (25, 4,12, 2), (36, 6, 27, 5).

As a consequence, we arrive at the following corollary:

Corollary 1.3. The distinct integers c that have two or more representations
in the form P, — 5™ are limited to {0,-1,2,4,11,—4,3,-9, —2044}.

Additionally, the corresponding representations of these numbers with inte-
gers n and m as P, — 5™ are enumerated as follows,

-1 = P-5 = P -5
0 = PB-5 = P35
2 = Py—-5' = Ps-5°
4 = Pyo—-5 = PB-5
11 = Py—-5" = P;-5 (3)
—4 = Pi3—-5> = Py—5t
3 = Py-5 = P -5
-9 = P25—54 = P12—52
—2044 = P35—5% = Py, —5°.

2. Auxiliary result

We begin by reviewing the fundamental characteristics of the Padovan sequence
{P,.}n>0, as detailed in [17]. Specifically, the characteristic polynomial for this
sequence is

Y(z) =23 -2 — 1.

The roots of v are a, 3, and v = 3, (the complex conjugate of 3), where

a_rl+r2 ﬂ_—rl—r2+i\/§(r1—r2)
6 T 12 ’

r=\/108 + 1269 and 7o = \/108 — 12v/69.
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Let
L _(=pi-9 _ 1+a
*Ta=B)la—9) —aZ+3a+1’
1-a)1-7) 148
P B-aB-7) B +3p+1

T NS E T
T =B s+l P
The following is Binet’s formula for P,,:

P, =coa™ +cf" +cy", foralln > 0. (4)
Numerically, we can observe that

1.32 < a < 1.33,
0.86 < |8] = |y| < 0.87,

5
0.72 < ¢, < 0.73, (5)
0.24 < |eg| = |e,| < 0.25.
It is easily verifiable that )
1Bl =v=a">.
We can demonstrate via induction that
a" 3 <P, <a™ ! foralln>4. (6)

Let K := Q(«, 8) denote the splitting field of the polynomial ¢ over Q; this
extension has degree [K : Q] = 6. Moreover, the Galois group of K over Q
is represented by {(1), (af8), (o), (87), (aB7), (ay5)} which is isomorphic to
S3. Thus, we identify the elements of G with the permutations of the zeros
of the polynomial 1. Standard references for transcendental methods in Dio-
phantine equations include ([1], [2], [13], [14]). For any non-zero algebraic num-
ber v of degree d over Q, with minimal primitive polynomial over Z given by
ag H?zl(X —~0)), where the 4(?)’s denote the conjugates of 7, and the leading
coeflicient ag is positive, the logarithmic height of « is defined by

d
M) = Sllogag + S log(max {57, 1})).

i=1
In particular, h(y) = log(max |p|, q) if v = P s arational integer with ged(p, ¢) =
q

1 and ¢ > 0. In the following sections, we will use the following properties of
the logarithmic height function h(-).

h(nxv) < hin) +h(y) +log2,
() < h(n) + h(v), (7)
h(n®) = lslh(n) (s €Z).
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A key result in our approach to the Diophantine equation is the following
theorem, established by Matveev in [13] (see also Theorem 2 in [10]).

Theorem 2.1. In a real algebraic number field K of degree D, let us consider
positive real algebraic numbers v1,...,7v. Let by,... by be non-zero rational
integers. Suppose that

A=Abr 4P 1 (8)

is non-zero. Then we have
log |A| > —1.4 x 30" x %% x D?*(1 +1log D)(1 + log B)A; ... Ay,

where

B > max{|b1],..., b},

and
A; > max{Dh(v;),|log~;|,0.16} for all i=1,...,t.

2.1. Baker-Davenport reduction lemma

During our work, we find large upper bounds that should be reduced. Specifi-
cally, for a non-homogeneous linear form in two integer variables, we utilize a
slightly modified version of a result by Dujella and Petho (see [2]), which is a
generalization of the result of Baker and Davenport [1]. For a real number X,
we denote || X|:=min{|X — n|,n € Z} as the distance from X to the nearest
integer. Recall that the distance between a real number X and the nearest
integer is expressed as follows:

|IX] := min{| X — n|,n € Z}.

