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Embedded CMC Hypersurfaces on

Hyperbolic Spaces

Hipersuperficies encajadas con CMC en el espacio hiperbólico
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Abstract. In this paper we will prove that for every integer n > 1, there exists
a real number H0 < −1 such that every H ∈ (−∞, H0) can be realized as the
mean curvature of an embedding of Hn−1×S1 in the n+ 1-dimensional space
Hn+1. For n = 2 we explicitly compute the value H0. For a general value
n, we provide a function ξn defined on (−∞,−1), which is easy to compute
numerically, such that, if ξn(H) > −2π, then, H can be realized as the mean
curvature of an embedding of Hn−1 × S1 in the (n + 1)-dimensional space
Hn+1.
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Resumen. En este art́ıculo demostramos que para cada número entero n > 1,
existe un número real H0 < −1, tal que todo H ∈ (−∞, H0) puede obtenerse
como la curvatura media de un encaje de la variedad Hn−1×S1 en el espacio
hiperbólico n+ 1 dimensional Hn+1. Para n = 2 calcularemos expĺıcitamente
el valor H0. Para otros valores de n, daremos una función ξn definida en el in-
tervalo (−∞,−1), la cual es fácil de calcular numéricamente, con la propiedad
de que si ξn(H) > −2π, entonces el número H puede obtenerse como la cur-
vatura media de un encaje de la variedad Hn−1×S1 en el espacio hiperbólico
n+ 1 dimensional Hn+1.

Palabras y frases clave. Curvaturas principales, espacio hiperbólico, curvatura
media constante, CMC, encajes.
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1. Introduction and Preliminaries

Here we will be considering the following model of the hyperbolic space,

Hn+1 = {x ∈ Rn+2 | x2
1 + · · ·+ x2

n+1 − x2
n+2 = −1}

where the space Rn+2 is endowed with the following inner product

〈v, w〉 = v1w1 + · · ·+ vn+1wn+1 − vn+2wn+2

for v = (v1, . . . , vn+2) and w = (w1, . . . , wn+2).

In [2] we proved the following theorem that shows that Sn−1 ×R can be
embedded in the hyperbolic space with constant mean curvature (CMC).

Theorem 1. Let gC,H : R→ R be a positive solution of the equation

(g′)2 + g2−2n + (H2 − 1)g2 + 2Hg2−n = C (1)

associated with a non negative H and a positive constant C. If µ, λ, r, θ : R→ R
are defined by

r =
gC,H√
C
,

λ = H + g−nC,H ,

µ = nH − (n− 1)λ = H − (n− 1)g−nC,H

and

θ(u) =

∫ u

0

r(s)λ(s)

1 + r2(s)
ds

then, the map φ : Sn−1 ×R→ Hn+1 given by

φ(y, u) =
(
r(u)y,

√
1 + r(u)2 sinh(θ(u)),

√
1 + r(u)2 cosh(θ(u))

)
(2)

defines an embedded hypersurface in Hn+1 with constant mean curvature H.
Moreover, if H2 > 1, the embedded manifold defined by (2) admits O(n)×Z in
its group of isometries, where Z is the group of integers.

The existence of the previous examples just as immersions were studied
in [3] as Delaunay-type hypersurfaces of the hyperbolic space and also in [1]
as rotational hypersurfaces of spherical type. Also, a classification of immersed
complete hypersurfaces in hyperbolic spaces with constant mean curvature and
two principal curvatures was made in [4] by Wu. Having in mind the previous
work, we can say that the results in this paper shows that some of the known
complete immersions with constant mean curvature from Hn−1 ×R to Hn+1
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define embedded examples with CMC from Hn−1 × S1 to Hn+1. We also pro-
vided examples of immersed examples from Hn−1 × S1 to Hn+1 that has the
cyclic group Zm in the group of isometries.

