DOIL: https://doi.org/10.15446/recolma.v59n1.122857

Revista Colombiana de Matematicas
Volumen 59(2025)1, pdginas 89-116

Entropy solutions for a class of doubly
nonlinear parabolic systems involving
measure data in non-reflexive Orlicz

spaces

Soluciones de entropia para una clase no lineal de sistemas
parabdlicos que involucran conjuntos de datos medibles en espacios
de Orlicz no reflexivos

JABIR OUAZZANI CHANDIV®™, MOHAMED BOURAHMA?Z,
HASSANE Hiiaj!, JAOUAD BENNOUNAZ,
ABDELMOUJIB BENKIRANE?

! Abdelmalek Essaadi University, Tetouan, Morocco

2Sidi Mohamed Ben Abdellah University, Fez, Morocco

ABsTrAcT. This paper deals with an existence result of entropy solutions for
a nonlinear parabolic systems of the form

88'111 — div (a(l’7 t, uq, VUz) + @1(1'7 t, u1)> = fz(;[7 ul, Uz) — le(Fz) in QT
u =0 on I’
ui(t =0) = uio in Q,

where the lower order term ® satisfies a growth condition prescribed by the N-
function M defining the framework spaces (see section 2.1) and the right hand
side is a measure datum. The main term which contains the space derivatives
and a non-coercive lower order term are considered in divergence form satisfy-
ing only the original Orlicz growths. We don’t assume any restriction neither
on M nor on its complementary M. Therefor, we work in a nonreflexive Orlicz
spaces.
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REesuMEN. Este articulo se centra en probar la existencia de soluciones entrépicas
para sistemas no lineales parabdlicos de la forma

8811: — div (CL(JC,t, ui, Vug) + @4 (z, t, ul)) = fi(w,u1,u2) — div(F;) in Qr
ui =0 onI
ui(t = 0) = w0 in Q,

donde el término & satisface una condicién de crecimiento dada por la N-
funcién M definida en los espacios descritos en la seccién 2.1 y el lado derecho
de la ecuacion corresponde a las condiciones medibles asociadas al problema.
El término principal que contiene los términos con derivadas espaciales y los
términos no coercitivos de menor orden, que aparecen forma divergente, sat-
isfacen las tasas de crecimiento de Orlicz. No vamos a suponer ninguna re-
striccién sobre la funcién M o la funcién complementaria M. Por lo tanto,
trabajaremos en espacios de Orlicz no reflexivos.

Palabras y frases clave. Sistemas parabdlicos, crecimiento generalizado, espacios
de Orlicz-Sobolev, soluciones de entropia.

1. Introduction

Let © be a bounded open subset of R, N > 2, Q7 be the cylinder Q x (0,7)
where T is a positive real number and M is an Orlicz function. Let A : D(A) C
Wol’zLM(QT) — Wb L+(Qr) be an operator of Leray-Lions type of the
form:

A(u) = —diva(x,t,u, Vu).

In this paper we prove an existence theorem of entropy solutions in the setting
of Orlicz spaces for the nonlinear parabolic problem

Ou;

(,;i — div <a(m,t, u;, Vi) + D4 (x, t,ui)) = fi(z,u1,uz) — div(F;) in Qr
u; =0 on I
Ui(t = 0) = U4,0 in Q.

(1)
where ug € L'(Q), f; € L'(Qr) and ®; satisfies the following natural growth
condition

|(I)i(x7t7 5)| < 7(x7t) +M—1(M(6|S|))7 with v € EM(QT) (2)

The problem (1), with a single equation, has been studied in different particular
directions. In the classical Sobolev spaces, in some elliptic cases, Guibé et al.(see
[3]), have assumed on ®, the condition

@) < e (1+151)" Q
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and in some parabolic cases (see [17]), they have assumed the condition

[®(z.t,5)| < clw,t) (14 Js|), with
_ N+2
 N+p

~y (p—1) and c € L™(Qr) for an r > 0. (4)

The parabolic equations in Orlicz spaces have been widely studied since the year
2005 starting from the works of Meskine et al. (see [6, 7]) and with later results
by several authors, for instance the work of Moussa, Rhoudaf and Mabdaoui,
(see [14]). Concerning the case of Orlicz spaces with a single equation, the
existence of entropy solution for problem (1) has been established in the case
f € LY(Qr) under the non natural growth condition

| (z,t,8)] < v(x,t) -ﬁ_l(P(§|5|)) where v € L*°(Qr) and P << M. (5)

For the double equation, in the classical Sobolev spaces, the system (1) has
been solved by Azroul et al. in [4] in the case where ®; are independent of
x using the concept of renormalized solution. For the study of (1) in some
particular cases one can consult [5, 11, 12, 15, 19].

The approach of this paper is how to deal with the existence of entropy so-
lutions for system (1) in Orlicz spaces involving measure data where ®; satisfies
the original Orlicz growth condition

[@i(,t,5)| < (o, t) + M (M(6]s]), where 7 € Exr(Qr), (6)

without assuming any restriction on the modular function M neither on its
complementary M, the described problem lives in non reflexive Orlicz spaces.
The existence result in this context generalizes all cases mentioned above.

The space equipped with M and M satisfying the Ay condition is reflexive
and separable, which essentially simplifies methods of PDEs, then, also the
modular topology introduced in section 2.1 coincides with the norm one. The
challenges resulting from the lack of the reflexivity of the framework spaces
are significant and require precise handling with general N-functions that do
not satisfy the Ay condition. Also, the imposed condition on the lower order
term ®; is less restrictive and leads to serious difficulties in proving existence
of solution to the approximate problem and it’s convergence. Our approach to
overcome such difficulties is the use of Young’s inequality combined with a nice
algebraic trick on a good decomposition of the constant of coercivity a.
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Regarding applications, parabolic equations have many applications, among
them image processing and electro-rheological fluids modeling. A model of ap-
plications of these operators is the Boussinesq’s system:

— 4+ u-Vu—2div(u(@)e(u)) + Vp=F(0) in Qr

O8P - Tb(6) — 50 = 2(0) ) in Qr
u=0, =0 onI’
w(t=0) = uo  b(B)(t = 0) = b(6) in Q,

where the first equation is the motion conservation equation, the unknowns are
the fields of displacement u : Q7 — RY and temperature 8 : Qr — R, the field

1
e(u) = i(Vu + (Vu)') is the strain rate tensor.