Lemma 2.2 ([2]). Let 7 be a real number and M a positive integer. Let P be

q
convergent in the continued fraction of T such that ¢ > 6M, and let u, A, B be
real numbers such that A > 0 and B > 1. Define € = ||ug| — M||rq||. If e > 0,
the following inequality cannot be solved for positive integers u,v, and k,

0<|ur—v+ul < AB™F,

log(Ag/e)

where u < M and k > log B

Additionally, we require the following lemma from [18]:

t
(logt)m’

Lemma 2.3 (Sanchez, Luca). Ifm > 1, Z > (4m?*)™ and Z >

then
t<2™Z(log Z)™.

Revista Colombiana de Mateméticas



66 L. ABDELGHANI, C. ABDELHAKIM, E.H. ABDELAZIZ & M. ZIANE

3. Proof of Theorem 1.1

We notice that when m = m; then n = ny; therefore, we will assume that
m > my in the following.

By applying equations (2) and (6), we obtain
an78 < Pnfpnl :pmfpml <pm7

The inequality on the left-hand side is evident for ny = 0 and n = 3. When
ny > 3 and n > 5, we observe that

Pn_Pn1 ZPn_Pn71:Pn752an_8~

These inequalities are straightforward. Consequently, we see that a” =8 < p™.

Likewise,
A"t > Py > Py = Py =p™ = p™ > pm T
Thus,
(nfS)%<m<(n71)%+l. 9)

Finding a bound for n allows us to find a bound for m, which shows that
the number of solutions is finite. Thus, establishing an upper bound for n is
essential before addressing the Diophantine equation (2).

3.1. Bounding n:
Using (2) and (4) in conjunction with the estimates from (5), we arrive at

Ca()én + Cﬁﬁn + C,Y’yn _pm — caanl + C,Bﬁnl + C/y,ynl _pml
|Caan_pm| — |Caan1 +Cﬁ(ﬁn1 _ Bn) _’_07(,}/711 _ ,yn) _pm1|
< ca™ +epl(18™ +(BI")+ ey [ (™ + 2 [") +p™
< o™ +4cgl| 8™ + p™
<a™mTl 414 pm
< 2™ 4 p™

< 2max{a™ 3 pm1},

Dividing both sides by p™ and using the fact that 2 < o2, we obtain

a7l1+6 pm1+1

pm (10)
nl—n+14,pm1 —m+1} ,

)

lcaa™p™™ — 1] < max —

< max {a

whenever we have made use of a"~® < p™.
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We put
A=c,a"p™™ —1.

Assuming that A = 0, we have c,a™ = p™ € Z. By applying the Galois
automorphism corresponding to («f), we obtain cgf™ = p™. However, since
legB™| < 1, this creates a contradiction. Consequently, we conclude that A # 0.

By applying Matveev’s inequality, we calculate A by taking

t:3a 71 =Cay, T2=00, V3=D,

b1 = 1, b2 =n, b3 = —m.
We often use D = 3 and the field K = Q(«) in our study. We choose B :=n
ala+1)

since max{1l,n,m} < n. Moreover, ¢, = The polynomial 23z3 —

3a2 —1"
23z? 4+ 6z — 1 is the minimal polynomial of c,, with roots c,, ¢g and c,.

According to (5), we also have max{|c4/|, |cg], |¢y|} < 1. Thus, k(1) = 3 log 23.

Subsequently, we choose A1 = 3h(~1) = log 23. In the same way, Ay = 3h(y2) =
log(a) and Az = 3h(y3) = 3logp.

We prove that the left-hand side of (10) is bounded by using the theorem
of Matveev,

log |A] > —1.4 x 305 x 35 x 9 x (141og3) x (1 +1logn) x log 23 x log o x 3log p
and we compare this with (10), we get
min{(n —n; —14)loga, (m —my — 1) logp} < 7.154 x 10'? x (1 +1logn) x log p.
Thus, this leads to

min{(n —n1)loga, (m —my)logp} < 7.16 x .10** x (1 +1logn) x logp. (11)

Now, let us examine each of these two cases individually.
Case 1 : min{(n — ny)loga, (m —mq)logp} = (n —ny)log a.

Under these conditions, we state (2) as

|caa™ —caa™ —p™| < egl(IB[™ +B]") + ey [(Iv[™ + [9I") +p™
< Aegl|B]" +p™
< pm1+1

leading to
lca@™ (™™™ — 1)p~™ — 1| < p™ ™+, (12)

We put
A =co(a™™ = Da™p™™ — 1.
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To demonstrate that A; # 0, suppose for contradiction that A; = 0. Then, we
have c,a™ (™™™ — 1) = p™.

