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Abstract. This paper deals with an existence result of entropy solutions for
a nonlinear parabolic systems of the form

∂ui

∂t
− div

(
a(x, t, ui,∇ui) + Φi(x, t, ui)

)
= fi(x, u1, u2)− div(Fi) in QT

ui = 0 on Γ

ui(t = 0) = ui,0 in Ω,

where the lower order term Φ satisfies a growth condition prescribed by the N -
function M defining the framework spaces (see section 2.1) and the right hand
side is a measure datum. The main term which contains the space derivatives
and a non-coercive lower order term are considered in divergence form satisfy-
ing only the original Orlicz growths. We don’t assume any restriction neither
on M nor on its complementary M . Therefor, we work in a nonreflexive Orlicz
spaces.
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Resumen. Este art́ıculo se centra en probar la existencia de soluciones entrópicas
para sistemas no lineales parabólicos de la forma

∂ui

∂t
− div

(
a(x, t, ui,∇ui) + Φi(x, t, ui)

)
= fi(x, u1, u2)− div(Fi) in QT

ui = 0 on Γ

ui(t = 0) = ui,0 in Ω,

donde el término Φ satisface una condición de crecimiento dada por la N -
función M definida en los espacios descritos en la sección 2.1 y el lado derecho
de la ecuación corresponde a las condiciones medibles asociadas al problema.
El término principal que contiene los términos con derivadas espaciales y los
términos no coercitivos de menor orden, que aparecen forma divergente, sat-
isfacen las tasas de crecimiento de Orlicz. No vamos a suponer ninguna re-
stricción sobre la función M o la función complementaria M . Por lo tanto,
trabajaremos en espacios de Orlicz no reflexivos.

Palabras y frases clave. Sistemas parabólicos, crecimiento generalizado, espacios
de Orlicz-Sobolev, soluciones de entroṕıa.

1. Introduction

Let Ω be a bounded open subset of RN , N ≥ 2, QT be the cylinder Ω× (0, T )
where T is a positive real number and M is an Orlicz function. Let A : D(A) ⊂
W 1,x

0 LM (QT ) → W−1,xLM (QT ) be an operator of Leray-Lions type of the
form:

A(u) := −div a(x, t, u,∇u).

In this paper we prove an existence theorem of entropy solutions in the setting
of Orlicz spaces for the nonlinear parabolic problem

∂ui
∂t

− div
(
a(x, t, ui,∇ui) + Φi(x, t, ui)

)
= fi(x, u1, u2)− div(Fi) in QT

ui = 0 on Γ

ui(t = 0) = ui,0 in Ω.

(1)
where u0 ∈ L1(Ω), fi ∈ L1(QT ) and Φi satisfies the following natural growth
condition

|Φi(x, t, s)| ≤ γ(x, t) +M
−1

(M(δ|s|)), with γ ∈ EM (QT ). (2)

The problem (1), with a single equation, has been studied in different particular
directions. In the classical Sobolev spaces, in some elliptic cases, Guibé et al.(see
[3]), have assumed on Φ, the condition

|Φ(x, s)| ≤ c(x)
(
1 + |s|

)p−1

, (3)
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and in some parabolic cases (see [17]), they have assumed the condition

|Φ(x, t, s)| ≤ c(x, t)
(
1 + |s|γ

)
, with

γ =
N + 2

N + p
(p− 1) and c ∈ Lr(QT ) for an r > 0. (4)

The parabolic equations in Orlicz spaces have been widely studied since the year
2005 starting from the works of Meskine et al. (see [6, 7]) and with later results
by several authors, for instance the work of Moussa, Rhoudaf and Mabdaoui,
(see [14]). Concerning the case of Orlicz spaces with a single equation, the
existence of entropy solution for problem (1) has been established in the case
f ∈ L1(QT ) under the non natural growth condition

|Φ(x, t, s)| ≤ γ(x, t) · P−1
(P (δ|s|)) where γ ∈ L∞(QT ) and P ≺≺M. (5)

For the double equation, in the classical Sobolev spaces, the system (1) has
been solved by Azroul et al. in [4] in the case where Φi are independent of
x using the concept of renormalized solution. For the study of (1) in some
particular cases one can consult [5, 11, 12, 15, 19].

The approach of this paper is how to deal with the existence of entropy so-
lutions for system (1) in Orlicz spaces involving measure data where Φi satisfies
the original Orlicz growth condition

|Φi(x, t, s)| ≤ γ(x, t) +M
−1

(M(δ|s|)), where γ ∈ EM (QT ), (6)

without assuming any restriction on the modular function M neither on its
complementary M , the described problem lives in non reflexive Orlicz spaces.
The existence result in this context generalizes all cases mentioned above.

The space equipped with M and M satisfying the ∆2 condition is reflexive
and separable, which essentially simplifies methods of PDEs, then, also the
modular topology introduced in section 2.1 coincides with the norm one. The
challenges resulting from the lack of the reflexivity of the framework spaces
are significant and require precise handling with general N -functions that do
not satisfy the ∆2 condition. Also, the imposed condition on the lower order
term Φi is less restrictive and leads to serious difficulties in proving existence
of solution to the approximate problem and it’s convergence. Our approach to
overcome such difficulties is the use of Young’s inequality combined with a nice
algebraic trick on a good decomposition of the constant of coercivity α.
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Regarding applications, parabolic equations have many applications, among
them image processing and electro-rheological fluids modeling. A model of ap-
plications of these operators is the Boussinesq’s system:

∂u

∂t
+ u · ∇u− 2 div(µ(θ)ε(u)) +∇p = F (θ) in QT

∂b(θ)

∂t
+ u · ∇b(θ)−△θ = 2µ(θ)|ε(u)|2 in QT

u = 0, θ = 0 on Γ

u(t = 0) = u0 b(θ)(t = 0) = b(θ0) in Ω,

where the first equation is the motion conservation equation, the unknowns are
the fields of displacement u : QT → RN and temperature θ : QT → R, the field
ε(u) =

1

2
(∇u+ (∇u)t) is the strain rate tensor.

Let us briefly summarize the contents of this article: in section 2 we col-
lect some well-known preliminaries, results and properties of Orlicz-Sobolev
spaces and inhomogeneous Orlicz-Sobolev spaces. Section 3 is devoted to basic
assumptions, problem setting and the proof of the main result.

2. Preliminaries

2.1. Orlicz-Sobolev spaces

Let M : R+ → R+ be a continuous and convex function with:

M(t) > 0 for t > 0, lim
t→0

M(t)

t
= 0 and lim

t→+∞

M(t)

t
= +∞.

The function M is said an N -function or an Orlicz function, the N -function
complementary to M being defined as

M(t) = sup
{
st−M(s), s ≥ 0

}
.

We recall that (see [1])

M(t) ≤ tM
−1

(M(t)) ≤ 2M(t) for all t ≥ 0 (7)

and Young’s inequality: for all s, t ≥ 0,

st ≤M(s) +M(t).

We said that M satisfies the ∆2-condition if for some k > 0,

M(2t) ≤ kM(t) for all t≥ 0, (8)

and if (8) holds only for t ≥ t0, then M is said to satisfy the ∆2-condition near
infinity.
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Let M1 and M2 be two N -functions. The notation M1 ≺≺M2 means that
M1 grows essentially less rapidly than M2, i.e.

∀ϵ > 0, lim
t→∞

M1(t)

M2(ϵt)
= 0,

that is the case if and only if

lim
t→∞

(M2)
−1(t)

(M1)−1(t)
= 0.

