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Abstract. This paper proposes two ways to fix the broken Square-Vinegar
signature scheme. We give heuristic arguments as well as experimental evi-
dence to support the security claims. The first variant, Square-Vinegar with
Embedding, uses a simple modification that nonetheless changes the nature
of the public key polynomials. The second, 2-Square-Vinegar, is a more sig-
nificant overhaul of the construction, using a bivariate secret map instead of
a univariate one.
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Resumen. Este art́ıculo propone dos maneras de arreglar el esquema de firmas
Square-Vinegar, el cual ha sido roto. Suministramos argumentos heuŕısticos,
aśı como evidencia experimental para apoyar nuestras afirmaciones sobre segu-
ridad. La primera variante, Square-Vinegar con inmersión, a pesar de usar
una modificación simple, cambia la naturaleza de los polinomios de la clave
pública. La segunda, 2-Square-Vinegar, es una revisión más significativa de la
construcción, con una función secreta bivariada en lugar de una univariada.

Palabras y frases clave. Criptograf́ıa multivariada, esquema de firmas Square-
Vinegar, caracteŕıstica impar.
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1. Introduction

Multivariate public-key cryptosystems (MPKCs) are those schemes constructed
using multivariate polynomials over a finite field. The study of MPKCs is mo-
tivated by the fact that solving a system of multivariate polynomial equations
is NP-hard [6]. Unlike integer factorization or the discrete log problem, solving
a system of multivariate equations should be no easier to solve for a quantum
computer than for any other computer. For this reason, MPKCs stand among
the few options for post-quantum cryptography.

Among the proposed MPKCs is HFE, proposed in 1996 by Patarin [9] (see
Section 2.1). An HFE scheme could still be secure, but the parameters re-
quired would make it so inefficient as to be unusable. Many variants of HFE
have been proposed and analyzed. For example, HFEv− is a signature scheme
which combines HFE with another system called Oil-Vinegar and also uses
the Minus construction [11]. Particular HFEv− schemes include Quartz, whose
improvement Quartz-7m seems secure, and Square-Vinegar which has signifi-
cantly faster signing times than Quartz [1]. Square-Vinegar was broken in 2009
[2]. In this paper, we introduce some variants of the original Square-Vinegar
scheme and some arguments and experimental results suggesting that these
variants resist attack.

This paper is organized as follows. In Section 2 we give some relevant back-
ground material - a description of the HFE, Oil-Vinegar, and original Square-
Vinegar schemes and the attacks against Square-Vinegar. Sections 3 and 4 are
devoted to our new versions of Square-Vinegar and their security analysis.

2. Background

We describe the original Square-Vinegar scheme and how it is broken, preceded
by a brief description of HFE and Oil-Vinegar schemes for clarity.

2.1. HFE

The cryptosystem HFE, short for Hidden Field Equations, was proposed by
Patarin in 1996 [9]. Let k be a field of size q and K a degree n extension.
Like many other MPKCs, this scheme relies on the interplay between the field
structure and vector space structure of K. For the original versions, k is charac-
teristic 2. We require univariate polynomials over K of a specific form.

Definition 1. An HFE polynomial with bound D is a polynomial of q-Hamming
weight degree 2 and total degree not more than D. In other words, G ∈ K[X ]
is an HFE polynomial if it is of the form

G(X) =
∑

qi+qj≤D

αijX
qi+qj +

∑

qj≤D

βjX
qj + γ,

where αij , βj , γ ∈ K.
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To construct an HFE system for a specified D, choose randomly from the
collection of HFE polynomials of bound D a secret core map F : K → K. The
public key P is the composition of F with invertible affine transformations S
and T along with the vector space isomorphism ϕ : K → kn:

P = T ◦ ϕ ◦ F ◦ ϕ−1 ◦ S.

Note that P is a tuple

P =



P1(x1, . . . , xn)

...

Pn(x1, . . . , xn)




where each Pi is a quadratic polynomial. The private key is the decomposition
of P , in particular the maps S and T . See Figure 1.

K
F

// K

ϕ

��

kn
S

//

Public Key P

66kn
F

//

ϕ−1

OO

kn
T

// kn

Figure 1. The HFE system.

2.2. Oil-Vinegar

Also proposed by Patarin is the Oil-Vinegar signature scheme [10]. Let o, v ∈ N

and consider the ring k[x1, . . . , xo, x
′
1, . . . , x

′
v]. We call x1, . . . , xo oil variables

and x′
1, . . . , x

′
v vinegar variables. The scheme is built from polynomials of a

certain form.