By applying the Galois automorphism corresponding to («3) to the previous
relation, we obtain

legB™ (B" 7™ = 1) < lesl(IBI" +18™1) < 2[es|B™ < 1,
which contradicts p™ > 1 for all m > 0. Hence Ay # 0.
We can use Matveev’s theorem on Ay, let us take
N =ca(@™-1), =a y=p,
b1 =1, by=mnq, by3=-—m.

By (9) we have max{1,n1,m} < n, we can choose B = n.

Since

h(v1)

IN

Wl Wl Wk W —wl—

(Ca) +h(a"™™ =1)

< =log23 + (n — n1)h(a) + log 2

(log23 +log 8 + (n — ny) log a)

(log184 + (n — nq) log )

A\

(5.22 4 (n — nq) log @)

< =(5.22+17.16 x 10" x (1 +logn) x logp, by (11),

then
3h(y1) < 7.17 x 10'2 x (1 +logn) x logp,

therefore, we can select A; = 7.17 x 10'2 x (1 +logn) x log p. Additionally, as
before, we choose A = 3h(a) =loga and Az = 3logp.

As a result of Matveev’s theorem, we may conclude that

log |Ay] > —1.4 x 30% x 3*® x 9 x (14 1log3) x (1 +logn) x 7.17 x 10'?
X (14 logn) x logp x loga x 3logp

log |A1| > —1.64 x 10%5 x (1 +logn)? x (logp)?.

By comparing the above relation with (12), we notice that
(m —my)logp < 1.65 x 10% x (1 4 logn)?(logp)?. (13)
Case 2 : min{(n — n1)log, (m —my)logp} = (m — mq)logp.
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In this case, we rewrite our equation as,

eat™ = p™ P | = [eaa™ + esB" + ey — csB" — ey
leaa™ — (P = 1)p™| < caa™ + leg (181" + BI") + e (1™ + [11")

3
< 70" + 4lesllBI™
3
< Zo/” +1
< %a"l +a™
= Zanl
4
<a™mt2,
It suggests that
+2
Ca o7 — 1‘ < L
p'm—m1 — 1 mo__ M
a2
o P
m
_an1+2
o P
an—S
< p.anl—n—&-lo
Ca - —n+10
’2?7”_1%0;_1@”]7 mL_ 1‘ <p.05n1 n+t . (14)

On the left-hand side of the absolute value, the expression (14) should be rep-
resented by As. To demonstrate that, Ay # 0, assume otherwise. We derive
cgB™ = p™ —p™ by applying the Galois automorphism (af) to the previously
described connection, we obtain cg" = p™ — p™. This leads to a contra-

1
diction by taking the absolute value, indeed, |cgf"| < 1 and |p™ — p™| =

[p™t (pm~™ — 1) > 4. We use Az and Matveev’s theorem again. For this, we
take into consideration

Ca
t=3, M= e —p0 2% BEP
b1 = ]., b2 =n, b3 = —m;a.

Therefore, B = n. The heights of 75 and 3 had previously been determined.
Using the height for v;, we derive,

him) < hlca) +h(p™™™ —1)
< %log 23 + (m —mq)h(p) + log 2
< log(p™ ™t
< 7.7 x 102 x (1+1logn) x logp by (11).
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We can select, as a result A; = 2.16 x 10*® x (1 + logn) x log p. Furthermore,
we set A = loga and Az = 3logp, similar to the preceding cases.

Since max{1,n,m1} < n, we can fix B :=n.
After that, we obtain

log |Ag] > —1.4 x 30% x 3*® x 9 x (14 1log3) x (1 +logn) x 2.16 x 10'3
X (14 logn) x logp x loga x 3log p,

thus
log |Ag| > —4.93... x 10% x (1 4 logn)? x (logp)?.

By contrasting the aforementioned relation with (14), we conclude that
(n —ny — 10) log(e) < logp + 4.93 x 10% x (1 +logn)? x (logp)?,
subsequently
(n —np)loga < 4.94 x 10%° x (14 logn)? x (logp)?. (15)
Therefore, let us combine the two cases
min{(n — ny)loga, (m —m;)logp} < 7.16 x 10'* x (1 +logn) x log p,
and
max{(n—n1)loga, (m—m;)logp} < 4.94 x 10% x (1+logn)? x (logp)?. (16)

Finally, we can represent equation (2) as follows

|Caan - cozanl - pm +pm1| = ‘cﬁﬁnl - CBBTL + C’Y’\/nl - C’Ypyn|
< legB™ [+ epB| 4 leyy™ | 4 ey
< dlegllBm < 1.