Let Ω be an open subset of RN . The Orlicz class KM (Ω) (resp. the Orlicz space
LM (Ω)) is defined as the set of (equivalence class of) real-valued measurable
functions u on Ω such that:∫

Ω

M(u(x))dx <∞ (resp.

∫
Ω

M
(u(x)

λ

)
dx <∞ for some λ > 0).

Endowed with the norm

∥u∥M = inf
{
λ > 0 :

∫
Ω

M
(u(x)

λ

)
dx ≤ 1

}
,

LM (Ω) is a Banach space and KM (Ω) is a convex subset of LM (Ω). The closure
in LM (Ω) of the set of bounded measurable functions with compact support in
Ω is denoted by EM (Ω).

The Orlicz-Sobolev spaceW 1LM (Ω) (resp.W 1EM (Ω)) is the space of func-
tions u such that u and its distributional derivatives up to order 1 lie in LM (Ω)
(resp. EM (Ω)).

This is a Banach space under the norm

∥u∥1,M =
∑
|α|≤1

∥Dαu∥M .

Thus, W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of the prod-
uct of (N + 1) copies of LM (Ω). Denoting this product by ΠLM , we will use
the weak topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ).

The space W 1
0EM (Ω) is defined as the norm closure of the Schwartz space

D(Ω) in W 1EM (Ω) and the space W 1
0LM (Ω) as the σ(ΠLM ,ΠEM ) closure of

D(Ω) in W 1LM (Ω).

We say that a sequence {un} converges to u for the modular convergence
in W 1LM (Ω) if, for some λ > 0,∫

Ω

M
(Dαun −Dαu

λ

)
dx→ 0 for all |α| ≤ 1;

this implies convergence for σ(ΠLM ,ΠLM ).
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IfM satisfies the ∆2-condition on R+ (near infinity only if Ω has finite mea-
sure), then the modular convergence coincides with norm convergence. Recall
that the norm ∥Du∥M defined on W 1

0LM (Ω) is equivalent to ∥u∥1,M (see [8]).

LetW−1LM (Ω) (resp.W−1EM (Ω)) denotes the space of distributions on Ω
which can be written as sums of derivatives of order ≤ 1 of functions in LM (Ω)
(resp. EM (Ω)). It is a Banach space under the usual quotient norm.

If the open Ω has the segment property then the space D(Ω) is dense in
W 1

0LM (Ω) for the topology σ(ΠLM ,ΠLM ) (see [8]). Consequently, the action
of a distribution in W−1LM (Ω) on an element of W 1

0LM (Ω) is well defined.
For more details one can see for example [1] or [13].

2.2. Inhomogeneous Orlicz-Sobolev spaces

Let Ω be a bounded open subset of RN , T > 0 and set QT = Ω × (0, T ). For
each α ∈ NN , denote by Dα

x the distributional derivative on QT of order α with
respect to the variable x ∈ Ω. The inhomogeneous Orlicz-Sobolev spaces are
defined as follows,

W 1,xLM (QT ) =
{
u ∈ LM (QT ) : D

α
xu ∈ LM (QT ) for all |α| ≤ 1

}
and

W 1,xEM (QT ) =
{
u ∈ EM (QT ) : D

α
xu ∈ EM (QT ) for all |α| ≤ 1

}
.

The last space is a subspace of the first one, and both are Banach spaces under
the norm,

∥u∥ =
∑
|α|≤1

∥Dα
xu∥M,QT

.

We can easily show that they form a complementary system when Ω satis-
fies the segment property. These spaces are considered as subspaces of the
product space ΠLM (QT ) which have as many copies as there is α-order deriva-
tives, |α| ≤ 1. We shall also consider the weak topologies σ(ΠLM ,ΠEM ) and
σ(ΠLM ,ΠLM )). If u ∈ W 1,xLM (QT ) then the function : t 7→ u(t) = u(t, ·) is
defined on (0, T ) with values in W 1LM (Ω). If, further, u ∈W 1,xEM (QT ) then
the concerned function is a W 1EM (Ω)-valued and is strongly measurable. Fur-
thermore the following imbedding holds: W 1,xEM (QT ) ⊂ L1(0, T ;W 1EM (Ω)).
The space W 1,xLM (QT ) is not in general separable, if u ∈ W 1,xLM (QT ), we
can not conclude that the function u(t) is measurable on (0, T ). However, the
scalar function t 7→∥ u(t) ∥M,Ω is in L1(0, T ). The space W 1,x

0 EM (QT ) is de-
fined as the (norm) closure in W 1,xEM (QT ) of D(QT ). It is proved that when
Ω has the segment property, then each element u of the closure of D(QT ) with
respect of the weak* topology σ(ΠLM ,ΠEM ) is a limit, in W 1,xLM (QT ), of
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some subsequence (un) ⊂ D(QT ) for the modular convergence; i.e., if, for some
λ > 0, such that for all |α| ≤ 1;∫

QT

M
(Dα

xun −Dα
xu

λ

)
dx dt −→ 0 as n −→ ∞.

This implies that (un) converges to u in W 1,xLM (QT ) for the weak topology
σ(ΠLM ,ΠEM ) . Consequently,

D(QT )
σ(ΠLM ,ΠEM )

= D(QT )
σ(ΠLM ,ΠLM )

.

This space will be denoted by W 1,x
0 LM (QT ). Furthermore,

W 1,x
0 EM (QT ) =W 1,x

0 LM (QT ) ∩ΠEM .

We have then the following complementary system(
W 1,x

0 LM (QT ), F,W
1,x
0 EM (QT ), F0

)
,

F being the dual space of W 1,x
0 EM (QT ). It is also, modulo isomorphism, the

quotient of ΠLM by the polar set W 1,x
0 EM (QT )

⊥, and will be denoted by
F =W−1,xLM (QT ) and it is shown in [8] that

W−1,xLM (QT ) =
{
f =

∑
|α|≤1

Dα
xfα : fα ∈ LM (QT )

}
,

this space will be equipped with the usual quotient norm

∥f∥ = inf
∑
|α|≤1

∥fα∥M,QT
,

where the infimum is taken on all possible decompositions

f =
∑
|α|≤1

Dα
xfα, fα ∈ LM (QT ).

The space F0 is then given by,

W−1,xLM (QT ) =
{
f =

∑
|α|≤1

Dα
xfα : fα ∈ EM (QT )

}
,

and is denoted by F0 =W−1,xEM (QT ).

Definition 2.1. [8] Recall that an open domain Ω ⊂ RN has the segment
property if there exist a locally finite open covering Oi of the boundary ∂Ω
of Ω and a corresponding vectors yi such that if x ∈ Ω ∩ Oi for some i, then
x+ tyi ∈ Ω for 0 < t < 1.
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Definition 2.2. (Truncation function)

Define the following real function of a real variable, called the truncation
at height k > 0,

Tk(s) = max
(
− k,min(k, s)

)
=

 s if |s| ≤ k

k
s

|s|
if |s| > k,

and its primitive is defined by

T̃k(s) =

∫ s

0

Tk(t) dt.

Note that T̃k has the properties: T̃k(s) ≥ 0 and T̃k(s) ≤ k|s|.