Definition 2. A polynomial f ∈ k[x1, . . . , xo, x
′
1, . . . , x

′
v] is called an oil-

vinegar polynomial if it is of the form

f(x1, . . . , xo, x
′
1, . . . , x

′
v) =

o∑

i=0

v∑

j=0

aijxix
′
j +

v∑

i=0

v∑

j=0

bijx
′
ix

′
j +

o∑

i=0

cixi +
v∑

j=0

djx
′
j + e.

In other words, an oil-vinegar polynomial is a quadratic polynomial of the
oil and vinegar variables which has no monomials of the form oil·oil.
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The public key of an Oil-Vinegar scheme is P = F ◦ L : ko+v → ko, where
L is an invertible affine transformation ko+v → ko+v and F : ko+v → ko (the
decomposition of P is the private key). The components Fi of F are oil-vinegar
polynomials.

Signing a document (y1, . . . , yo) ∈ ko is easy because once the vinegar vari-
ables are given values, say w1, . . . , wv ∈ k, then the system on the oil variables

F (x1, . . . , xo, w1, . . . , wv) =



F1(x1, . . . , xo, w1, . . . , wv)

...

F0(x1, . . . , xo, w1, . . . , wv)


 =



y1
...

yo




is simply a linear system of equations. The signer has the freedom to choose
the vinegar values at random.

The drawback of the Oil-Vinegar system is that v must be large; i.e., the
signature must be more than twice as long as the document.

2.3. HFEv− and Square-Vinegar

We now outline one way to make a signature scheme from the HFE idea:
Square-Vinegar, a special case of HFEv−.

Let k ∼= Fq with q odd and n, v ∈ N. The field K is an extension of degree
n and φ : K → kn is the usual vector space isomorphism, defined by

φ(a1 + a2y + · · ·+ any
n−1) = (a1, a2, . . . , an).

To construct a public key, we will use as a secret core map G : K×kv → K.
Let Xv = (x′

1, . . . , x
′
v) ∈ kv and refer to these as “vinegar variables”; then G is

given by
G(X,Xv) = AX2 + β(Xv)X + γ(Xv), (1)

where A is a nonzero element of K. The maps β and γ, both maps kv → K,
are as follows:

β(Xv) =
∑

1≤j≤v

Bjx
′
j + C, (2)

and
γ(Xv) =

∑

1≤j≤i≤v

Dijx
′
ix

′
j +

∑

1≤j≤v

Ejx
′
j +H, (3)

where Bj , C,Dij , Ej , H are randomly chosen elements of K. Note that β is
linear in the components of Xv and γ is quadratic. The connection to HFE is
that once the vinegar variables are fixed, G becomes a polynomial in X and is
an HFE polynomial of bound 2.

By combining the map G with the vector space isomorphism and the iden-
tity map id : kv → kv, we construct a quadratic map G : kn × kv → kn,

G(x1, . . . , xn, x
′
1, . . . , x

′
v) = φ ◦G ◦ (φ−1 × id)(x1, . . . , xn, x

′
1, . . . , x

′
v).
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We also use two invertible affine transformations T : kn → kn, S : kn+v →
kn+v, and a projection map π : kn → kn−r given by π(z1, . . . , zn) =
(z1, . . . , zn−r). This projection describes the “−” action of removing compo-
nents of the public key.

The public key P is a composition of these maps in the order P = π◦T ◦G◦S,
see Figure 2. The private key is the decomposition of P , i.e., the map G along
with S and T .

K × kv
G

// K

φ

��

kn+v S
//

Public Key P

44kn × kv
G

//

φ−1×id

OO

kn
T

// kn
π

// kn−r

Figure 2. The Square-Vinegar System.

Using this construction for a signature scheme is very similar to using the
first proposed variant, Square-Vinegar with Embedding, so we omit those de-
tails here.

Note that here we described Square-Vinegar, but and HFEv− scheme has
the same structure. In general, q need not be odd and the degree bound of G
is not necessarily 2. In fact, Quartz-7m has q = 2 and D = 129 [12].