Let us briefly summarize the contents of this article: in section 2 we col-
lect some well-known preliminaries, results and properties of Orlicz-Sobolev
spaces and inhomogeneous Orlicz-Sobolev spaces. Section 3 is devoted to basic
assumptions, problem setting and the proof of the main result.

2. Preliminaries

2.1. Orlicz-Sobolev spaces

Let M : Rt — R* be a continuous and convex function with:

M(t M(t
M(t)>0fort>0,lim&:0and lim L:—i—oo
t—0 ¢ t—+oo ¢

The function M is said an N-function or an Orlicz function, the N-function
complementary to M being defined as

M(t) = sup{st —M(s),s > 0}.

We recall that (see [1])

M(t) <M (M(t) < 2M(t) for all t >0 (7)

and Young’s inequality: for all s,¢ > 0,
st < M(s)+ M(t).
We said that M satisfies the As-condition if for some k > 0,
M(2t) < kM(t) for all t> 0, (8)

and if (8) holds only for ¢ > to, then M is said to satisfy the Ag-condition near
infinity.
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Let M7 and Ms be two N-functions. The notation M; << M, means that
M, grows essentially less rapidly than Mo, i.e.

. My(¢)
1 —
Ve>0, [lim My(et)
that is the case if and only if
lim 7( )~ () =0.

t=oo (My)~1(t)

Let 2 be an open subset of RY. The Orlicz class K/(€2) (resp. the Orlicz space
Ly(€)) is defined as the set of (equivalence class of) real-valued measurable
functions u on €2 such that:

/QM(u(a:))dx < 00 (Jresp./Q M(@)dm < oo for some A > 0).

Endowed with the norm
M = 11 : — )dx <
[l 1 f{)\>0 /QM( \ )d 1},

L (2) is a Banach space and Kj;(2) is a convex subset of Lys(€2). The closure
in Ly () of the set of bounded measurable functions with compact support in
Q2 is denoted by En(Q).

The Orlicz-Sobolev space WLy (Q) (resp. WLE(€2)) is the space of func-
tions u such that v and its distributional derivatives up to order 1 lie in Ly (£2)

(resp. En(9)).
This is a Banach space under the norm

lulliar =) I1D%ull -

lal<1

Thus, WLy (Q) and WE () can be identified with subspaces of the prod-
uct of (N + 1) copies of Ly (£2). Denoting this product by IILys, we will use
the weak topologies o(IIL s, I1E;) and o(I1L s, I Ly;).

The space W} Ej(Q) is defined as the norm closure of the Schwartz space
D(Q2) in WIE () and the space W Ly (2) as the o(IIL s, [1E37) closure of
D(Q) in WLy (Q).

We say that a sequence {u,} converges to u for the modular convergence
in WLy () if, for some X\ > 0,

D« — Do
/ M(%) dz — 0 for all |a| <1;
Q

this implies convergence for o (ILL s, IILyy).
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If M satisfies the Az-condition on RT (near infinity only if 2 has finite mea-
sure), then the modular convergence coincides with norm convergence. Recall
that the norm || Dul|5s defined on W Ly (Q) is equivalent to |lul|1as (see [8]).

Let W1 Li7(Q) (resp. W E47(Q)) denotes the space of distributions on
which can be written as sums of derivatives of order < 1 of functions in Ly7(£2)
(resp. Eg7(€)). It is a Banach space under the usual quotient norm.

If the open € has the segment property then the space D () is dense in
Wi Ly () for the topology o(IIL, IIL77) (see [8]). Consequently, the action
of a distribution in W~'L57(€2) on an element of WLy () is well defined.
For more details one can see for example [1] or [13].

2.2. Inhomogeneous Orlicz-Sobolev spaces

Let © be a bounded open subset of RN, T' > 0 and set Q7 = Q x (0,T). For
each a € NV denote by D¢ the distributional derivative on Q7 of order a with
respect to the variable € €. The inhomogeneous Orlicz-Sobolev spaces are
defined as follows,

WLy (Qr) = {u € Ly(Qr) : Du e Lyy(Qr) forall |a| < 1}
and
W Epr(Qr) = {u € Ex(Qr) : D2u € Ey(Qr) forall o] < 1}.

The last space is a subspace of the first one, and both are Banach spaces under
the norm,

lull = D IDgullyr.p

laf<1

We can easily show that they form a complementary system when ) satis-
fies the segment property. These spaces are considered as subspaces of the
product space I1L;(Qr) which have as many copies as there is a-order deriva-
tives, |a| < 1. We shall also consider the weak topologies o(IIL s, I1E7;) and
o(ILp, I L57)). If w € WH*Lp(Qr) then the function : ¢ — wu(t) = u(t,) is
defined on (0, 7)) with values in WLy, (). If, further, u € WH*Ep(Qr) then
the concerned function is a W!E)/(Q)-valued and is strongly measurable. Fur-
thermore the following imbedding holds: W1 Ey (Q7) C LY(0,T; W EpN (Q)).
The space WLy (Qr) is not in general separable, if u € WH% Ly (Qr), we
can not conclude that the function w(t) is measurable on (0,7"). However, the
scalar function ¢ | u(t) ||ar.q is in L'(0,T). The space Wy " Ear(Qr) is de-
fined as the (norm) closure in Wh® Ep(Qr) of D(Qr). It is proved that when
Q) has the segment property, then each element u of the closure of D (Qr) with
respect of the weak* topology o(ILLas, IIE47) is a limit, in WLy (Qr), of
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some subsequence (u,) C ©(Qr) for the modular convergence; i.e., if, for some
A > 0, such that for all |a| < 1;

/ M(M)dmdt%O as n — oo.
T

This implies that (u,) converges to u in W% Ly (Qr) for the weak topology
o(IIL s, IIE5;) . Consequently,

70’(HLA{ JTEW)

2(Qr) =9(Qr)
This space will be denoted by Wy Ly/(Q7). Furthermore,

O'(HL]W 7HLV)

Wy  Ext(Qr) = Wy Ly (Qr) NTIE .