Lemma 2.3. (cf. [16, Lemma 2.6]) Let Ω be an open subset of RN with finite
measure. let M , P and Q be N -functions such that Q ≺≺ P , and let f :
Ω × R → R be a Carathéodory function such that, for a.e. x ∈ Ω and for all
s ∈ R,

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c(x) ∈ EQ(Ω). Then the Nemytskii operator
Nf , defined by Nf (u)(x) = f(x, u(x)), is strongly continuous from P (EM ,

1
k2
) =

{u ∈ LM (Ω) : d(u,EM (Ω)) < 1
k2
} into EQ(Ω).

Lemma 2.4. [9, Lemma 6] Let uk, u ∈ LM (Ω). If uk → u for the modular
convergence, then uk → u for σ(LM , LM ).

Lemma 2.5. [2, Lemma 1] If un → u for the modular convergence (with every
λ > 0) in LM (QT ), then un → u strongly in LM (QT ).

Lemma 2.6. [14, Lemma 2.2] Let F : R → R be uniformly lipschitzian, with
F (0) = 0. LetM be a Orlicz function and let u ∈W 1LM (Ω) (resp.W 1EM (Ω)).
Then, F (u) ∈ W 1LM (Ω) (resp. W 1EM (Ω)). Moreover, if the set of disconti-
nuity points D of F ′ is finite, then

∂

∂xi
F (u) =

 F ′(u)
∂u

∂xi
a.e. in {x ∈ Ω : u(x) /∈ D}

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Lemma 2.7. [14, Lemma 2.3] Let F : R → R be uniformly lipschitzian, with
F (0) = 0. Let M be a Orlicz function. we assume that the set of discontinuity
points D of F ′ is finite, then the mapping F : W 1LM (Ω) → W 1LM (Ω) is
sequentially continuous with respect to the weak* topology σ(ΠLM ,ΠEM ).

Lemma 2.8. [6, Lemma 5] Let Ω be a bounded open subset of RN , N ≥ 2,
satisfying the segment property, then{

u ∈W 1,x
0 LM (QT ) :

∂u

∂t
∈W−1,xLM (QT ) + L1(QT )

}
⊂ C

(
[0, T ], L1(Ω)

)
.
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Lemma 2.9. [14, Lemma 2.7] (Integral Poincaré’s type inequality in inhomo-
geneous Orlicz spaces) Let Ω be a bounded open subset of RN and M is an
Orlicz function, then there exists two positive constants δ, λ > 0 such that∫

QT

M(δ|u(x, t)|) dx dt ≤
∫
QT

λM(|∇u(x, t)|) dx dt ∀u ∈W 1
0LM (QT ).

Lemma 2.10. (cf. [16, Lemma 2.5]) If fn ⊂ L1(Ω) with fn → f ∈ L1(Ω) a.e.

in Ω, fn, f ≥ 0 a. e. in Ω and

∫
Ω

fn(x) dx →
∫
Ω

f(x) dx, then fn → f in

L1(Ω).

Lemma 2.11. (cf. [16, Lemma 2.8]) Suppose that Ω satisfies the segment
property and let u ∈ W 1

0LM (Ω). Then, there exists a sequence (un) ⊂ D(Ω)
such that un → u for the modular convergence in W 1

0LM (Ω). Furthermore, if
u ∈W 1

0LM (Ω) ∩ L∞(Ω) then

∥un∥∞ ≤ (N + 1)∥u∥∞.

Lemma 2.12. (cf. [14, Lemma 2.8]) Let M be an N -function. Let (un) be
a sequence of W 1,xLM (QT ) such that, un ⇀ u weakly in W 1,xLM (QT ) for

σ(ΠLM ,ΠEM ) and
∂un
∂t

= hn+kn in D′(QT ) with hn is bounded inW−1,xLM (QT )

and kn is bounded in L1(QT ). Then, un → u strongly in L1
Loc(QT ). If further,

un ∈W 1,x
0 LM (QT ) then un → u strongly in L1(QT ).

3. Basic assumptions and main result

Through this paper Ω is a bounded open subset of RN , N ≥ 2, satisfy-
ing the segment property and M is an Orlicz function. Let A : D(A) ⊂
W 1,x

0 LM (QT ) → W−1,xLM (QT ) be an operator of Leray-Lions type of the
form:

A(u) := −div a(x, t, u,∇u).
This work aims to prove existence of entropy solutions in Orlicz spaces for the
nonlinear differential system

∂ui
∂t

− div
(
a(x, t, ui,∇ui) + Φi(x, t, ui)

)
= fi(x, u1, u2)− div(Fi) in QT

ui = 0 on Γ

ui(t = 0) = ui,0 in Ω,

(9)
where a : QT ×R×RN → RN is a Carathéodory function satisfying, for almost
every (x, t) ∈ QT and for all s ∈ R, ξ, η ∈ RN (ξ ̸= η) the following conditions:

(H1) there exist a function c(x, t) ∈ EM (QT ) and some positive constants k1,
k2, k3 and an Orlicz function P ≺≺M such that

|a(x, t, s, ξ)| ≤ β
[
c(x, t) + k1M

−1
(P (k2|s|)) +M

−1
(M(k3|ξ|))

]
.
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(H2) (
a(x, t, s, ξ)− a(x, t, s, η)

)
·
(
ξ − η

)
> 0.

(H3)

a(x, t, s, ξ) · ξ ≥ αM(|ξ|).

For the lower order term, we assume Φi : QT × R → RN be a Carathéodory
function satisfying:

(H4) for all s ∈ R, δ > 0 and for almost every x ∈ Ω,

|Φi(x, t, s)| ≤ γ(x, t) +M
−1

(M(δ|s|)) where γ ∈ EM (QT ).

Moreover, we suppose that for i = 1, 2, Fi ∈ (EM (QT ))
N and fi : Ω×R×R → R

is a Carathéodory function with

f1(x, 0, s) = f2(x, s, 0) = 0 a.e. x ∈ Ω,∀s ∈ R (10)

and for almost every x ∈ Ω, for every s1, s2 ∈ R,

sign(si)fi(x, s1, s2) ≥ 0. (11)

Finally, we assume the following condition on the initial data ui,0:

ui,0 is a measurable function for i = 1, 2. (12)

Lemma 3.1. (cf. [14, Lemma 3.1]) Under assumptions (H1)-(H3), let (Zn) be
a sequence in W 1,x

0 LM (QT ) such that

Zn ⇀ Z in W 1,x
0 LM (QT ) for σ(ΠLM (QT ),ΠEM (QT )), (13)(

a(x, t, Zn,∇Zn)
)
n

is bounded in
(
LM (QT )

)N

, (14)

lim
n,s→∞

∫
QT

(
a(x, t, Zn,∇Zn)− a(x, t, Zn,∇Zχs)

)
·
(
∇Zn −∇Zχs

)
dxdt = 0,

(15)

where χs denote the characteristic function of the set Ωs =
{
x ∈ Ω : |∇Z| ≤ s

}
.