2.4. Attacks on Square-Vinegar

For simplicity, we will assume that A = 1 in (1). Before describing two different
attacks on Square-Vinegar, we make the following important observation.While
the core map G is defined as

G(X,Xv) = X2 + β(Xv)X + γ(Xv),

where β is linear and γ quadratic, we may in fact assume that β is constant,
in other words that there are no oil-vinegar cross terms. This is because

G = G̃ ◦ L, where

G̃(X,Xv) = X2 + γ(Xv)−
1

4
β(Xv)

2,

L(X,Xv) =

(
X +

1

2
β(Xv), Xv

)
.

The map L is invertible, and may be absorbed by S.
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2.4.1. Invariant Subspace Attack

One method of attacking the Square-Vinegar scheme is related to an attack on
the Oil-Vinegar system [7]. For any homogeneous quadratic polynomial, i.e. a
quadratic form, we may associate a unique symmetric matrix. Specifically, if
~x = (x1 · · ·xm)T and f(x1, . . . , xm) ∈ k[x1, . . . , xm] is homogeneous degree 2,
then there exists a unique M ∈ Mm×m(k) such that f(x1, . . . , xm) = ~xTM~x.
We will refer to such an M as the matrix associated to f. Also, we may speak
of the matrix associated to a nonhomogeneous quadratic, meaning the matrix
associated to its homogenous part.

As discussed above, without loss of generality let us assume that G has no
oil-vinegar cross terms. Then the components of the map G = (G1, . . . , Gn)
will also have limited mixing of the variables, in particular they have the form

Gt(z1, . . . , zn+v) =

n∑

j≤i=1

atijzizj +

v∑

j≤i=1

btijzn+izn+j .

This means that the matrix Gt associated to Gt looks like

Gt =

(
Gt1 0

0 Gt2

)
,

with Gt1 ∈ Mn×n(k), Gt2 ∈ Mv×v(k) symmetric.

Among the useful properties of these matrices are their invariant subspaces.
Let kn×{(0, . . . , 0)} ⊂ kn+v be the “oil space” O and {(0, . . . , 0)}×kv ⊂ kn+v

be the “vinegar space” V . Note that Gt(O) ⊆ O and Gt(V) ⊆ V . In fact, if Gt

is invertible this holds for G−1
t as well.

The Gt are not directly accessible to an attacker; he has only the public key
P . However, each component Pi of P is a quadratic polynomial and thus has
an associated matrix Pi. The Pi do not have O and V as invariant subspaces,
but it turns out that S−1(O) is a common invariant subspace of all matrices
of the form P−1

i Pj. Moreover, S−1(O) is a common invariant subspace of all
matrices in the k-linear space Ω spanned by the matrices P−1

i Pj.

If the characteristic polynomial of a randomly selected matrix ∆ ∈ Ω factors
into two distinct irreducible polynomials, then we can recover the subspace
S−1(O) as the kernel of C(∆), where C is the degree n irreducible polynomial
of such factorization. In this way we can get rid of the vinegar variables Xv

from the core map G, being left with a new core map of the form

Ĝ : K −→ K

X 7−→ Ĝ(X) = X2 + E,

where E is a constant element in K. After this we can use the attack on SFlash
[5], to recover the r polynomials that were removed from the public key (minus
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part of Square-Vinegar). Then we use the Kipnis-Shamir attack on HFE [8],

to recover invertible linear transformations Ŝ : kn → kn and T̂ : kn → kn such
that the remaining public key is equivalent to the map T̂ ◦ Ĝ◦ Ŝ, thus breaking
the system.

2.4.2. Differential Attack

Another attack on Square-Vinegar was presented in [2]. The authors found an
equivalent secret key by taking advantage of properties of the differential of
the core map G. By differential of a map f(x) we mean Df(a, x) = f(a+ x)−
f(a)− f(x) + f(0).

As in the invariant subspace attack, without loss of generality assume that
oil and vinegar do not mix, i.e., the β term of G is constant.

They note that usually, an L satisfying

DP
(
L(X,Xv), (Y, Yv)

)
+DP

(
(X,Xv), L(Y, Yv)

)
= 0, (4)

where P is the Square-Vinegar public key, is of the form

L = S−1 ◦ (φ× id) ◦ Λuc ◦ (φ
−1 × id) ◦ S,

where Λuc : K × kv → K × kv, with u ∈ K and c ∈ k, given by

Λuc(X,Xv) = (uX, cXv).

This L satisfy (4) because

P ◦ L = π ◦ T ◦ φ ◦G ◦ Λuc ◦ (φ
−1 × id) ◦ S.