For the proof of the main result of this paper (Theorem 4), we first provide
explicit immersions φC,H of Hn−1 ×R in Hn+1 with constant mean curvature

H. Then, we find four functions C0 = C0(n,H), C̃ = C̃(n,H), K = K(n,C,H)

and ξn = ξn(H) with the property that if C ∈ (C0, C̃) and K = −2π, then,
the immersion φC,H defines an embedding from Hn−1 × S1 to Hn+1. Finally,
we prove that for every H such that ξn(H) > −2π, there exists a value C ∈
(C0, C̃) such that K(C,H) = −2π, such values of H exist because for every n,
limH→−∞ ξn(H) = −π. In some steps of the theorem we use the intermediate
value theorem and the following corollary of Lemma 5.1 in [2],

Corollary 2. Let ε be a positive real number and let f, g : (v0−ε, v0 +ε)×(c0−
ε, c0 + ε) → R be two smooth functions, such that ∂f

∂c (v0, c0) > 0, f(v0, c0) =
∂f
∂v (v0, c0) = 0 and ∂2f

∂v2 (v0, c0) = −2a < 0. If for any small c > c0, t1(c) < t0 <
t2(c) are such that f(t1(c)) + c = 0 = f(t2(c)) + c, then

lim
c→c+0

∫ t2(c)

t1(c)

g(v, c)√
f(v, c)

dt =
g(v0, c0)π√

a
.

2. Embedded Hyperbolic Type Rotational Surfaces in H3

It is not difficult to show that the function

ξ : (−∞,−1)→ R, given by ξ(H) =

∫ π

0

√
2H√

2H2 + sin(2t)− 1
dt

is decreasing, limH→−∞ ξ(H) = −π and ξ(H) < −2π for values of H close
to −1. The previous observations guarantee the existence of a unique H0 such
that ξ(H0) = −2π. A numerical computation shows that

H0 ' −1.0158136657178574.

In this section we will show that every H < H0 can be realized as the mean
curvature of a hyperbolic type rotational embedded constant mean curvature
surface in the hyperbolic three dimensional space. Let us state and prove the
only theorem in this section.

Theorem 3. For any H < −1 and C ∈ (C1, 0) where C1 = 2(H+
√
−1 +H2),

let us define f : R→ R by

f(t) =

√
C − 2H +

√
4 + C2 − 4CH sin(2

√
H2 − 1t)

2H2 − 2
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If we define,

r(t) =
f(t)√
−C

and λ(t) = H +
(
f(t)

)−2

then, the function λ(t)r(t)
r2(t)−1 is a smooth function everywhere and if we define

θ(t) =

∫ t

0

λ(s)r(s)

r2(s)− 1
ds

then, the map

φ(u, v) =(√
r(u)2 − 1 cos(θ(u)),

√
r(u)2 − 1 sin(θ(u)), r(u) sinh(v), r(u) cosh(v)

)
(3)

defines and immersion from R2 to H3. We also have that for every H < −1
there exist infinitely many choices of C such that the immersion φ is periodic in
the variable u and therefore it defines immersions from R×S1 to H3. Moreover,
we have that for every H < H0, there exists a value C such that φ defines an
embedding from R× S1 to H3.

Proof. Since H < −1 and C ∈ (C1, 0), we have that the function f is a real-
value T -periodic function that oscillates from t1 to t2 where

t1, t2 =

√
C − 2H ±

√
4 + C2 − 4CH

2H2 − 2
and T =

π√
H2 − 1

.

A direct computation shows that

(f ′)2 + f−2 + (H2 − 1)f2 + 2H = C.

The equation above shows that the function r(t) satisfies the identity

(r′)2 + λ2 r2 = r2 − 1 (4)

This equation shows that r(t) ≥ 1, moreover, it shows that r(t?) = 1, if and
only if λ(t?) = 0 and r′(t?) = 0. By the definition of the function λ, we have, in
this situation, that t? is a root of λ and r2−1 with the same multiplicity. Since

the function r is analytic, we get that the function λ(s)r(s)
r2(s)−1 is smooth near t?,

therefore it is smooth everywhere. A direct computation shows that

∂φ

∂u
=

r r′√
r2 − 1

(
cos(θ), sin(θ), 0, 0

)
+

r λ√
r2 − 1

(
− sin(θ), cos(θ), 0, 0

)
+ r′

(
0, 0, sinh(v), cosh(v)

)
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and
∂φ

∂v
= r(u)

(
0, 0, cosh(v), sinh(v)

)
.

It is not difficult to prove that the map

ν = −rλ
(
0, 0, sinh(v), cosh(v)

)
−

r2 λ√
r2 − 1

(
cos(θ), sin(θ), 0, 0) +

r′√
r2 − 1

(
− sin(θ), cos(θ), 0, 0

)
is a Gauss map of the immersion φ. It follows that the immersion φ has constant
mean curvature H by noticing that

∂ν

∂v
= −λ∂φ

∂v
and

∂ν

∂u
= −(2H − λ)

∂φ

∂u
.