We obtain the following by dividing both sides by p™ — p™,

Ca(a™™ ™M — a™p~™ 1 1
pm—ml _ 1 o pm — pml

p

m

P p
an—8’

Then
n—miy __ 1 N1py—Mmi

pm—m1 -1 an—S

Here, we applied the inequality a”8 < p™.
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If we put

n—ni _ ]
A3 = —Ca(nojim )anlpiml — 1
pmom—1

We must show that Az # 0. Assuming the opposite, A3 = 0, implies

On the above equation, we apply the Galois automorphism («8) and discover
that

cg(B" = p") =p™ —p™.

Subsequently

Do =

les(B™ = B™)| < lesl(18]" +18™) <

and
m m1| —

Ip™ —p pr(pmT™ = 1) > 4

which is a contradiction. It follows that Az # 0. Applying Matveev’s theorem
to it using the given parameters

Co(a™™ ™ — 1)

t:37 Y1 = pm_ml—l

y Y2 =0, Y3 =D,

b1:1, bginl, bngml.

Using the logarithmic height function, we can derive

h(m) < hlcala™™™ = 1)) +h(p™™™ —1)
< h(ca) + (n—ni)h(a) +log2 + (m — my)h(p) + log2
1
< glog23—|— g(n —ny)loga+ (m —mq)logp + 2log 2.

Then, using (16) we have

3h(y1) < log23+ (n—ny)loga+ 3(m—mq)logp+ 6log2
< 2x10% x (1+logn)? + (logp)>.

We can choose A; := 2 x 1026 x (1 + logn)?(log p)? and as before Ay := log «
and As := 3log(p).
we get,
log [A3] > —1.4 x 30% x 3*5 x 9 x (1 4+ log3) x (1 +1logn) x 2 x 10?6 x (1 +
logn)? x (logp)?loga x 3log p.
Then,
log |Az| > —4.57 x 10%® x (1 4+1ogn)® x (logp)®.
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Comparing those yields to those from (17),

(n—8)loga < 4.58 x 10%® x (1 +1logn)3 x (logp)?
n < 1.63x 103 x (1 +1logn)? x (logp)?
n < 10% x (logn)® x (logp)3.

From Lemma 2.3, we can now deduce
n < 8 x 10*! x (logp)® x log(10*° x (log p)®. (18)
Therefore, for each prime number p, n is bounded. This proves, Theorem 1.1.
3.2. Proof of Theorem 1.2
Now, let us take p = 5. By 18 we obtain the bound
n < 3.63224 - 10%7

Assuming n < 500, then m < 88, we use (9). Within the range 0 < n; <n <
500 and 0 < m; < m < 88, We executed a Maple program, and all solutions
as in Theorem 1.2, were obtained. Assuming 500 < n in what follows, we can
deduce m > 88 based on (9). Hence, it is crucial to establish an upper bound
for n before tackling the Diophantine equation (2) when p = 5.

To reduce the previously mentioned constraint for n, we use Lemma 2.2
iteratively.

Let’s revisit (10) again
I':=nloga —mlogh + log c,.

We assume min{n—ny, m—mj} > 20, (If not, we use (12) in the case n—n; < 20
and m — mq > 20, we use (14) in the case n —ny > 20 and m — my < 20, and
finally if n — ny > 20 and m — m; > 20 we use formula (17)).

Keep in mind that el — 1 = A # 0, therefore I' # 0.
If ' > 0, we have

0<T <el —1=]A| <max{qm 4 gm=mtiy
r r 1 o) _ 4 ;
IfT <0, wehave l —e" =e" — 1] < T thus 'l < 3 and we obtain
|7 7| 4 n1—n+14 gmi—m+1
O<I<e—1=e |A|<§max{oz1 , 5 }.
Therefore, in each case, we arrive at
4 ni—n+14 gmi—m-+1
0< |l < gmax{a .5 }.
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PILLAD'S PROBLEM WITH PADOVAN NUMBERS AND PRIME POWERS 73
After dividing by log 5, we obtain

log v log cq,

nlog5 mn log b

< max{43 x o~ ("7 5 x 5 (m=my

Lemma 2.2 is utilized with the given data

_loga _log e,

= = A, B)=(4 .
Tl M= (AB)=(3.a) o (5

The 89 — th convergent of 7 is examined, and M := 3.63224 x 10?7 is taken as
the upper bound on n to accomplish this