Then,

∇Zn → ∇Z a.e. in QT , (16)

lim
n→∞

∫
QT

a(x, t, Zn,∇Zn)∇Zn dx =

∫
QT

a(x, t, Z,∇Z)∇Z dxdt, (17)

M(|∇Zn|) −→M(|∇Z|) in L1(QT ). (18)
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Definition 3.2. A couple of measurable functions (u1, u2) defined on QT is
said an entropy solution for system (9) if for i = 1, 2, ui ∈ L∞(0, T, L1(Ω)),

Tk(ui) ∈ D(A) ∩ W 1,x
0 LM (QT ), ∀k > 0 and T̃k(ui(·, t)) ∈ L1(QT ) for every

τ ∈ [0, T ], we have∫
Ω

T̃k(ui − v) dx+
〈∂v
∂t
, Tk(ui − v)

〉
Qτ

+

∫
Qτ

a(x, t, ui,∇ui)∇Tk(ui − v)) dx dt

+

∫
Qτ

Φi(x, t, ui)∇Tk(ui − v)) dx dt

≤
∫
Qτ

fiTk(ui − v)) dx dt+

∫
Qτ

Fi∇Tk(ui − v)) dx dt

+

∫
Ω

T̃k(ui,0 − v(0)) dx,

(19)

and
ui(x, 0) = ui,0(x) for a.e x ∈ Ω, (20)

for every τ ∈ [0, T ], k > 0 and for all v ∈ W 1,x
0 LM (QT ) ∩ L∞(QT ) such

that
∂v

∂t
∈W−1,xLM (QT ) +L1(QT ), where T̃k is the primitive function of the

truncation function Tk defined above.

Remark 3.3. Equation (19) is formally obtained by multiplication of the
problem (9) by Tk(ui − v). Notice that each term in (19) has a sense since
Tk(ui − v) ∈ W 1,x

0 LM (QT ) ∩ L∞(QT ). Moreover by Lemma 2.8, we have v ∈
C
(
[0, T ];L1(Ω)

)
and then the first and the last terms of (19) are well defined.

The following theorem is our main result.

Theorem 3.4. Suppose that the assumptions (H1)− (H4) and (10), (11) and
(12) hold true, then there exists at least one solution (u1, u2) for the parabolic
system (9) in sense of Definition (19).

The proof of the above theorem is divided into four steps.

Step 1: Approximate problems. For each n ∈ N∗, put

an(x, t, s, ξ) = a(x, t, Tn(s), ξ) a.e (x, t) ∈ QT ,∀s ∈ R,∀ξ ∈ RN

and
Φi,n(x, t, s) = Φi(x, t, Tn(s)) a.e (x, t) ∈ ΩT ,∀s ∈ R,

f1,n(x, s1, s2) = f1(x, Tn(s1), s2) a.e in Ω,∀s1, s2 ∈ R, (21)

f2,n(x, s1, s2) = f2(x, s1, Tn(s2)) a.e in Ω,∀s1, s2 ∈ R. (22)
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Let ui,0n ∈ C∞
0 (Ω) be such that

∥ ui,0n ∥L1≤∥ ui,0 ∥L1 and ui,0n −→ ui,0 in L1(Ω).

Considering the following approximate problem
∂ui,n

∂t
−div

(
a(x, t, ui,n,∇ui)+Φi,n(x, t, ui,n)

)
=fi,n(x, u1, u2)−div(Fi,n) in QT

ui,n = 0 on Γ

ui,n(t = 0) = ui,0n in Ω.

(23)
Let zn(x, t, ui,n,∇un) = an(x, t, ui,n,∇ui,n) + Φi,n(x, t, ui,n) + Fi,n, which sat-
isfies (A1), (A2), (A3) and (A4) of [10]. Indeed, it remains just to prove (A4),
to do this we use Young’s inequality as follows:

|Φi,n(x, t, ui,n)∇ui,n|≤ |γ(x, t)||∇ui,n|+M
−1

(M(δ|Tn(ui,n)|))|∇ui,n|

=
α2

α+ 2

α+ 2

α2
|γ(x, t)||∇ui,n|

+
α+ 1

α
M

−1
(M(δ|Tn(ui,n)|))

α

α+ 1
|∇ui,n|

≤ α2

α+ 2

(
M

(α+ 2

α2
|γ(x, t)|

)
+M

(
|∇ui,n|

))
+M

(α+ 1

α
M

−1
(M(δ|Tn(ui,n)|))

)
+M

( α

α+ 1
|∇ui,n|

)
.

While
α

α+ 1
< 1, using the convexity of M and the fact that M and M

−1 ◦M
are increasing functions, one has

|Φi,n(x, t, ui,n)∇ui,n| ≤
α2

α+ 2
M

(α+ 2

α2
|γ(x, t)|

)
+

α2

α+ 2
M

(
|∇ui,n|

)
+M

(α+ 1

α
M

−1
(M(δn))

)
+

α

α+ 1
M

(
|∇ui,n|

)
.

Since γ ∈ EM (QT ), M
(α+ 2

α2
|γ(x, t)|

)
∈ L1(Ω), then we get

Φi,n(x, t, ui,n)∇ui,n ≥ −
( α2

α+ 2
+

α

α+ 1

)
M

(
|∇ui,n|

)
−Cn− fixed L1function.

(24)
Moreover, by the same technic we have using Young’s inequality

|Fi,n∇ui,n| =
α2

(α+ 2)2
(α+ 2)2

α2
|Fi,n∇ui,n|

≤ α2

(α+ 2)2
M

( (α+ 2)2

α2
|Fi,n|

)
+

α2

(α+ 2)2
M

(
|∇ui,n|

)
dx dt

≤ CF +
α2

(α+ 2)2
M

(
|∇ui,n|

)
since Fi ∈ (EM (QT ))

N .
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Then,

Fi,n∇ui,n ≥ − α2

(α+ 2)2
M

(
|∇ui,n|

)
− CF . (25)

Using (24) and (25) and (H3) we obtain

zn(x, t, ui,n,∇ui,n)∇ui,n ≥
(
α− α2

α+ 2
− α

α+ 1
− α2

(α+ 2)2

)
M

(
|∇ui,n|

)
− Cn − fixed L1function

≥ α3 + 2α2

(α+ 1)(α+ 2)3
M

(
|∇ui,n|

)
− fixed L1function.

Thus, from [6, Theorem 4], the approximate problem (23) has at least one weak
solution ui,n ∈W 1,x

0 LM (QT ).

Step 2: A Priori Estimates.

Proposition 3.5. Assume that the hypothesis (H1) − (H4) hold true and let
ui,n be a solution of the approximate problem (23). Then, for all k > 0, there
exists a constant Ck (not depending on n), such that:

∥ Tk(ui,n) ∥W 1,x
0 LM (QT )≤ Ck (26)

and

lim
k→∞

meas
{
(x, t) ∈ QT : |ui,n| > k

}
= 0. (27)

Proof. Use Tk(ui,n)χ(0,σ) as test function in the approximate problem (23),
one has for every σ ∈ (0, T )

∫
Ω

T̃k(ui,n)(σ) dx−
∫
Ω

T̃k(ui,0n) dx+

∫
Qσ

an(x, t, ui,n,∇ui,n)∇Tk(ui,n) dx dt

+

∫
Qσ

Φi,n(x, t, ui,n)∇Tk(ui,n) dx dt =
∫
Qσ

fi,nTk(ui,n) dx dt

+

∫
Qσ

Fi,n∇Tk(ui,n) dx dt.