Let us define the function K that depends on H and C by

K(C,H) =

∫ T

0

λ(s) r(s)

r2(s)− 1
ds.

A direct computation shows that for every fixed H we have,

lim
C→C1

K(C,H) = −π

√
2− 2H√

H2 − 1
= b2(H) and lim

C→0
K(C,H) = 0. (5)

Since H < −1 we have that b2(H) < −2π. Using the limits in (5) we get
that for any fixed value H < −1 and for every positive integer m, there exists
a real number C? between C1 and 0 such that K(C?, H) = − 2π

m . Since the
function θ satisfies that,

for any integer j and u ∈ [jT, (j + 1)T ] we have that θ(u) = jK + θ(u− jT ),

we get that if we choose the value C?, we get that θ(mT ) = −2π and therefore
the immersion φ(u, v) will be mT -periodic in the variable u and it will define
an immersion from R × S1 to H3. Let us prove that for every H < H0 there
exists an embedding from R×S1 to H3. By using the definition of the function
λ and the expression for the bounds t1 and t2 of the function f , we have that
for a given H, the function λ < 0 if and only if C1 < C < 1

H . Notice that if λ
is always negative, then the function θ is strictly decreasing, and in particular
it is one to one. A direct computation shows that

K

(
1

H
,H

)
=∫ T

0

H
√

2H2 − 2√
2H2 − 1 + sin

(
2
√
H2 − 1 s

) ds =

∫ π

0

H
√

2√
2H2 − 1 + sin(2t)

dt
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As pointed out at the beginning of this section, the function ξ(H) = K( 1
H , H)

is decreasing and the limit when H → −∞ is −π. Therefore for any H < H0

there exists a C? between C1 and 1
H such that K(C?, H) = −2π. By the way

we picked C? we get that the function θ is strictly decreasing and θ(T ) = −2π,
these two conditions guarantee that the immersion φ(u, v) is T -periodic and
injective in R × (0, T ), therefore φ defines an embedding from R × S1 to H3.
This completes the proof of the theorem. �X

2.1. Graph of Some Profile Curves

The examples described in Theorem 3 are obtained by doing a hyperbolic ro-
tation of the profile curve

α(t) =
(√

r2(t)− 1 cos(θ(t)),
√
r2(t)− 1 sin(θ(t))

)
We show the graphs of a profile curve that corresponds to an embedded

example (Figure 1) and two profile curves corresponding to immersed examples
(Figure 2 and Figure 3), all of them represent examples with constant mean
curvature H = −1.1. To finish the section we will show one of the numerical
difficulties in order to do the graph. This difficulty is the fact that the angle
function θ moves a lot in a small variation of the parameter t, during this
small variation of parameter t, the radius function

√
r2(t)− 1 is very close to

zero (Figure 4). We will show this fact by graphing the function θ′(t), first
by limiting the codomain to some values close to zero, and then by showing
the whole graph of θ′ (Figure 5). Notice that even though the graph of the
profile curve may look like a non differentiable curve, the curve as well as
the immersion are indeed smooth since there are explicit expressions for these
functions in term of smooth function and integral of smooth functions.

3. Embedded Solutions in Hyperbolic Spaces

It is well known that the existence of CMC hypersurfaces in hyperbolic spaces
with two principal curvatures relies on the existence of solutions of the following
differential equation,

(g′)2 + g2−2n + (H2 − 1)g2 + 2Hg2−n = C.

It is not difficult to check that, when H < −1, it is possible to obtain solutions
of this equation associated with negative values of C. These CMC examples
produced by these solutions when C < 0 correspond to those named as ro-
tational hyperbolic type in [1]. Similar arguments as those shown in [2] will
give us explicit immersions for such a choice of the constant C. The following
sequences of statements tell us how to pick the negative values of C to obtain
solutions in the case that H < −1 and several other properties that will be
useful in the proof of Theorem 4 in this paper which consists in generalizing
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Figure 1. Profile curve for a surface with CMC H = −1.1, in this case the surface
is embedded and C = −0.9091743461769703 and K = −2π.