P _ pso _ 30602146832395551481582205917878973105695669902464

q qso  175150532971168634103969412154716075682118915824011°

q > 6M is satisfied by the chosen value of ¢. It also yields € = ||qu||—M ||q7||=
0.04071840822609. .. > 0, Lemma 2.2 enables us to deduce that either

log(#2X1) log(*%4)
n—ng < ———==436.17422133..., or m—mj < ——=—= = 74.87101070...
log av log 5

n—n; <436, or m —my < 74.
We now examine each of these two instances separately.
The first assumption is that n — n; < 436. In this instance, we consider

I'y = nqloga —mlog b + log(cq (™™™ —1)).

Here, when we proceed to (12), we observe that e'* — 1 = A; # 0, indicating

1 1
that I'y 75 0. Since |6F1 — 1| = |A1| < pm—mtl o 1, then |F1| < Z

-1 1
As |z| < 2|e® — 1] for all z € (2; 2), we derive

1| < 2]et — 1] = 2|A4],

then
10

Fm—my .

ITy| <2 x5m—mtl =
When we divide both sides by log 5, we get
0 < |niT —m+ pg| < 7 x 5= m=m),

where 7 remains the same as before, and for every value of k :== n —ny €

1 a(aF —1
(1,2, 436}, we have uj — -8Ca(@” = 1)

log5 instead of p.
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For all values of k, we get ¢ > 0.001728193.

Therefore, we use the 87—th convergent % = % of 7 that satisfies qg7 > 6M,
as stated by Lemma 2.2. As a result, for all £ = 1,2,...,421, we compute

TXqs7

10%(7)
log b
quently, m — my < 75. Let us now consider the case where m —m; < 74, let

us take

, we discover that the greatest value of these is at most 75. Conse-

5m—m1

s = nloga —mylogb + log <Cal> .

Next, we have

1
lef2 — 1] = |Ay| < @™~ H16 < 1

1
Then |T'y| < 5 as previously, we can conclude that
0 < |Ty| < o™~ F19,
The result of dividing by log5 is

log <Ca )
sm—mi 1
130 x = (=)
log 5 < X o

1
0< | —my +
log b

Using the same 7, ¢ = ¢gs, M, and taking A = 130, B = « and y; =
Ca
log <5l — 1)
T loen for [ = 1,2,...,74, we reiterate the application of Lemma 2.2.
0g

We verify, using Maple, that for every [ = 1,2,...,72, the 88-th convergent of
T, represented as ggg, satisfies, gsg > 6 M and ¢; > 0.014094654. For every

<130 X qss
log —_—
€l

I =1,2,...,74, we calculated ) = 435.511774064 - - -, and

log «v
discovered that the maximum value is < 436.

Finally, our analysis gives the combined results n —n; <435 and m—m; <
75.

In the last step, we consider the inequality involving Aj. Let

n—mi __ 1
F3 =N loga — m 10g5 + log (%) .
. Loat 1 . 1
Since n > 500, we utilize — < T and apply (17), to obtain 0 < |T'3] < 2
an
14
consequently, we have |I's| < 2 x e«
an
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After dividing by log 5, we arrive at

[naT —ma + pry| <64 xa™",

ca(a¥ —1)
log( o1 >fork'
log 5 ’

{1,2,...435}, and l :=m —my € {1,2,...,75}.

As a result, we can use Lemma 2.2. The same 88-th convergent above of
T, satisfy gss > 6M. And e;; > 0.01409465477 for 1 < k <435 and 1 <[ <
75, works well in this case based on our analysis. Using Maple, we set A :=
log (64 X qsg

Ekvl) for all k in the set {1,2,...,435},
log v

and [ € {1,2,...,75}, and found that the highest value is < 432.

Therefore, n < 431, which contradicts our assumption that n > 500. Thus,
Theorem 1.2 is now fully proven.

where 7 is as defined earlier, ui,; = =n-—-—n; €

64, B := «, we computed

In conclusion, the general problem remains widely open for arbitrary values
of the prime p. In this regard, it would be relevant to extend the analysis to
a broader set of prime numbers, for instance considering values p € [5,1000].
Such an extension would constitute a natural direction for future research.
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