We have then the following complementary system
(WOLZLM(QT)v Fa WOLIEJV[(QT)’ Fo),

F being the dual space of WOLZEM (Qr). It is also, modulo isomorphism, the
quotient of IILy; by the polar set Wol’”:EM(QT)L, and will be denoted by
F =W~ Li7(Qr) and it is shown in [8] that

W L@ = {F = 3 Do fa € Lyg(@n)},
lal<1

this space will be equipped with the usual quotient norm

17 =inf D (1 allzzqm

|| <1

where the infimum is taken on all possible decompositions

f=" Dfa, fa € Lyz(Qr).

lo]<1
The space Fy is then given by,
W en) = {1 5 D€ Ban)
lof<1
and is denoted by Fy = W~ 1* Er(Qr).

Definition 2.1. [8] Recall that an open domain @ C RY has the segment
property if there exist a locally finite open covering O; of the boundary OS2
of Q and a corresponding vectors y; such that if 2 € QN O; for some 4, then
r+ty; € Qfor 0 <t <1.
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Definition 2.2. (Truncation function)

Define the following real function of a real variable, called the truncation
at height k& > 0,

s if |s| <k

k2 i |s| > k,

Tk (s) = max ( — k, min(k, 5)) = -

and its primitive is defined by
S
T}C(S) = / Tk(t) dt.
0

Note that T}, has the properties: Ti(s) > 0 and Ty(s) < k|s|.

Lemma 2.3. (cf. [16, Lemma 2.6]) Let Q be an open subset of RY with finite
measure. let M, P and Q be N-functions such that Q@ << P, and let f :
QxR — R be a Carathéodory function such that, for a.e. x € Q and for all
sEeR,

|f(,8)] < e(@) + b P™ M (ko s]),
where k1, ko are real constants and c(x) € Eg(Q). Then the Nemytskii operator
Ny, defined by Ny(u)(z) = f(z,u(x)), is strongly continuous from P(Ey, é) =
{u € Ly (Q) : d(u, Epr(2)) < ,3—2} into Eg(Q).
Lemma 2.4. [9, Lemma 6] Let ug,u € Ly(R). If up — w for the modular
convergence, then u, — u for o(Lar, L3z).

Lemma 2.5. [2, Lemma 1] If u,, — u for the modular convergence (with every
A>0) in Ly (Qr), then u, — u strongly in Ly (Qr).

Lemma 2.6. [14, Lemma 2.2] Let F : R — R be uniformly lipschitzian, with
F(0) = 0. Let M be a Orlicz function and let w € WLy () (resp. W Ep (2)).
Then, F(u) € WLy (Q) (resp. WEEp(2)). Moreover, if the set of disconti-
nuity points D of F' is finite, then
0 F’(u)au ae. in {x€Q:u(x)¢ D}
3 -F(u) = or, '
Ti 0 a.e.in {z € Q:u(z) € D}.

Lemma 2.7. [14, Lemma 2.3] Let F : R — R be uniformly lipschitzian, with
F(0) =0. Let M be a Orlicz function. we assume that the set of discontinuity
points D of F' is finite, then the mapping F : WLy (Q) — WLy (Q) is
sequentially continuous with respect to the weak* topology o(I1L s, I1E7).

Lemma 2.8. [6, Lemma 5] Let Q be a bounded open subset of RN, N > 2,
satisfying the segment property, then

{u € W L (Qr) - % e W L(Qr) + Ll(QT)} c c([o,T], Ll(Q)).
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Lemma 2.9. [14, Lemma 2.7] (Integral Poincaré’s type inequality in inhomo-
geneous Orlicz spaces) Let Q0 be a bounded open subset of RN and M is an
Orlicz function, then there exists two positive constants 0, A > 0 such that

M(Slu(z,t)|) dz dt < / MM (|Vu(z,t)|) de dt Yu € Wi Ly (Qr).
QT T

Lemma 2.10. (cf. [16, Lemma 2.5]) If f,, C LY(Q) with f, — f € L*(Q) a.e.

in Q, fo,f >0 a. e in Q and / fo(z)de — /f(x) dx, then f, — f in

L) Q Q

Lemma 2.11. (cf. [16, Lemma 2.8]) Suppose that 2 satisfies the segment
property and let w € WLy (Q). Then, there exists a sequence (u,) C D()
such that u, — u for the modular convergence in W} Ly (Q). Furthermore, if
u € WiLy () N LX(Q) then

[tnlloe < (N + 1ftf|oo-
Lemma 2.12. (cf. [14, Lemma 2.8]) Let M be an N-function. Let (u,) be
a sequence of WYLy (Qr) such that, u, — u weakly in WYLy (Qr) for
a n . .

o(I1Ly, TEy;) and % = hp+ky, in®'(Qr) with hy, is bounded in W% Ly(Qr)
and ky, is bounded in L*(Qr). Then, u, — u strongly in L}  (Qr). If further,

Un € Wy Lot (Qr) then u, — u strongly in L (Qr).

3. Basic assumptions and main result

Through this paper € is a bounded open subset of RY, N > 2, satisfy-
ing the segment property and M is an Orlicz function. Let A : D(A) C
Wy Ly (Qr) — W5 Li(Qr) be an operator of Leray-Lions type of the
form:

A(u) == —div a(x,t,u, Vu).

This work aims to prove existence of entropy solutions in Orlicz spaces for the
nonlinear differential system

861/;2 — div (CL(JZ', t7ui7 Vuz) + ‘I)i(x,t, UZ)> = fi(l‘7u1,ug) _ le(Fl) in QT
ui =0 onI’
'U,Z(t = 0) = Uj,0 in 97

(9)
where a : Qr x Rx RN — R¥ is a Carathéodory function satisfying, for almost
every (r,t) € Qr and for all s € R, &, € RN (¢ # 1) the following conditions:

(H1) there exist a function c¢(x,t) € E57(Qr) and some positive constants ki,
ks, ks and an Orlicz function P << M such that

a(a,t,5,€)| < Blew, ) + kT (Plhalsl) + T (M(kslé))].
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(Hz)
(a(az,t,s,f) — a(m,t,s,n)) - ({ - 77) > 0.