Figure 2. Profile curve for a surface with CMC H = −1.1, in this case C =
−0.6835660909345689 and K = − 2π

5
.

the results of the previous section to dimensions greater than two by finding
explicit immersions of CMC hypersurfaces in the hyperbolic space of Delaunay
type and by showing that some of these explicit examples are embedded. The
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Figure 3. Profile curve for a surface with CMC H = −1.1, in this case C =
−0.19607165524075582 and K = − 2π

10
.

Figure 4. Graph of the function θ′ associated with the embedded example whose
profile curve is shown above, in this case just part of the graph is shown.

latter part, the proof showing the embeddeness of the immersions requires a
very careful analysis.

Remark 1. The function q : (0,∞) → R defined by q(v) = C − v2−2n +
(1−H2)v2− 2Hv2−n, where H < −1 and C < 0, has the following properties:
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Figure 5. Graph of the function θ′ example associated with the embedded which
profile curve is shown above.

1) The positive real number v0 given by

v0 =

(
H(n− 2) +

√
4− 4n+H2n2

2H2 − 2

) 1
n

=(
2(n− 1)√

4− 4n+H2n2 −H(n− 2)

) 1
n

is the only positive critical point of q.

2) p(v) = v2n−2q(v) is a polynomial with even degree, negative leading coeffi-
cient and p(0) = −1.

3) Since q′(v) > 0 if v < v0, q′(v) < 0 if v > v0, and q(v0) = C − C0 where

C0 = n
H2n− 2 +H

√
4− 4n+H2n2(

H(n− 2) +
√

4− 4n+H2n2
) 2n−2

n

(2H2 − 2)
n−2
n (6)

then, q has exactly 2 roots whenever 0 > C > C0.

4) The functions t1, t2 : (C0, 0)× (−∞,−1)→ (0,∞) defined by the equations

q
(
t1(C,H)

)
= 0 q

(
t2(C,H)

)
= 0 with t1(C,H) < t2(C,H) (7)

are smooth, t1(C,H) is decreasing with respect to C, t2(C,H) is increasing
with respect to C and the limit of both functions when C → C0 is v0.

5) Since the roots of q when C = 0 are v1 = 1

(1−h)
1
n

and v2 = 1

(−1−h)
1
n

then

for any fixed H the derivative of the functions t1 and t2 defined on (C0, 0)
never vanish and

lim
C→0

t1(C) = v1, lim
C→0

t2(C) = v2 and lim
C→C0

t1(C) = lim
C→C0

t2(C) = v0.
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6) The following identities are true:

λ1 = H + v−n0 =
nH +

√
H2n2 − 4(n− 1)

2(n− 1)
< 0; λ2 = H + v−n1 = 1

7) For a fixed H < −1, the previous two items guarantee the existence of a

unique C̃(H) ∈ (C0, 0) such that t?1(H) = t1
(
C̃(H), H

)
satisfies that

H +
(
t?1(H)

)−n
= 0.

The equality above defines a smooth function C̃ : (−∞,−1)→ R.

8) We can explicitly compute the function C̃ by noticing first that for that

special value of C, the number t1 = (−H)
−1
n must be a root of the function

q, therefore q
(

(−H)
−1
n

)
must be zero, i.e,

q
(

(−H)
−1
n

)
= C + (−H)−

2
n = 0.

Therefore C̃(H) = −(−H)−
2
n .

9) The function q̃(v) = − 1
C q
(√
−Cv

)
has the following expression:

q̃(v) = −1− (−C)−nv2−2n + v2
(
1−H2 − 2H

(√
−Cv

)−n)
.

Moreover, by the definition of q̃ and the properties of the function q we have
that, for any C ∈ (C0, 0), the only 2 positive roots of q̃ are

t̃1(C,H) =
t1(C,H)√
−C

and t̃2(C,H) =
t2(C,H)√
−C

.

Therefore we have that t̃1(C̃,H) = (−H)−
1
n√

(−H)−
2
n

= 1.

10) A direct computation shows that when C = C̃, the polynomial q̃ reduces to
the polynomial Q given by

Q = −1 + v2 −H2v2 −H2v2−2n + 2H2v2−n.

It is not difficult to check that, when n > 2, for any positive ε,
limH→−∞Q(1 + ε) = −∞. Therefore we have that

t̃1
(
C̃,H

)
= 1 and lim

H→−∞
t̃2
(
C̃,H

)
= 1. (8)
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11) Let us define the function h : (1,∞)→ R by

h(v) =
2Hv1−n(−1 + vn)

v2 − 1
= 2Hv1−n 1 + v + · · ·+ vn−1

1 + v

and the function ξn : (−∞,−1)→ R by

ξn(H) =

∫ t̃2

(
C̃,H
)

1

hn(v)√
Q(v)

dv.