(28)
Notice that Φi,n(x, t, ui,n)∇Tk(ui,n) is different from zero only on the set
{|ui,n| ≤ k} where Tk(ui,n) = ui,n. From (H4) and then Young’s inequality
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for an arbitrary α > 0 (the constant of coercivity), we have∫
Qσ

Φi,n(x, t, ui,n)∇Tk(ui,n) dx dt

≤
∫
Qσ

|γ(x, t)||∇Tk(un)| dx dt

+

∫
Qσ

M
−1

(M(δ|Tk(ui,n)|))|∇Tk(ui,n)| dx dt

=
α2

α+ 2

∫
Qσ

α+ 2

α2
|γ(x, t)||∇Tk(ui,n)| dx dt

+

∫
Qσ

α+ 1

α
M

−1
(M(δ|Tk(ui,n)|))

α

α+ 1
|∇Tk(ui,n)| dx dt

≤ α2

α+ 2

(∫
Qσ

M
(α+ 2

α2
|γ(x, t)|

)
dx+

∫
Qσ

M
(
|∇Tk(ui,n)|

)
dx dt

)
+

∫
Qσ

M
(α+ 1

α
M

−1
(M(δ|Tk(ui,n)|))

)
dx dt

+

∫
Qσ

M
( α

α+ 1
|∇Tk(ui,n)|

)
dx dt.

Since γ ∈ EM (Qσ), then
α2

α+ 2

∫
Qσ

M
(α+ 2

α2
|γ(x, t)|

)
dx dt = γ0 < +∞ and

while
α

α+ 1
< 1, using the convexity of M and the fact that M and M

−1 ◦M
are increasing functions, then we get∫

Qσ

Φi,n(x, t, ui,n)∇Tk(ui,n)dx dt ≤ γ0+
α2

α+ 2

∫
Qσ

M
(
|∇Tk(ui,n)|

)
dx dt

+

∫
Qσ

M
(α+ 1

α
M

−1
(M(δk))

)
dx dt

+
α

α+ 1

∫
Qσ

M
(
|∇Tk(ui,n)|

)
dx dt. (29)

Using (7), there exists some constant Cα
k such that∫

Qσ

M
(α+ 1

α
M

−1
(M(δk))

)
dx dt ≤

∫
Qσ

M
(
2
α+ 1

αδk
M(δk)

)
dx dt = Cα

k .

Which gives the estimate∫
Qσ

Φi,n(x, t, ui,n)∇Tk(ui,n) dx dt ≤ γ0 +
α2

α+ 2

∫
Qσ

M
(
|∇Tk(ui,n)|

)
dx dt

+ Cα
k +

α

α+ 1

∫
Qσ

M
(
|∇Tk(ui,n)|

)
dx dt.

(30)
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On the other hand, due to (11), we have∫
Qσ

fi,n(x, u1,n, u2,n)Tk(ui,n) dx dt ≥ 0. (31)

Concerning the first integral in (28), since T̃k ≥ 0, we have∫
Ω

T̃k(ui,n)(σ) dx ≥ 0 (32)

and we have ∫
Ω

T̃k(ui,0n) dx ≤ k

∫
Ω

|ui,0n| dx ≤ k∥ui,0∥L1(Ω). (33)

For the remaining integral, we proceed by Young’s inequality as follows, there
exist a constant CF :∫

Qσ

Fi,n∇Tk(ui,n) dx dt

=
α2

(α+ 2)2

∫
Qσ

(α+ 2)2

α2
Fi,n∇Tk(ui,n) dx dt

≤ α2

(α+ 2)2

∫
Qσ

M
( (α+ 2)2

α2
Fi,n dx dt+

α2

(α+ 2)2

∫
Qσ

M
(
∇Tk(ui,n)

)
dx dt

≤ CF +
α2

(α+ 2)2

∫
Qσ

M
(
∇Tk(ui,n)

)
dx dt since Fi ∈ (EM (QT ))

N .

(34)
Combining (28), (30), (31), (32), (33) and (34) we get∫

Qσ

a(x, t, Tk(ui,n),∇Tk(ui,n))∇Tk(ui,n) dx dt

≤ γ0 + kC + Cα
k +

α2

α+ 2

∫
Qσ

M
(
|∇Tk(ui,n)|

)
dx dt

+
α

α+ 1

∫
Qσ

M
(
|∇Tk(ui,n)|

)
dx dt+

α2

(α+ 2)2

∫
Qσ

M
(
∇Tk(ui,n)

)
dx dt,

(35)
where C = ∥fi∥L1(Ω) + ∥ui,0∥L1(Ω). Thanks to (H3), we deduce∫
Qσ

(
α− α2

α+ 2
− α

α+ 1
− α2

(α+ 2)2

)
M

(
|∇Tk(ui,n)|

)
dxdt ≤ γ0+kC+Cα

k +CF .

(36)

Since
(
α− α2

α+ 2
− α

α+ 1
− α2

(α+ 2)2

)
=

α3 + 2α2

(α+ 1)(α+ 2)3
> 0, finally we have

∫
QT

M
(
|∇Tk(ui,n)|

)
dxdt ≤ (γ0+kC+Cα

k +CF )
(α+ 1)(α+ 2)3

α3 + 2α2
= Ck. (37)
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104 J. OUAZZANI, M. BOURAHMA, H. HJIAJ, J. BENNOUNA & A. BENKIRANE

Now we prove (27), to this end, we use the integral Poincaré’s type inequality
in inhomogeneous Orlicz spaces with the constant δ and λ. Hence,

M
(
δk

)
meas

{
|ui,n| > k

}
=

∫
{|ui,n|>k}

M
(
δ|Tk(ui,n)|

)
dx dt

≤ λ

∫
QT

M
(
|∇Tk(ui,n|)

)
dx dt.

Then, from (37) we get

meas
{
|ui,n| > k

}
≤ λCk

M
(
δk

) −→ 0 as k −→ ∞

which implies (27). □✓

Lemma 3.6. Let ui,n be a solution of the approximate problem (23), then:

(i) ui,n −→ ui a.e. in QT ,

(ii) {a(x, t, Tk(ui,n),∇Tk(ui,n))}n is bounded in (LM (QT ))
N .

Proof. To prove (i), we proceed as in [14, 20], we take a C2(R) nondecreas-

ing function Γk such that Γk(s) =

 s for |s| ≤ k

2
k for |s| ≥ k

and multiplying the

approximate problem (23) by Γ′
k(ui,n) we obtain

∂Γk(ui,n)

∂t
− div

(
a(x, t, ui,n,∇ui,n)Γ′

k(ui,n)
)
+a(x, t, ui,n,∇ui,n)Γ′′

k(ui,n)∇ui,n

− div
(
Γ′
k(ui,n)Φi,n(x, t, ui,n)

)
+ Γ′′

k(ui,n)Φi,n(x, t, ui,n)∇ui,n

= fi,nΓ
′
k(un)− div

(
Γ′
k(ui,n)Fi,n

)
+ Γ′′

k(ui,n)Fi,n∇ui,n.
(38)

Since M
−1 ◦M is an increasing function, γ ∈ EM (QT ), supp(Γ

′
k), supp(Γ

′′
k) ⊂

[−k, k] and using Young’s inequality we get∣∣∣ ∫
QT

Γ′
kΦi,n(x, t, ui,n) dx dt

∣∣∣
≤ ∥Γ′

k∥L∞

(∫
QT

|γ(x, t)| dx dt+
∫
QT

M
−1

(M(δ|Tk(ui,n)|)) dx dt
)

≤ ∥Γ′
k∥L∞

(∫
QT

(
M(|γ(x, t)|) +M(1)

)
dx dt+

∫
QT

M
−1

(M(δk)) dx dt
)

< C1,k

(39)
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and (here, we use also (37))∣∣∣ ∫
QT