(Hs3)
a(az,t, 855) f > O‘M(|§|)

For the lower order term, we assume ®; : Q7 x R — R be a Carathéodory
function satisfying:

(Hy) for all s € R, 6 > 0 and for almost every x € €,
|®;(x,t,5)| < (@, t) + M (M(3]s])) where y € Ex(Qr).

Moreover, we suppose that for i = 1,2, F; € (Ez7(Qr))"Y and f; : QxRxR — R
is a Carathéodory function with

f1(z,0,8) = fo(x,5,0) =0 ae xz€QVseR (10)
and for almost every x € €2, for every s1,s2 € R,
sign(s;) fi(z, s1,$2) > 0. (11)
Finally, we assume the following condition on the initial data w;o:
u;,0 is a measurable function for ¢ =1, 2. (12)

Lemma 3.1. (cf. [14, Lemma 3.1]) Under assumptions (Hi)-(Hs), let (Z,) be
a sequence in Wy " L (Qr) such that

Zn —Z in Wy Lat(Qr) for oL (Qr), IE£(Qr)), (13)

(a(x,t,Zn,VZn)) is bounded in (LM(QT)>N, (14)

n

lim (a(a:,u Zn,VZ0) — alz,t, Zn, VZXS)) : (vzn - VZXS)dmdt —0,
n,s—00 Qr
(15)

where x s denote the characteristic function of the set Qs = {x eN:|IVZ| < s}.

Then,
VZ, —=VZ a.e. inQr, (16)

lim a(x,t, Zn, N Zp)NV Zy, dx = / a(x,t, Z,NZ)VZ dzdt, (17)
n—oo QT T

M(|VZ,|) — M(VZ|) in L' (Qr). (18)
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Definition 3.2. A couple of measurable functions (uj,us) defined on Qr is
said an entropy solution for system (9) if for i = 1,2, u; € L*>(0,T, L}(Q)),
Ti(u;) € D(A) N W3 L (Qr), Yk > 0 and Ty(u;(-,t)) € L*(Qr) for every
7 € [0,T], we have

/ka(ul —v)dx + <%,Tk(ui — v)>

+ / a(x,t,u;, Vu) VT (u; —v)) do dt

T

Q-

+ / By (x, £, 1)V T (i — v)) da dt (19)

.

S/QT fiTk(Ui_U))d$dt+/ FiNVTy(u; —v)) d dt

T

+ [ Tituso — v(0)) d,
Q
and
u;(x,0) = u; o(x) for a.e x € €, (20)
for every 7 € [0,T], k > 0 and for all v € Wy"La(Qr) N L®(Qr) such
o ~
that 8—: € W_l’zLﬁ(QT) + LY(Qr), where T, is the primitive function of the
truncation function T}, defined above.

Remark 3.3. Equation (19) is formally obtained by multiplication of the
problem (9) by Tj(u; — v). Notice that each term in (19) has a sense since
Ti(u; —v) € Wol’mLM(QT) N L*°(Qr). Moreover by Lemma 2.8, we have v €

)
C’([O, TY; Ll(Q)) and then the first and the last terms of (19) are well defined.

The following theorem is our main result.

Theorem 3.4. Suppose that the assumptions (Hy) — (Hy) and (10), (11) and
(12) hold true, then there exists at least one solution (u1,us) for the parabolic
system (9) in sense of Definition (19).

The proof of the above theorem is divided into four steps.

Step 1: Approximate problems. For each n € N*, put
an(z,t,5,6) = a(z,t,T,(s), &) ae (z,t) € Qp,Vs € R,VE € RN

and
D, n(x,t,8) = ®;(x,t, Ty (s)) ae (z,t) € Qr,Vs € R,
fin(z,s1,82) = fi(z,Tp(s1),52) a.ein Q,Vs1,s9 € R, (21)
fon(z,s1,82) = fa(z, 51, T (s2)) a.ein Q,Vsq, s2 € R. (22)
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Let u; 0n, € C3°(€2) be such that
ool
|| Us,0n HLlSH U4,0 HLl and Ui,0n — Uq,0 I L (Q)
Considering the following approximate problem

%—div (a(w,t,uivn,Vui)—i—@i,n(@t7ui,n)) = fin(x,u1,u2)—div(F;n) in Qr

Uijn =0 onTI
uz,n(t = 0) = U4,0n in Q.
(23)

Let z, (2, t, Uim, V) = an (2, t, Wi n, Vi) + @i n (2, t,u50) + Fi o, which sat-
isfies (A1), (A2), (Az) and (A4) of [10]. Indeed, it remains just to prove (Ay),
to do this we use Young’s inequality as follows:

—1
@i (2,8, i ) Vg n| < |y (@, )| Vuin| + M (M (8T (uin)])| Vit n

o? o+ 2
a+27|7(x,t)|wui,n\
O T M T (i) )~ Vi ]
n ul,n Oé+1 Ui,n
o /—sa+2
< = (M (R )) + M (| Vuil))
—/a+1—"1 «
M (S0 (MO T (i) + M (= Vi)

(%

While < 1, using the convexity of M and the fact that M and M oM

are increasing functions, one has

a? —sa+2 a?
(I)in 7t7 7,1 in< M<7 at) 7M( 1n)
@ity 1) Vil < 2T (S22 a0 ) + 501 (19
. 1——
+M(O”L M (M(0n))) + =M (|Vuial).
«a a+1 ’
. — o+ 2 1
Since v € Eq(Qr), M(Th(x’t”) € L*(Q), then we get
e
Oé2 « 1 .
By (s, Ui ) Vit > 7< + )M(|Vui n|) —C,— fixed L function.
5 s ) a+2 a+1 )
(24)
Moreover, by the same technic we have using Young’s inequality
a?  (a+2)?
| gvu’| (Oé+2)2 a2 | 1vu’|
o —(a+2)? a?
< i ( Finl) + M (IVuia|) dodt
S arop U Fnl) # g M (Wil ) de
a? .
<Cr+ mMOVUJan since F; € (B (Qr))Y.
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Then,

042

FinVuin 2 ———=
Yt = T )

M(|Vum

) —Cp. (25)

Using (24) and (25) and (H3) we obtain

a? a o?
- - M(IVuin )
a+2 a+1 (a—|—2)2) [Vti.nl

— C, — fixed L function

Zn (l‘, t, ui,na Vui,n)vui,n Z (a -

3 2 2
2 i D g (1Venl) - fxed 2 function.