12) A direct computation shows that

ã = −1

2
Q′′(1) = n2H2 − 1. (9)

Therefore, using Corollary 2, we get that

lim
H→−∞

ξn(H) = −π. (10)

Notice that we have not applied Corollary 2 at v = 1 because ∂Q
∂v (1) = 2 6= 0.

We are applying Corollary 2 to v = v?(h) where v?(H) is a number between

t1
(
C̃,H

)
= 1 and t2

(
C̃,H

)
such that ∂Q

∂v (v?) = 0. Since t2
(
C̃,H

)
→ 1,

as H → −∞, then v?(H) → 1 as H → −∞ and ∂2Q
∂v2 (v?) → ∂2Q

∂v2 (1) as
H → −∞.

Theorem 4. Let g : R→ R be a positive solution of the equation

(g′)2 + g2−2n + (H2 − 1)g2 + 2Hg2−n = C (11)

associated with a negative constant C. If µ, λ, r, θ : R→ R are defined by

r =
g√
−C

,

λ = H + g−n,

µ = nH − (n− 1)λ = H − (n− 1)g−n

and

θ(u) =

∫ u

0

r(s)λ(s)

r2(s)− 1
ds

then, the map φC,H : Hn−1 ×R→ Hn+1 given by

φC,H(y, u) =
(√

r(u)2 − 1 cos(θ(u)),
√
r(u)2 − 1 sin(θ(u)), r(u)y

)
(12)
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defines an immersed hypersurface in Hn+1 with constant mean curvature H.
We also have that when H < −1, the function g is periodic and if we denote its
period by T , then, φC,H defines an immersion from Hn−1×S1 to Hn whenever

K(C,H) =∫ T

0

r(s)λ(s)

r2(s)− 1
ds = −2kπ

m
, for some pair of integers k and m. (13)

Moreover, we have that anytime ξn(H1) > −2π, where ξn is the function defined
in item 11 in Remark 1, then, there exists a constant C such that the immersion
φC,H1

defines an embedding from Hn−1 × S1 to Hn+1.

Proof. A direct computation shows the following identities:

(r′)2 + r2λ2 = r2 − 1; λr′ + rλ′ = µr′.

Let us define

B2(u) =
(

cos(θ(u)), sin(θ(u)), 0, . . . , 0
)

and

B3(u) =
(
− sin(θ(u)), cos(θ(u)), 0, . . . , 0

)
.

Notice that 〈B2, B2〉 = 1, 〈B3, B3〉 = 1, 〈B2, B3〉 = 0, B′2 = rλ
r2−1B3 and

B′3 = − rλ
r2−1B2, moreover, we have that the map φ = φC,H can be written as

φ = r(0, 0, y) +
√
r2 − 1B2

A direct verification shows that 〈φ, φ〉 = −1 and that

∂φ

∂u
= r′(0, 0, y) +

rr′√
r2 − 1

B2 +
rλ√
r2 − 1

B3

is a unit vector, i.e,
〈
∂φ
∂u ,

∂φ
∂u

〉
= 1. We have that the tangent space of the

immersion at (y, u) is given by

Tφ(y,u) =

{
(v, 0, 0) + s

∂φ

∂u

∣∣∣ 〈v, y〉 = 0 and s ∈ R

}
.

A direct verification shows that the map

ν = −rλ(0, 0, y)− r2λ√
r2 − 1

B2 +
r′√
r2 − 1

B3

satisfies that 〈ν, ν〉 = 1,
〈
ν, ∂φ∂u

〉
= 0 and, for any v ∈ Rn with 〈v, y〉 = 0,

we have that 〈ν, (v, 0, 0)〉 = 0. It then follows that ν is a Gauss map of the
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immersion φ. The fact that the immersion φ has constant mean curvature H
follows because, for any unit vector v in Rn perpendicular to y, we have that

β(t) =
(

cos(θ(u)), sin(θ(u)), r cosh(t)y + r sinh(t)v
)

