Convolution of Distribution-Valued Functions. Applications.

Convolución de funciones con \emphblackvalores distribuciones. Aplicaciones.
CHRISTIAN BARGETZ1

1University of Innsbruck, Innsbruck, Austria. Email:christian.bargetz@uibk.ac.at 


Abstract

In this article we examine products and convolutions of vector-valued functions. For nuclear normal spaces of distributions Proposition 25 in [31,p. 120] yields a vector-valued product or convolution if there is a continuous product or convolution mapping in the range of the vector-valued functions. For specific spaces, we generalize this result to hypocontinuous bilinear maps at the expense of generality with respect to the function space. We consider holomorphic, meromorphic and differentiable vector-valued functions and state propositions that contain assertions on products and convolutions of distribution-valued functions in literature as particular cases. Moreover we consider the general convolution of analytic distribution-valued functions and give an approach different to [22].

Key words: Distributions, Convolution, Multiplication.


2000 Mathematics Subject Classification: 46F10, 46E10, 42B20.

Resumen

En este artículo se investigan los productos y convoluciones de las funciones con valores vectoriales. Para espacios nucleares y normales de distribuciones se obtiene de la Proposition 25 en [31,p. 120] una multiplicación o una convolución con valores vectoriales si existe una multiplicación o una convolución continua en los espacios de las imágenes de las funciones con valores vectoriales. Para espacios particulares se generaliza este resultado a las aplicaciones bilineales hipocontinuas a expensas de la generalidad relativo a los espacios funcionales. Se examinan funciones holomorfas, meromorfas y diferenciables con valores vectoriales y se formulan proposiciones que contienen proposiciones encontradas en la literatura sobre multiplicación y convolución de funciones con \emphblackvalores distribuciones. Además se contempla la convolución general de las funciones analíticas con \emphblackvalores distribuciones y se da un enfoque distinto del presentado en [22].

Palabras clave: Distribuciones, convolución, multiplicación.


Texto completo disponible en PDF


References

[1] J. Bonet, L. Frerick, and E. Jordá, `Extension of Vector-Valued Holomorphic and Harmonic Functions´, Studia Math. 183, 3 (2007), 225-248.

[2] J. Bonet, E. Jordá, and M. Maestre, `Vector-Valued Meromorphic Functions´, Arch. Math. (Basel) 79, 5 (2002), 353-359.

[3] N. Bourbaki, Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles, No. 1333, Hermann et Cie., Paris, France, 1967.

[4] N. Bourbaki, Topological Vector Spaces. Chapters 1-5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, Germany, 1987. Translated from the French by H. G. Eggleston and S. Madan

[5] P. Dierolf and S. Dierolf, `Topological Properties of the Dual Pair\langle\mathringB(Ω)',\mathringB(Ω)''\rangle´, Pacific J. Math. 108, 1 (1983), 51-82.

[6] P. Dierolf and J. Voigt, `Convolution and S'-Convolution of Distributions´, Collect. Math. 29, 3 (1978), 185-196.

[7] K. G. Grosse-Erdmann, `The Locally Convex Topology on the Space of Meromorphic Functions´, J. Austral. Math. Soc. Ser. A 59, 3 (1995), 287-303.

[8] K. G. Grosse-Erdmann, `A Weak Criterion for Vector-Valued Holomorphy´, Math. Proc. Cambridge Philos. Soc.136, 2 (2004), 399-411.

[9] A. Grothendieck, `Sur certains espaces de fonctions holomorphes. I´, J. Reine Angew. Math. 192, (1953a), 35-64.

[10] A. Grothendieck, `Sur certains espaces de fonctions holomorphes. II´, J. Reine Angew. Math. 192, (1953b), 77-95.

[11] A. Grothendieck, `Produits tensoriels topologiques et espaces nucléaires´, Mem. Amer. Math. Soc. 1955, 16 (1955), Chap. I, 196, Chap. II, 140.

[12] J. Horváth, Convolution de noyaux hypersinguliers, `Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 19th Year: 1979/1980´, 0000.

[13] J. Horváth, Topological Vector Spaces and Distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.