Thus, from [6, Theorem 4], the approximate problem (23) has at least one weak
solution u; ,, € Wol’mLM(QT).

Step 2: A Priori Estimates.

Proposition 3.5. Assume that the hypothesis (Hy) — (Hy) hold true and let
u;pn be a solution of the approximate problem (23). Then, for all k > 0, there
exists a constant Cy, (not depending on n), such that:

| Tk (in) ”WOMLM(QT)S Ck (26)

and

lim meas {(x,t) € Qr: uin| > k} —0. (27)

k—o0

Proof. Use Ty, (uin)X(0,r) as test function in the approximate problem (23),
one has for every o € (0,7)

/ Tio (i 0)(0) da — / T (i 0n) dz + / n (5, Wi gy Vtg )V Tk (i) dz di
Q Q

o

+ / D, (@t Ui n) VI (us) do dt = finTi (i p) do dt
Q(’ QO‘

+ / F'L,nVTk(ui,n) dx dt.
) (28)
Notice that ®;,(x,t,u;n)VIk(u; ) is different from zero only on the set
{Jwin| < k} where Ty(u;n) = w;y,. From (Hy) and then Young’s inequality
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for an arbitrary o > 0 (the constant of coercivity), we have

/ éi,n(xatvui,n)VTk(uiyn) dx dt

o

s/ by, )] |V T ()| e

o

1

+ 0 M (M (8| Tk (uin)])|VTk(win)| dr dt

o? a+2
= / 72|'y(x, V|| VT ()| dr dt
Q, @

o+ 2

a+1l—-1 o
—M (M (|T,(u; —— | VT (u;
o A O ) D) 9T )

2

< aiQ(/QoM(“O;QW(x,t)) dx—l—/QaM(VTk(ui,n)D d dt)

i /QU M(a ;_ 1M_1(M(5|Tk’(ui,n)|))) dx dt

[0
+ /QG M(Q—HWTk(ui,nﬂ) dz dt.

Since v € Eg7(Qs), then o / M(L—M\ (z t)|) dx dt = vy < +oo and
v € E37(Qq), ai2 )y 5 (=, =
!

while < 1, using the convexity of M and the fact that M and M oM

are increasing functions, then we get

012

/ D, (@, b, Ui ) VI (Ui n)de dt < o+

o

(07

- /QUM(WTk(ui,n)Ddx dt

+/wa<a;_ 1M‘1(M(§k)))dxdt

+a+1

/QGMOVTk(Ui,n)I)da: dt. (29)

Using (7), there exists some constant Cf such that

afl_
/QUM( M (M(5k))) dmdtg/

@ Qo

a+1
adk

M(g M(ék)) dz dt = C.
Which gives the estimate

012

/ D, (@, b, Ui n) V(i) de dt < v+

o

- /Qg M (VT ()] ) der i

o+

S /QUM(WTk(um)Q dz dt.
(30)
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On the other hand, due to (11), we have

/Q fin (@, 01 0, u2,0) T (i) dx dt > 0. (31)
Concerning the first integral in (28), since Ty, > 0, we have
/Q Ti(tin) (o) dz >0 (32)
and we have
/ka(ui,On) dx < k/ﬂ [us,0n| dx < klluiol 11 (0)- (33)

For the remaining integral, we proceed by Young’s inequality as follows, there
exist a constant C'p:

/ F; WVTi(u;y) de dt

2 2 2
- / (a+2) Fi VT (us ) da dt

(a+2)2 a?
a? —(a+2)? a?
< - 'Y - )
S P /QG M (S Fin dadt + CESE /QU M (VT (ui,n) ) da dt
<Cr+ 0[2/ M(VTk(u )) dx dt since F; € (B (Qr))Y
SOt o o, L @
(34)
Combining (28), (30), (31), (32), (33) and (34) we get
/ a(x,t, T (i), V(i n)) VI (U ) do dt
- - g
< Ll I .
<0 +kC+Cf + /Qa M(|VTk(uz,n)|) de dt
a a?
- (35)
where C' = || fillL1 (o) + [[wi0ll 1 (@)- Thanks to (Hs), we deduce
a? ! a? _
- - - M (|VTy (ui < &4 Op.
/Q” (a a+2 a+l (at 2)2) (‘V ’“<“l’")|) drdt < o +kC+CF+Cr
(36)
. a? «Q a? a3+ 2a?
Since (a— a1 axi (a+2)2) B CESI D)L > 0, finally we have
— (a+1)(a+2)3

T
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Now we prove (27), to this end, we use the integral Poincaré’s type inequality
in inhomogeneous Orlicz spaces with the constant 6 and A. Hence,

M(5k> meas {|um\ > k} = /{u - M<5|Tk(uzn)|> dx dt

< )\/ M<|VTk(ui7n|)> dz dt.

Then, from (37) we get
AC

M (5k>

which implies (27). of

— 0 ask— o0

meas{\ui7n| > k} <

Lemma 3.6. Let u;,, be a solution of the approzimate problem (23), then:
(1) winm —u; ae in Qr,
(i) {a(@,t, Typ(uin), VIi(uin))}n is bounded in (Ly7(Qr))™.