Γ′′
kΦi,n(x, t, ui,n)∇ui,ndx dt

∣∣∣
≤ ∥Γ′′

k∥L∞

(∫
QT

|γ(x, t)|dx dt+
∫
QT

M
−1

(M(δ|Tk(ui,n)|))|∇Tk(ui,n)|dx dt
)

≤ ∥Γ′′
k∥L∞

[ ∫
QT

(
M(|γ(x, t)|) +M(1)

)
dx dt+

∫
QT

M(δk)dx dt

+

∫
QT

M(|∇Tk(ui,n)|)dx dt
]

< C2,k,
(40)

where C1,k and C2,k are two positive constants independent of n. Also, by
Young’s inequality and (37) we can deduce that

∫
QT

Γ′
kFi,ndx dt and∫

QT
Γ′′
kFi,n∇ui,n dx dt are bounded. Then (38), (39) and (40) imply that

∂Γk(ui,n)

∂t
is bounded in L1(QT ) +W−1,xLM (QT ). (41)

Hence by Lemma 2.12 and using the same technics as in [18], we can deduce
that there exists a measurable function ui ∈ L∞(0, T ;L1(Ω)) such that

ui,n −→ u a.e. in QT

and for every k > 0,

Tk(ui,n)⇀ Tk(ui) weakly in W 1,xLM (QT ) for σ(ΠLM ,ΠEM ), (42)

and
Tk(ui,n) → Tk(ui) strongly in L1(QT ) and a.e. in QT . (43)

For (ii), we use the Banach-Steinhaus theorem. Let ϕ ∈ (EM (QT ))
N be an

arbitrary function. From (H2) we can write(
a(x, t, Tk(ui,n),∇Tk(ui,n))− a(x, t, Tk(ui,n), ϕ)

)
·
(
∇Tk(ui,n)− ϕ

)
≥ 0

which gives: ∫
QT

a(x, t, Tk(ui,n),∇Tk(ui,n))ϕ dx

≤
∫
QT

a(x, t, Tk(ui,n),∇Tk(ui,n))∇Tk(ui,n) dx

+

∫
QT

a(x, t, Tk(ui,n), ϕ)(ϕ−∇Tk(ui,n)) dx.

(44)
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106 J. OUAZZANI, M. BOURAHMA, H. HJIAJ, J. BENNOUNA & A. BENKIRANE

Let us denote by J1 and J2 the first and the second integral respectively in the
right hand-side of (44), so that

J1 =

∫
QT

a(x, t, Tk(ui,n),∇Tk(ui,n))∇Tk(ui,n) dx.

Going back to (35), we obtain

J1 ≤ γ0 + kC + Cα
k + CF +

α2

α+ 2

∫
QT

M
(
|∇Tk(ui,n)|

)
dx dt

+
α

α+ 1

∫
QT

M
(
|∇Tk(ui,n)|

)
dx dt+

α2

(α+ 2)2

∫
QT

M
(
|∇Tk(ui,n)|

)
dx dt,

(45)
And thanks to (37), there exists a positive constant CJ1

independent of n such
that

J1 ≤ CJ1
. (46)

Now we estimate the integral J2. To this end, notice that

J2 =

∫
QT

a(x, t, Tk(ui,n), ϕ)(ϕ−∇Tk(ui,n)) dx dt

≤
∫
QT

|a(x, t, Tk(ui,n), ϕ)||ϕ| dx dt+
∫
QT

|a(x, t, Tk(ui,n), ϕ)||∇Tk(ui,n)| dx dt.

On the other hand, let η be large enough, from (H1) and the convexity of M ,
we get:∫

QT

M
( |a(x, t, Tk(ui,n), ϕ)|

η

)
dx dt

≤
∫
QT

M
(β[c(x, t) + k1M

−1
(P (k2|Tk(ui,n)|) +M

−1
(M(k3|ϕ|))

]
η

)
dx dt

≤ β

η

∫
QT

M(c(x, t)) dx dt+
βk1
η

∫
QT

M
(
M

−1
(P (k2|Tk(ui,n)|))

)
dx dt

+
β

η

∫
QT

M
(
M

−1
(M(k3|ϕ|))

)
dx dt

≤ β

η

∫
QT

M(c(x, t)) dx dt+
βk1
η

∫
QT

P (k2k) dx dt

+
β

η

∫
QT

M(k3|ϕ|) dx dt.

(47)
Since ϕ ∈ (EM (QT ))

N , c(x, t) ∈ EM (QT ), we deduce that {a(x, t, Tk(ui,n), ϕ)}
is bounded in (LM (QT ))

N and we have {∇Tk(ui,n)} is bounded in (LM (QT ))
N ,
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consequently, J2 ≤ CJ2
, where CJ2

is a positive constant not depending on n.
Then we obtain∫

QT

a(x, Tk(ui,n),∇Tk(ui,n))ϕ dx dt ≤ CJ1 + CJ2 . for all ϕ ∈ (EM (QT ))
N .

(48)
Finally, {a(x, t, Tk(ui,n),∇Tk(ui,n))}n is bounded in (LM (QT ))

N . □✓

Step 3: Almost everywhere convergence of the gradients. In this
step, most parts of the proof of the following proposition are the same argument
as in [14, Proposition 5.4], we give just those which are different.

Proposition 3.7. Let ui,n be a solution of the approximate problem (23).
Then, for all k ≥ 0 we have (for a subsequence still denoted by ui,n): as n →
+∞,

(i) ∇ui,n → ∇ui a.e. in QT ,

(ii) a(x, t, Tk(ui,n),∇Tk(ui,n))⇀a(x, t, Tk(ui),∇Tk(ui)) weakly in (LM (QT ))
N ,

(iii) M(|∇Tk(ui,n)|) →M(|∇Tk(ui)|) strongly in L1(QT ).

Proof. Let θj ∈ D(QT ) be a sequence such that θj −→ u in W 1,x
0 LM (QT )

for the modular convergence and let ψi ∈ D(Ω) be a sequence which converges
strongly to u0 in L1(Ω).

Put Zµ
i,j = Tk(θj)µ + e−µt Tk(ψi) where Tk(θj)µ is the mollification with

respect to time of Tk(θj), notice that Zi
µ,j is a smooth function having the

following properties:

∂Zµ
i,j

dt
= µ(Tk(θj)− Zµ

i,j), Zµ
i,j(0) = Tk(ψi) and |Zµ

i,j | ≤ k,

Zµ
i,j −→ Tk(u)µ + e−µt Tk(ψi), in W 1,x

0 LM (QT ) modularly as j −→ ∞,

TK(u)µ + e−µt Tk(ψi) −→ Tk(u), in W 1,x
0 LM (QT ) modularly as µ −→ ∞.

Consider the function hm defined on R for any m ≥ k by:

hm(r) =


1 if |r| ≤ m

−|r|+m+ 1 if m ≤ |r| ≤ m+ 1

0 if |r| ≥ m+ 1.
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Put Em =
{
(x, t) ∈ QT : m ≤ |ui,n| ≤ m + 1

}
and testing the approximate

problem (23) by the test function φµ,i
n,j,m = (Tk(ui,n)− Zµ

i,j)hm(ui,n), we get〈∂ui,n
dt

, φµ,i
n,j,m

〉
+

∫
QT

a(x, t, ui,n,∇ui,n)(∇Tk(ui,n)−∇Zµ
i,j)hm(ui,n) dx dt

+

∫
QT

a(x, t, ui,n,∇ui,n)(Tk(ui,n)− Zµ
i,j)∇ui,nh

′
m(ui,n) dx dt

+

∫
Em

Φi,n(x, t, ui,n)∇ui,nh′m(ui,n)(Tk(ui,n)− Zµ
i,j) dx dt

+

∫
QT

Φi,n(x, t, ui,n)∇ui,nhm(ui,n)(∇Tk(ui,n)−∇Zµ
i,j) dx dt

=

∫
QT

fi,nφ
µ,i
n,j,m dx dt+

∫
Em

Fi,n∇ui,nh′m(ui,n)(Tk(ui,n)− Zµ
i,j) dx dt

+

∫
QT

Fi,n∇ui,nhm(ui,n)(∇Tk(ui,n)−∇Zµ
i,j) dx dt.