[14] J. Horváth, `Sur la convolution des distributions´, Bull. Sci. Math. (2) 98, 3 (1974a), 183-192.

[15] J. Horváth, `Distribuciones definidas por prolongación analítica´, Rev. Colombiana Mat. 8, (1974b), 47-95.

[16] J. Horváth, `Composition of Hypersingular Integral Operators´, Applicable Anal. 7, 3 (1977), 171-190.

[17] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland Mathematical Library, Third edn, North-Holland Publishing Co., Amsterdam, Holland, 1990.

[18] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, Germany, 1981. Mathematische Leitfäden. [Mathematical Textbooks]

[19] E. Jordá, `Topologies on Spaces of Vector-Valued Meromorphic Functions´, J. Aust. Math. Soc. 78, 2 (2005), 273-290.

[20] U. Neri, Singular Integrals, Lecture Notes in Mathematics, Vol. 200, Springer-Verlag, Berlin, Germany, 1971. Notes for a course given at the University of Maryland, College Park, Md., 1967

[21] N. Ortner, `Faltung Hypersingulärer Integraloperatoren´, Math. Ann. 248, 1 (1980), 19-46.

[22] N. Ortner, `On Some Contributions of John Horváth to the Theory of Distributions´, J. Math. Anal. Appl. 297, 2 (2004), 353-383. Special issue dedicated to John Horváth

[23] N. Ortner, `On Convolvability Conditions for Distributions´, Monatsh. Math. 160, 3 (2010), 313-335.

[24] N. Ortner and P. Wagner, Distribution-Valued Analytic Functions - Theory and Applications, Max-Plack-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany, 2008. http://www.mis.mpg.de/preprints/ln/lecturenote-3708.pdf

[25] V. Schmidt, Sequence Space Representations of F(Γ+) and D'(Γ+), `In Functional analysis (Trier, 1994)´, de Gruyter, Berlin, Germany, 1996, p. 413-419.

[26] V. Schmidt and P. Dierolf, `A Pre-Dual for the Convolution Algebra D'(Γ+)´, Trudy Mat. Inst. Steklov. 203, (1994), 429-440.

[27] L. Schwartz, Produits tensoriels topologiques d'espaces vectoriels topologiques, Espaces vectoriels topologiques nucléaires, Applications. Séminare Schwartz, Année 1953-1954, Secrétariat Math. Fac. Sci., Paris, France, 1954a.

[28] L. Schwartz, `Espaces de fonctions différentiables à valeurs vectorielles´, J. Analyse Math. 4, (1954b), 88-148.

[29] L. Schwartz, Lectures on Mixed Problems in Partial Differential Equations and Representations of Semi-groups, Tata Institute of Fundamental Research, Bombay, India, 1957a.

[30] L. Schwartz, `Théorie des distributions à valeurs vectorielles. I´, Ann. Inst. Fourier 7, (1957b), 1-141.

[31] L. Schwartz, `Théorie des distributions à valeurs vectorielles. II´, Ann. Inst. Fourier 8, (1958), 1-209.

[32] L. Schwartz, Théorie des distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, France, 1966.

[33] M. Valdivia, On Certain Infinitely Differentiable Function Spaces, `Séminaire Pierre Lelong-Henri Skoda (Analyse). Années 1978/79´, 0000.

[34] M. Valdivia, Topics in Locally Convex Spaces, North-Holland Publishing Co., Amsterdam, Holland, 1982. Notas de Matemática [Mathematical Notes], 85

[35] V. S. Vladimirov, Methods of the Theory of Generalized Functions, Vol. 6 of Analytical Methods and Special Functions, Taylor & Francis, London, United Kingdom, 2002.

(Recibido en septiembre de 2010. Aceptado en febrero de 2011)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv45n1a05, 
    AUTHOR  = {Bargetz, Christian}, 
    TITLE   = {{Convolution of Distribution-Valued Functions. Applications.}}, 
    JOURNAL = {Revista Colombiana de Matemáticas}, 
    YEAR    = {2011}, 
    volume  = {45}, 
    number  = {1}, 
    pages   = {51-80} 
}