Such L can be found by an attacker since they satisfy a linear equation
derived from the public key. Since the characteristic polynomial of L is the
characteristic polynomial of Λuc, one can find the corresponding c and uqi for
some i. Once uqi is known, one can find a map S̃ which plays the role of S in
the equivalent private key. From here, Square-Vinegar is dead.

3. Square-Vinegar with Embedding

In light of these attacks on Square-Vinegar, we propose some new variants of
this idea, which resist known attacks. Square-Vinegar with Embedding is a
simple modification - we have only altered the transformation S.

3.1. Description

Again, let k ∼= Fq with q odd and n, l, v ∈ N. Consider the extension field K of
degree n+ l and φ : K → kn+1 the usual vector space isomorphism.
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154 JOHN B. BAENA, CRYSTAL LEE CLOUGH & JINTAI DING

As with Square-Vinegar, the secret core map G : K × kv → K is given by

G(X,Xv) = AX2 + β(Xv)X + γ(Xv),

where A is a nonzero element of K. The maps β and γ are defined exactly as
for Square-Vinegar.

By combining G with the vector space isomorphism, we build a quadratic
map G : kn+1 × kv → kn+1,

G = φ ◦G ◦ (φ−1 × id).

We also make use of a full rank affine transformation (an embedding)
S : kn+v → kn+1 × kv, an invertible affine transformation T : kn+1 →
kn+1, and a projection map π : kn+1 → kn+l−r given by π(z1, . . . , zn+l) =
(z1, . . . , zn+l−r).

The public key P is a composition of these maps in the following order:

P = π ◦ T ◦G ◦ S.

See Figure 3. The private key is the decomposition of P , i.e., the map G

along with S and T .

K × kv
G

// K

φ

��

kn+v S
//

Public Key P

33
kn+l × kv

G
//

φ−1×id

OO

kn+l T
// kn+l π

// kn+l−r

Figure 3. The Square-Vinegar with embedding system.

What makes this scheme different from the Square-Vinegar is that S is an
embedding. The intention of this change is to destroy the connection between
the space of signatures kn+v and the field structure of K. We will discuss this
further in the security analysis, Section 3.2.

To use this setup for digital signatures, documents will be elements of
kn+l−r. To sign a document (y1, . . . , yn+l−r), we perform the following steps:

• Randomly “complete” the document with yn+l−r+1, . . . , yn+l ∈ k.

• Choose values w1, . . . , wv for the vinegar variables Xv (at random).

• Solve over K the quadratic equation in X

G
(
X, (w1, . . . , wv)

)
= φ−1 ◦ T−1(y1, . . . , yn+l). (5)
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• If the equation has no solutions in K, make a new choice of vinegar
variables and try again.

• Once we have an equation of the form (5) with solutions in K, say X̃1

and X̃2, check if
(
X̃i, (w1, . . . , wv)

)
has a preimage under (φ−1 × id) ◦ S.

If not, try again with new vinegar variables.

• Suppose X̃i is a solution to (5) and the set S−1
(
φ
(
X̃i

)
, w1, . . . , wv

)
6= ∅.

Since S is injective, S−1
(
φ
(
X̃i

)
, w1, . . . , wv

)
is a singleton. This element

of kn+l+v is a signature of the document.

Since the signing process involves choosing values and poor choices are
possible, extensive testing was done to see how many tries were required to
obtain a signature. The results are summarized in Table 1; one sees that roughly
q tries are required to sign when l = 1.

Table 1. Signing times for Square-Vinegar with embedding systems, for r = 3.

q n n+ l v
Average time

to sign [s]

Average # of

tries to sign [s]

19 30 31 4 0.045956 20.931

19 32 33 4 0.086812 19.404

19 30 31 6 0.042304 17.867

19 32 33 6 0.096156 20.904

23 30 31 4 0.055344 24.823

23 32 33 4 0.117324 24.064

23 32 33 6 0.118104 23.700

23 34 35 6 0.126204 23.988

31 30 31 4 0.076880 32.083

31 32 33 4 0.156300 31.276

31 30 31 6 0.082756 32.739

31 32 33 6 0.158768 30.840

Note that these average signing times are much faster than when using
Quartz parameters: t ≈ 2.6 s, when q = 2, D = 129, n = 103, v = 4 and r = 3;
see [1].