(49)
In order to simplify the notation, we will denote by ϵ(n, j, µ, i) and ϵ(n, j, µ)
any quantities such that

lim
i→+∞

lim
µ→+∞

lim
j→+∞

lim
n→+∞

ϵ(n, j, µ, i) = 0,

lim
µ→+∞

lim
j→+∞

lim
n→+∞

ϵ(n, j, µ) = 0.

We have the following lemma which can be found in [14, Lemma 5.5].

Lemma 3.8. (cf. [14, Lemma 5.5]) Let φµ,i
n,j,m = (Tk(ui,n)−Zµ

i,j)hm(ui,n), then
for any k ≥ 0 we have: 〈∂ui,n

dt
, φµ,i

n,j,m

〉
≥ ϵ(n, j, µ, i), (50)

where <,> denotes the duality pairing between L1(QT ) +W−1,xLM (QT ) and

L∞(QT ) ∩W 1,x
0 LM (QT ).

To complete the proof of proposition 3.7, we establish the results below, for
any fixed k ≥ 0, we have:

(r1)

∫
QT

fi,nφ
µ,i
n,j,mdx dt = ϵ(n, j, µ).

(r2)

∫
QT

Φi,n(x, t, ui,n)∇ui,nhm(ui,n)(∇Tk(ui,n)−∇Zµ
i,j)dx dt = ϵ(n, j, µ).

(r3)

∫
Em

Φi,n(x, t, ui,n)∇ui,nh′m(ui,n)(Tk(ui,n)− Zµ
i,j)dx dt = ϵ(n, j, µ).
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(r4)

∫
QT

a(x, t, ui,n,∇ui,n)(Tk(ui,n)−Zµ
i,j)∇ui,nh

′
m(ui,n)dx dt ≤ ϵ(n, j, µ,m).

(r5)

∫
QT

[a(x, t, Tk(ui,n),∇Tk(ui,n))− a(x, t, Tk(ui,n),∇Tk(ui)χs)]

×[∇Tk(ui,n)−∇Tk(ui)χs]dx dt ≤ ϵ(n, j, µ,m, s).

(r6)

∫
Em

Fi,n∇ui,nh′m(ui,n)(Tk(ui,n)− Zµ
i,j)dx dt = ϵ(n, j, µ).

(r7)

∫
QT

Fi,n∇ui,nhm(ui,n)(∇Tk(ui,n)−∇Zµ
i,j)dx dt = ϵ(n, j, µ).

The proof of (r1), (r3), (r4) and (r5) is the same as in [14, Proposition 5.4]).

We now prove (r2). To this end, for n ≥ m+ 1, we have

Φi,n(x, t, ui,n)hm(ui,n) = Φi(x, t, Tm+1(ui,n))hm(Tm+1(ui,n)) a.e in QT .

put Pi,n = M
( |Φi(x, t, Tm+1(ui,n))− Φi(x, t, Tm+1(ui))|

η

)
. Since Φi is con-

tinuous with respect to its third argument and ui,n −→ ui a.e in QT , then
Φi(x, t, Tm+1(ui,n)) → Φi(x, t, Tm+1(ui)) a.e in Ω as n goes to infinity, besides
M(0) = 0, it follows

Pi,n −→ 0, a.e in Ω as n→ ∞. (51)

Using now the convexity ofM and (H4), we have for every η > 0 and n ≥ m+1:

Pi,n =M
( |Φi(x, t, Tm+1(ui,n))− Φi(x, t, Tm+1(ui))|

η

)
≤M

(2γ(x, t) +M
−1

(M(δ|Tm+1(ui,n)|)) +M
−1

(M(δ|Tm+1(ui)|))
η

)
≤M

(2
η
|γ(x, t)|+ 2

η
M

−1
(M(δ(m+ 1)))

)
=M

(1
2

4

η
|γ(x, t)|+ 1

2

4

η
M

−1
(M(δ(m+ 1)))

)
≤ 1

2
M(

4

η
|γ(x, t)|) + 1

2
M(

4

η
M

−1
(M(δ(m+ 1)))).

(52)

We put Cη
m(x, t) =

1

2
M(

4

η
|γ(x, t)|) + 1

2
M(

4

η
M

−1
(M(δ(m + 1)))). Since γ ∈

EM (QT ), we have Cη
m ∈ L1(QT ), Then by Lebesgue’s dominated convergence

theorem we get

lim
n→∞

∫
QT

Pi,n dx dt =

∫
QT

lim
n→∞

Pi,n dx dt = 0. (53)
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110 J. OUAZZANI, M. BOURAHMA, H. HJIAJ, J. BENNOUNA & A. BENKIRANE

This implies that {Φi(x, t, Tm+1(ui,n))} converges modularly to Φi(x, t, Tm+1(ui))
as n→ ∞ in (LM (QT ))

N . Moreover, Φi(x, t, Tm+1(ui,n)), Φi(x, t, Tm+1(ui)) lie
in (EM (QT ))

N , indeed, from (H4) we have for every η > 0∫
QT

M
( |Φi(x, t, Tm+1(ui,n))|

η

)
dx dt

≤
∫
QT

M
(1
η
|γ(x, t)|+ 1

η
M

−1
(M(δ|Tm+1(ui,n)|))

)
dx dt

≤
∫
QT

M
(1
2

2

η
|γ(x, t)|+ 1

2

2

η
M

−1
(M(δ(m+ 1)))

)
dx dt

≤
∫
QT

1

2
M(

2

η
|γ(x, t)|) dx dt+

∫
QT

1

2
M

(2
η
M

−1
(M(δ(m+ 1)))

)
dx dt

<∞ since γ ∈ EM (QT ) and Ω is bounded,

the same for Φi(x, t, Tm+1(ui)). Thanks to Lemma 2.5, we deduce that
Φi(x, t, Tm+1(ui,n)) −→ Φi(x, t, Tm+1(ui)) strongly in (EM (Ω))N . On the other
hand, ∇Tk(ui,n)⇀ ∇Tk(ui) weakly in (LM (QT ))

N as n goes to infinity, it fol-
lows that

lim
n→∞

∫
QT

Φi(x, t, ui,n)hm(ui,n)[∇Tk(ui,n)−∇Zµ
i,j ] dx dt

=

∫
QT

Φi(x, t, ui)hm(ui)[∇Tk(ui)−∇Zµ
i,j ] dx dt.