Proof. To prove (i), we proceed as in [14, 20], we take a C?(R) nondecreas-
s for|s| < =
2
k  for |s| > k
approximate problem (23) by I'\.(u; ) we obtain

ing function T’y such that T'y(s) = and multiplying the

Ok (win)
ot

—div (F;c (ui,n)@i,n(mv t, uz,n)) + Fg(uz,n)@z,n(mv t, ui,n)vui,n

— div (a(m, ty Ui gy Vuln)l“;c(um)) +alm, t, Wi n, Vi )T (U 0) Vi

— finTilun) = div (T (ui.0) Fin ) + T4 (i) Frn Vit

(38)
Since Mo M is an increasing function, v € Eg(Qr), supp(I'},), supp(I'})) C
[—k, k] and using Young’s inequality we get

’/ D@z, t,uip) dxdt‘
T

gnm\m(/ (O dzdt+ | D (MO T(ui))) do dt)
Qr Qr

<I0le= ([ (WGt + M) do dt +

M (M(6k)) da dt)
Qr Qr

< Chrg
(39)
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and (here, we use also (37))
‘ / F;cl(bi,n (1’7 ta ui,n)vui,ndﬂf dt‘
T

<I0le= ([ (o 0ldede+ [T QEOITk i) DIV Tl )
Qr

Qr

<y ”WUQT (F2(1r (e, 1)) + M (1)) i + [ oz a

+ [ M(TT (i) ) dt]
Qr

< OQ,]C?
(40)
where Cy and Cs ) are two positive constants independent of n. Also, by
Young’s inequality and (37) we can deduce that fQT I'\.F;ndx dt and

fQT I'F; ,Vu; » dz dt are bounded. Then (38), (39) and (40) imply that

ark(ui,n)

Y is bounded in L'(Q7) + W 1" L++(Qr). (41)

Hence by Lemma 2.12 and using the same technics as in [18], we can deduce
that there exists a measurable function u; € L>(0,T; L' (2)) such that

Uy, — w a.e. in Qp
and for every k > 0,
T (win) = Ti(u;) weakly in WLy (Qr) for o(TIL s, 11E57), (42)

and
Ty (win) — Ti(u;) strongly in L' (Qr) and a.e. in Q7. (43)

For (ii), we use the Banach-Steinhaus theorem. Let ¢ € (Ep(Qr))Y be an
arbitrary function. From (Hs) we can write

(a(x, t, To(ttin), V(i) — ale, t, T (uin), ¢)) : (VTk(ui,n) - ¢) >0

which gives:
/ w t, Tk ’LLz n) VTk:(Uz,n))(b dx
g/ a(z,t, T (win ), V(i) VT (i) do (44)

—|—/ a(x,t, Tk (Uin), d) (¢ — VI (u;p)) de.
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Let us denote by J; and J; the first and the second integral respectively in the
right hand-side of (44), so that

J1 :/ a(x, t, Tk (tin), VIg(Uin)) VI (0 n) de.

T

Going back to (35), we obtain

052

J1§70+k6+01?+0p+

/ M (VT (,0)]) dr di

a+2 /o,

« ag
M|V Tk (ui Y M(|VT(u
- a+1/QT (VT (i) ) da dt + CEE /QT (19T () ) de at,
(45)

And thanks to (37), there exists a positive constant C, independent of n such
that

J < Cy,. (46)

Now we estimate the integral J;. To this end, notice that
Ja= [ alet (i), 6)(0 Vi) da de
T

< la(z, t, Ti(uin), @)||P| dx dt —|—/ la(z, t, T (win), @)V Tk (w;n)| dx dt.
QT Qr

On the other hand, let 1 be large enough, from (H;) and the convexity of M,
we get:

/ M(Ia(xvta Tk(“i»")7¢)|) dx dt

7
B / M(ﬂ[c<x,t>+k1M (P (k| T (uz.0)) + 3 (M(k3|¢|))})dx .
T n
B M ﬁkl —(——1
< E o, M(c(z,t)) da:dt+77/TM(M (P(k2|Tk(Uz‘,n)|))) die di
B[ (1
o | W Glol) de di
B M Bk1
S M(c(z, b)) du dt + /Tp(kzk) g di
+é M (k3|¢l) da dt.
mJQr

(47)
Since ¢ € (En(Q7))Y, c(z,t) € E37(Qr), we deduce that {a(x,t, Tk (uin), ¢)}
is bounded in (L37(Qr))"™ and we have {VT},(u; )} is bounded in (L (Qr))Y,
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consequently, Jo < Cy,, where Cj, is a positive constant not depending on n.
Then we obtain

/ a(x, Ty (uin), VTk(uin))p de dt < Cy +Cy,. forall ¢ € (En(Qr))™.
Qr

(48)
Finally, {a(z,t, Ty (u;n), VI (win))}n is bounded in (L37(Qr))™N. oaf

Step 3: Almost everywhere convergence of the gradients. In this
step, most parts of the proof of the following proposition are the same argument
as in [14, Proposition 5.4], we give just those which are different.

Proposition 3.7. Let u;,, be a solution of the approzimate problem (23).
Then, for all k > 0 we have (for a subsequence still denoted by w;n): as n —
+00,

(i) Vu;, = Vu,; a.e. in Qr,
(i) a(x,t, Tr(uwin),VTk(uin)) —alz, t, Ti(u;),VTi(u;)) weakly in (LM(QT))N,

(ii1) M(IVTk(uin)|) = M(|VTk(u;)|) strongly in L' (Qr).

Proof. Let §; € ©(Qr) be a sequence such that §; — u in Wol’mLM(QT)
for the modular convergence and let ¢; € D(£2) be a sequence which converges
strongly to ug in L(Q).

Put Z}'; = Tp,(0;), + e #* Ti(1h;) where Ty (6;), is the mollification with

respect to time of T} (¢;), notice that Z:'L’j is a smooth function having the
following properties:

T = W(T(0) — 2E), 24500 = Ty(wn) and 22| < k.

Z!'s — Tp(u)y + e * Tp(4hi), in Wo " Ly (Qr) modularly as j — oo,

T (), + e M Ty (i) — Ti(u), in Wy La(Qr) modularly as i — oo.