+
√
r2 − 1B2 =

φ
(

cosh(t)y + sinh(t)v, u
)

satisfies that β(0) = φ(y, u), β′(0) = rv and

dν(β(t))

dt

∣∣∣∣
t=0

= dν(rv) = −rλ v

Therefore, λ is a principal curvature with multiplicity n − 1. Now, since〈
∂ν
∂u , (v, 0, 0)

〉
= 0 for every (v, 0, 0) ∈ Tφ(y,u), we have that ∂φ

∂u defines a princi-

pal direction, i.e., we have that ∂ν
∂u must be a multiple of ∂φ∂u . A direct verification

shows that, 〈
∂ν

∂u
, y

〉
= −λ′r − λr′ = −µr′ = −

(
nH − (n− 1)λ

)
r′

We also have that 〈∂φ∂u , y〉 = r′, therefore,

∂ν

∂u
= dν

(
∂φ

∂u

)
= −µ∂φ

∂u
= −

(
nH − (n− 1)λ

)∂φ
∂u
.

It follows that the other principal curvature is nH−(n−1)λ. Therefore φ defines
an immersion with constant mean curvature H. This proves the first item in
the theorem. The fact that the map defines an immersion from Hn−1 × S1

whenever K(C,H) = − 2kπ
m , follows from the property,

for any integer j and u ∈ [jT, (j + 1)T ] we have that θ(u) = jK + θ(u− jT ),

which implies that the map φ is periodic in the variable u, with period mT .
Let us prove the embedding part of the theorem. In this part of the proof we
will be using the functions and constants

q, q̃, Q, ξn, t1, t2, t̃1, t̃2, C̃, C0, and v0

defined in Remark 1. Let us start by noticing that the differential equations for
the functions g and r can be written as

(g′)2 = q(g) and (r′)2 = q̃(r)

It follows that, in order to obtain a solution g of this differential equation, we
need that C > C0 and, once we have the solution g associated with the number
C and H, this solution g varies from t1(C,H) to t2(C,H). Since we know the
maximum and the minimum of the function g in terms of C and H, we can
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verify that anytime C < C̃ = −(−H)−
2
n , the function λ is negative, we also

have that when C = C̃, 0 is the maximum of the function λ. The previous
affirmation guarantees that anytime C ∈ (C0, C̃), the function θ is one to one.
By doing the substitution v = g(s) in the integral K(C,H), we get that

K(C,H) =

∫ t2(C,H)

t1(C,H)

2
√
−C(1 +Hvn)v1−n

(C + v2)
√
q(v)

dv.

In the previous expression we have used the symmetry of the function g, and
therefore the symmetries of the functions r and λ, to express K as

K = 2

∫ T
2

0

r(s)λ(s)

r2(s)− 1
ds.

When C = C0, we have that q(v0) = 0 = q′(v0), then, we can apply the
Corollary 2 to obtain that

lim
C→C0

K(C,H) = −π
√

2

√
1− nH√

n2H2 − 4(n− 1)
= lb.

Notice that for any n ≥ 2 and any H < −1, the bound lb < −2π. By doing the
substitution v = r(s) in the integral K(C,H), we get that

K(C,H) =

∫ t̃2(C,H)

t̃1(C,H)

2v
(
H +

(√
−Cv

)−n)
(v2 − 1)

√
q̃(v)

dv.

When we replace C by C̃ the integral above reduces to,

K(C̃,H) = ξn(H).

Using the intermediate value theorem we conclude the theorem because anytime
ξn(H) > −2π there exists a C? ∈ (C0, C̃) such that K(C?, H) = −2π; therefore

the map φC?,H is periodic in the u variable, and since C < C̃ the function θ is
injective and therefore the map φC?,H is an embedding. �X

Corollary 5. For any integer n > 1 there exists an H0 ≤ −1 such that for
any H < H0 there exists an embedding with constant mean curvature H from
Hn−1 × S1 to Hn+1.

Proof. The corollary follows from the fact that limH→−∞ ξn(H) = −π. See
item 12 in Remark 1. �X

Remark 2. The integral ξn is easy to evaluate numerically, for example

ξ3(−1) = −5.97106763713693

ξ4(−1) = −4.599155062889069

ξ5(−1) = −4.13016242612799
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The following graphs suggest that for n = 3, 4, 5, there exist embeddings
for all H < −1.

Figure 6. Graph of the function ξ3 on [−50,−1].

Figure 7. Graph of the function ξ4 on [−50,−1].

Figure 8. Graph of the function ξ5 on [−50,−1].
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