(54)

Using the modular convergence of Zµ
i,j as j −→ ∞ and then µ −→ ∞, we get

(r2). Since Fi,n ∈ (EM (QT ))
N we can prove (r6) and (r7) as in the proof of

(r2). As a consequence of Lemma 3.1, the results of proposition 3.7 follow. □✓

Step 4: Passing to the limit. Now, we will pass to the limit. Let v ∈
W 1,xLM (QT )∩L∞(QT ) be such that ∂v

∂t ∈W−1,xLM (QT )+L
1(QT ). From [7,

lemma 5,theorem 3], there exists a prolongation vp = v on QT , vp ∈W 1
xLM (Ω×

R) ∩ L1(Ω× R) ∩ L∞(Ω× R) and

∂v

∂t
∈W−1,xLM (Ω× R) + L1(Ω× R).

There exists also a sequence (ωj) ⊂ D(Ω× R) such that

ωj → vp in W 1,x
0 LM (Ω×R), and

∂ωj

∂t
→ ∂vp

∂t
in W−1,xLM (Ω×R)+L1(Ω×R),

for the modular convergence and ∥ωj∥∞,QT
≤ (N + 2)∥v∥∞,QT

.
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Testing the approximate problem (23) by Tk(ui,n−ωj)χ(0,τ) with τ ∈ [0, T ],
we get

〈∂ui,n
dt

, Tk(ui,n − ωj)
〉
Qτ

+

∫
Qτ

a(x, t, Tk0
(ui,n),∇TK0

(ui,n))∇Tk(ui,n − ωj) dx dt

+

∫
Qτ

Φi,n(x, t, Tk0
(ui,n))∇Tk(ui,n − ωj) dx dt

=

∫
Qτ

fi,nTk(ui,n − ωj) dx dt+

∫
Qτ

Fi,n∇Tk(ui,n − ωj) dx dt,

(55)
where k0 = k+(N +2)∥v∥∞,QT

. This implies, with En,j := Qτ ∩{|ui,n−ωj | ≤
k}, that

〈∂ui,n
dt

, Tk(ui,n − ωj)
〉
Qτ

+

∫
En,j

a(x, t, Tk0(ui,n),∇Tk0(ui,n))∇ui,n dx dt

−
∫
En,j

a(x, t, Tk0
(ui,n),∇Tk0

(ui,n))∇ωj dx dt

+

∫
Qτ

Φi,n(x, t, Tk0(ui,n))∇Tk(ui,n − ωj) dx dt

=

∫
Qτ

fi,nTk(ui,n − ωj) dx dt+

∫
Qτ

Fi,n∇Tk(ui,n − ωj) dx dt.

(56)
Our aim here is to pass to the limit in each term in (56), let us start by the
terms of the left-hand side:

We first consider the limit of the first term
〈∂ui,n

dt
, Tk(ui,n − ωj)

〉
Qτ

. We

have

〈∂ui,n
dt

, Tk(ui,n − ωj)
〉
Qτ

=
〈∂ui,n

dt
− ∂ωj

dt
, Tk(ui,n − ωj)

〉
Qτ

+
〈∂ωj

dt
, Tk(ui,n − ωj)

〉
Qτ

=

∫
Ω

T̃k(ui,n − ωj) dx+
〈∂ωj

dt
, Tk(ui,n − ωj)

〉
Qτ

−
∫
Ω

T̃k(ui,0n − ωj(0)) dx.

(57)
Since ui,n −→ ui in C([0, T ], L

1(Ω)) (see [7]), by Lebesgue’s theorem we have

∫
Ω

T̃k(ui,n − ωj) dx −→
∫
Ω

T̃k(ui − ωj) dx as n −→ ∞.
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Passing to the limit in (57), we get

lim
n−→∞

〈∂ui,n
dt

, Tk(ui,n − ωj)
〉
Qτ

=

∫
Ω

T̃k(ui − ωj) dx+
〈∂ωj

dt
, Tk(ui − ωj)

〉
Qτ

−
∫
Ω

T̃k(ui,0 − ωj(0)) dx.

For the second and the third terms of (56), we have from (ii) of proposition
3.7

a(x, t, Tk0
(ui,n),∇Tk0

(ui,n))⇀ a(x, t, Tk0
(ui),∇Tk0

(ui)) weakly in (LM (QT ))
N ,

thus Fatou’s lemma allows us to get

lim inf
n→∞

(∫
En,j

a(x, t, Tk0
(ui,n),∇Tk0

(ui,n))∇ui,n dx dt

−
∫
En,j

a(x, t, Tk0(ui,n),∇Tk0(ui,n))∇ωj dx dt
)

≥
∫
En,j

a(x, t, Tk0
(ui),∇Tk0

(ui))∇u dx dt

−
∫
En,j

a(x, t, Tk0(ui),∇Tk0(ui))∇ωj dx dt.

(58)

Concerning the fourth term of the left-hand side of (56), we proceed as in (52)
to get

Φi(x, t, Tk0
(ui,n)) → Φi(x, t, Tk0

(ui)) as n→ ∞
and since

∇Tk(ui,n − ωj)⇀ ∇Tk(ui − ωj) in LM (QT ) as n→ ∞,

we can deduce ∫
Qτ

Φi,n(x, t, Tk0
(ui,n))∇Tk(ui,n − ωj) dx dt

→
∫
Qτ

Φi(x, t, Tk0
(ui))∇Tk(ui − ωj) dx dt

and ∫
Qτ

Fi,n∇Tk(ui,n − ωj) dx dt

→
∫
Qτ

Fi(x, t, Tk0(ui))∇Tk(ui − ωj) dx dt,

Finally, we turn to see the right-hand side of (56), since

Tk(ui,n − ωj) → Tk(ui − ωj) weakly* in L∞ as n→ ∞,
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we obtain ∫
Qτ

fi,nTk(ui,n − ωj) dx dt→
∫
Qτ

fiTk(ui − ωj) dx dt.

Now, we are ready to pass to the limit as n → ∞ in each term of (56) to
conclude that∫

Ω

T̃k(ui − ωj) dx+
〈∂ωj

dt
, TK(ui − ωj)

〉
Qτ

+

∫
Qτ

a(x, t, ui,∇ui)∇Tk(ui − ωj) dx dt

+

∫
Qτ

Φi(x, t, ui)∇Tk(ui − ωj) dx dt

≤
∫
Ω

T̃k(ui,0 − ωj(0)) dx+

∫
Qτ

fiTk(ui − ωj) dx dt

+

∫
Qτ

Fi∇Tk(ui − ωj) dx dt.

(59)

Now, we pass to the limit in (59) as j −→ ∞, we obtain∫
Ω

T̃k(ui − v) dx+
〈∂v
dt
, Tk(ui − v)

〉
Qτ

+

∫
Qτ

a(x, t, ui,∇ui)∇Tk(ui − v) dx dt

+

∫
Qτ

Φi(x, t, ui)∇Tk(ui − v) dx dt

≤
∫
Ω

T̃k(ui,0 − v(0)) dx+

∫
Qτ

fiTk(ui − v) dx dt

+

∫
Qτ

Fi∇Tk(ui − v) dx dt.

(60)

It remains to show that ui satisfies the initial condition of (23). Recall that,
∂ui,n
∂t

is bounded in L1(QT ) +W−1,xLM (QT ). As a consequence, an Aubin’s

type Lemma (cf [21] , Corollary 4) and (lemma 2.8) implies that ui,n lies in a
compact set of C0([0, T ];L1(Ω)). It follows that, ui,n(x, t = 0) = ui,0n converges
to ui(x, t = 0) strongly in L1(Ω). Then we conclude that ui(x, t = 0) = ui,0(x)
in Ω.

That is the full proof of the main result.
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