Consider the function h,, defined on R for any m > k by:

1 if [r] <m
hm(r)y=<¢ —lr|+m+1 ifm<|r|<m+1
0 if |r] > m+ 1.

Revista Colombiana de Matemaéticas



108 J. OUAZZANI, M. BOURAHMA, H. HJIAJ, J. BENNOUNA & A. BENKIRANE

Put E,, = {(x,t) €Qr:m < |ujy <m+ 1} and testing the approximate
problem (23) by the test function ¢ = (Tj(usn) — Zi' ) (ui ), we get

n,j,m

O n i
(P s N+ / 02, iy Vit ) (VT (1s.0) — V28 Vb (115, d it
T

—|—/ a(@, t, wip, Vi ) (Th (i) — Z15) Vi nhiy, (i n) da dt
T

+ /E B 1) Vit (1) (Ti(5.0) — Z) dt dit

m

+ / Di (st i) Vit b (13.0) (VT (t.0) — VZ2) di

= flngoﬁ;m dx dt + / F; o NVui ol (i) (Th (wi ) — Z};) dx dt
Qr En,

+ / Fi,nVuiﬁnhm(ui,n)(VTk(ui,n) - VZZL’LJ) dx dt.
T

(49)
In order to simplify the notation, we will denote by €e(n, j, u,4) and e(n, j, 1)
any quantities such that

lim Iim lim lim €(n,j,u,2) =0
i—+00 —>+00 j—+00 n—+00 ( 1o s ) ’

li li li j, i) = 0.
o B n Bl (0 1) =0

We have the following lemma which can be found in [14, Lemma 5.5].

Lemma 3.8. (cf. [14, Lemma 5.5]) Let @Z;m = (Ti(in) = Z' ;) hn (i), then
for any k > 0 we have:

Ou; p, i . .
< o ,wﬁjj,m> > e(n, j, 1, 9), (50)

where <,> denotes the duality pairing between L'(Qr) + W 1% Liz(Qr) and
L>(Qr) N Wy Ly (Qr).
To complete the proof of proposition 3.7, we establish the results below, for

any fixed k > 0, we have:

(r1) : fimlt pdawdt = e(n, j, ).
T

(7"2) / q)z',n(ina t, ui,n)vui,nhm(ui,n)(VTk(ui,n) - VZ{fj)dl‘ dt = €(TL, Js ,u)'

T

(r3) /E q)i,n(xa t, Ui,n)vui,nh{m(ui,n)(Tk(ui,n) - Zﬁj)d'x dt = €(n, j, ).

m
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(T4) / a(ac, t, ui,na Vuz,n)(Tk (uz,n) - Zﬁ])vui,nh;n(uz,n)dx dt S 6(71, ja 1y m)
T

(7“5)/ [a(z,t, Tk (win), VI (uin)) — al@, t, Te(win), VI (ui)xs)]

X [VTIC (uz,n) - VT]C (U/Z)Xs]dﬂf dt S G(H,j, H,m, S)

(r6) /E Fin Vil (win) (Ti (win) — Z1;)d dt = €(n, j, ).

(r7) / Fi o Vg o (i ) (VT (0 n) — VZ{fj)dsc dt = e(n, j, p).
Qr

The proof of (1), (r3), (r4) and (r5) is the same as in [14, Proposition 5.4]).

We now prove (r2). To this end, for n > m + 1, we have
q)i,n(xa t: ui,n)hm(ui,n) = ‘I)l(x7 ta Tm+1(ui,n))hm(Tm-‘rl(ui,n)) a.e in QT-

7 q)?(xa tv Tm-‘rl(ul))‘ )
n
tinuous with respect to its third argument and w;, — u; a.e in Qr, then

D, (2, t, Ty (Uin)) = @i(z,t, Tnt1(w;)) a.e in Q as n goes to infinity, besides

M(0) = 0, it follows

7( |(Pl(1‘7 t, Tm—i—l(ui,n))

put P, = M . Since ®; is con-

P, —0, aeinQasn— oo. (51)
Using now the convexity of M and (Hj), we have for every > 0 and n > m+1:

®;(z, t, Tmﬂ(ui))l)

7( |D;(x, t, Trp1 (Ui ) —

n

2(w, 8) + M (M(S|Tynsr (uin)]) + M‘1<M<6|Tm+1<ui>>>>

1— 4 4 1
< §M(5|7(%t)\) + *M(EM (M(6(m +1)))).
1 4 1 4 52)
We put CJ,(z,t) = §M(5|’y(x,t)|) + iﬁ(gﬁil(M@(m +1)))). Since v €

E57(Qr), we have C!, € L'(Qr), Then by Lebesgue’s dominated convergence
theorem we get

lim P, dxdt = / lim P, dxdt=0. (53)
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This implies that {®;(«x, t, Tp+1(uin )} converges modularly to ®;(x, t, Tp41(us))
asn — oo in (Lg7(Qr))N. Moreover, ®;(z,t, Tpt1(tin)), Pi(z,t, Trnt1(ui)) lie
n (E37(Qr))Y, indeed, from (H,) we have for every n > 0

/ ( (x,t, g1 (s, n))|) d dt

n
< [ W(ihe Ol+ 7 LN (MO T 1 (,0)]))) e
12—71
QTM 10 + 5o (M(6(m+1)))) dz dt

1—r2—1
= M |7xt)|)d;vdt+/T2M<nM (M(é(m+1)))) dz dt

< oo since v € Egp(Qr) and € is bounded,

the same for ®;(x,t,Tp41(u;)). Thanks to Lemma 2.5, we deduce that
D (x,t, Trns1(win)) — @iz, t, Tt (us)) strongly in (E57(2))Y. On the other
hand, VT (u;n) — VTk(u;) weakly in (La(Qr))Y as n goes to infinity, it fol-
lows that

nll)n;o ; D, (2, by wi ) (Wi ) [V Tk (Ui ) — Vfoj] dz dt

(54)
:/ i (x, t, wi)hm (wi) [V Tk (ui) — VZ}';] dz dt.

Using the modular convergence of Zﬁj as j — oo and then y — 0o, we get
(r2). Since F; , € (E37(Qr))YN we can prove (r¢) and (r7) as in the proof of
(r2). As a consequence of Lemma 3.1, the results of proposition 3.7 follow. &

Step 4: Passing to the limit. Now, we will pass to the limit. Let v €
Wl"zL[\/[(QT)mLOO(QT) be such that % S W_l’mLﬁ(QT) —|—L1(QT). From [7,
lemma 5,theorem 3], there exists a prolongation v, = v on Qr, v, € Wl Ly (2%
R)NLY(Q x R) N L®(Q x R) and

ov -
S €W YL (Q x R) + LYH(Q x R).

There exists also a sequence (w;) C D(Q x R) such that

wj = v, in WP Ly (QAxR), and % — % in W17 L (QxR)+ L} (QxR),

for the modular convergence and ||w;jl/oo,0r < (N 4 2)[|V]|00,@r -
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Testing the approximate problem (23) by Ty (us,n —w;)x(0,r) With 7 € [0,T7,
we get

8 i,m
<L7Tk(ui’n — wj)> +/ a(z,t, Try (i), VI, (Win)) Vg (U0 — wj) da dt
dt Qe Jo. ’
+/ By (26, Ty (i) VT (150 — ;) e it
Q

= / fiynTk(ui,n — wj) dx dt + / Fi,nVTk('LLiyn — wj) d(E dt,
Q- .
(55)
where kg = k4 (N 4+ 2)||v||oo,@- This implies, with E,, ; := Q- N{|u;n —w;| <
k}, that

8 T,
<L,Tk(uin —wj)> —I—/ a(x, t, Ty (i n)y Vi (Win)) Vg p dx dt
dt ) QT E ) E) k)

n,j

— / a(z,t, Ty (Ui n), VT, (win))Vw; do dt
E

n,j

+ / Qi n(2,t, Ty (Ui ) VT (Ui — wj) daz dt
Q

= / fi,nTk(ui,n — wj) dx dt + / Fi,nVTk(uim — OJj) dz dt.
Qr

T (56)
Our aim here is to pass to the limit in each term in (56), let us start by the
terms of the left-hand side:

O
We first consider the limit of the first term < Z;’n,Tk (Wi — wj)>Q . We

have

(8 1) -

T

<5Z;n N %ka(ui,n - “’j)>Q

+ <%,Tk(uivn — wj)>QT

T

dt
- Ow:
— Tl — ws 22T (s —
/Q k(uz,n w])d$+< dat k(uz,n wj)>Q

—/nwm—%@w$
Q

-

(57)
Since u; , — u; in C([0,T], L*(Q2)) (see [7]), by Lebesgue’s theorem we have

/Tk(ui,n—wj) dx—)/fk(ui—wj) dx as n — oo.
Q Q
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Passing to the limit in (57), we get

lim <azi7n’Tk(ui’niwj)>QT :/ka(uifwj) dx+<%,Tk(uifwj)>

- / Ti(ui 0 — w;(0)) da.
Q

Q-

For the second and the third terms of (56), we have from (ii) of proposition
3.7

a’(xv t, Tko (ui,n)7 VTko (ul,n)) - a(x, t, Tko (ui)7 kao (ul)) Weakly in (LH(QT))Na

thus Fatou’s lemma allows us to get

lim inf (/ a(x,t, Ty (Win), VI (Win)) Vi do dt
E

n— 00 )
n,j

— / al(x, t, Ty (Wi n), VI (in))Vw; de dt)
En,]'

> / a(x,t, Ty (wi), VT, (u;))Vu dx dt
Enj

—/ a(x, t, Ty (ui), VI, (u;)) Vw; dz dt.
En;

Concerning the fourth term of the left-hand side of (56), we proceed as in (52)
to get
O, (x,t, Thy (i) = ®i(z, €, Ty (u;)) as n — oo

and since
VT (tsn —wj) = VI (u; —wj) in Ly (Qr) as n — oo,

we can deduce

/ Qi (2, t, Tho (Uin))VTk (Ui p — wj) dav dit

-

— ‘I)i(l‘, t, Tkg (ui))VTk(ui — wj) dx dt
Qr

and
/ Fi o VT (U0 — wj) da dt
Qr

— Fi(x, t, Tko (uz))VTk(ul — Lu'j) dxr dt,
QT

Finally, we turn to see the right-hand side of (56), since

T (win — wj) = T(u; —wj) weakly™ in L™ as n — oo,
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we obtain
/ fi,nTk(ui’n — wj) dz dt — / fiTk(ui — wj) dz dt.
QT QT

Now, we are ready to pass to the limit as n — oo in each term of (56) to
conclude that

/fk( —wj)dx+<a;;] T (u; wj)>Q

/ (x,t,u;, Vu ) VT (u; — wj) de dt

.

/ (x,t,u) VIk(u; — wj) da dt (59)
S/Tk(ulo—w]( )) dx + fiTw(u; —w;) de dt
Qr
+ / F,VTi(u; — wj) dz dt.

.

Now, we pass to the limit in (59) as j — oo, we obtain

/ Te(u; — v) dz + <3—t Tio(u; )>Q,
/ t,u;, Vu; ) VT (u; —v) de dt

/ (z,t,u;) VI (u; — v) dx dt (60)
<

/Tk(uzo—v( dx—|—/ fiTk(u; —v) dx dt

+ ENT,(u; —v) dzx dt.
Qr

It remains to show that u; satisfies the initial condition of (23). Recall that,
0 ,n . . — .

gt’ is bounded in L'(Q7) + W™ 1" L:(Q7). As a consequence, an Aubin’s
type Lemma (cf [21] , Corollary 4) and (lemma 2.8) implies that u; ,, lies in a
compact set of C([0, T'|; L*(2)). It follows that, u; , (z,t = 0) = u; o, converges
to u;(x,t = 0) strongly in L*(2). Then we conclude that u;(z,t = 0) = u; o()
in Q.

That is the full proof of the main result.
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