We used MAGMA 2.14 on a Vaio Computer with Windows Vista which has
an Intel(R) Core(TM)2 Duo CPU 2.00GHz processor with 2.00 GB of memory
installed, to run the computer experiments. In each case 100 different random
documents were tried.
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3.2. Security Analysis

3.2.1. Invariant Subspace Attacks

As in the case of Square-Vinegar, the matrices associated to the core map G

have a nice block-diagonal shape. However, the fact that S is an embedding
prevents the public key polynomials’ associated matrices from sharing these
invariant subspaces.

When S is invertible, the matrices Pi of the public key have the property
that P−1

i Pj all have S−1(O) as an invariant subspace. This is because

Pj = ST G̃jS,

where G̃j is a linear combination of the core map’s matrices G1, . . . ,Gn; the

specific combination is determined by T . Thus P−1
j = S−1G̃j(S

T )−1. How-
ever, when S is just an embedding, we cannot obtain similar expressions that
guarantee that S−1(O) is a common invariant subspace of the matrices P−1

i Pj .

Recall that if S−1(O) were a common invariant subspace of the matrices
P−1
i Pj, then it would also be a common invariant subspace of all matrices in

the k-linear space Ω spanned by the matrices P−1
i Pj .

If the characteristic polynomial of at least one matrix ∆ ∈ Ω is irreducible,
then there would not be invariant subspaces different from the trivial ones.
We were able to confirm this absence by extensive computer experiments; see
Table 2 for a summary of these results. We conclude that Square-Vinegar with
embedding systems are resistant to this kind of attack.

Table 2. Number of irreducible characteristic polynomials.

q n l n+ l v r
Number of irreducible

characteristic polynomials

19 32 1 33 4 3 15

19 34 1 35 4 3 10

19 32 1 33 6 3 13

19 34 1 35 6 3 15

23 32 1 33 4 3 16

23 34 1 35 4 3 18

23 32 1 33 6 3 16

23 34 1 35 6 3 17

31 32 1 33 4 3 14

31 34 1 35 4 3 9

31 32 1 33 6 3 12

31 34 1 35 6 3 13
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3.2.2. Algebraic Attacks

Algebraic attacks can be employed against any MPKC. Suppose that someone,
who does not know the private key, wants to recover the plaintext from a
ciphertext (y1, . . . , ym) ∈ km. This attacker only has access to the public key
P : kt → km, P = (P1, . . . , Pm). The most straightforward way to attack is to
solve the system of equations

P1(x1, . . . , xt)− y1 = 0

P2(x1, . . . , xt)− y2 = 0

...

Pm(x1, . . . , xt)− ym = 0.

(6)

Solving these equations directly is known as the algebraic attack. This can
be done with the help of a Gröbner basis. We used the F4 function of MAGMA,
which is the most efficient implementation of the Gröbner basis F4 algorithm
that is currently available. All the computer experiments of this section were
run on an Intel(R) Core(TM)2 2.40 GHz processor with 1.99 GB of memory
installed.

Because of the vinegar variables, the system (6) is underdetermined. Since
we only need to find a solution for this system, we can guess values for some of
the variables yielding a system with the same number of equations as variables,
as was done in [3]. This speeds up the attack significantly.

The benefits of using fields of odd characteristic for MPKCs against the
Gröbner basis attack are discussed in [4]. Our experiments suggest that any
prime integer q ≥ 19 provides a strong defense against an algebraic attack via
Gröbner bases. Table 3 and Figure 4 contain a summary of results for q = 19.
Also, in Figure 5 we can observe how the maximum degree of the polynomials
used by F4 grows as n increases, for different values of q.

We observe that the average time used to solve the system of equations
grows exponentially in n. This behavior can also be seen in the memory used.
We generated random polynomial equations of the same dimensions (same q,
l, n, v and r) and found that the time needed to solve such a system using
Gröbner bases is essentially the same that is needed to break Square-Vinegar
with embedding with our choices of parameters. Table 4 shows these times for
different values of n.

From the information gathered with our experiments it appears that under
our choices of parameters, F4 is no more efficient in solving the public key
equations of a Square-Vinegar with embedding scheme than a system of random
equations. Extrapolating our data, we think that for any q ∈ {19, 23, 31}, the
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158 JOHN B. BAENA, CRYSTAL LEE CLOUGH & JINTAI DING

Table 3. Gröbner basis attack for q = 19, l = 1, v = 4 and r = 3, for several values
of n.

n n+ l
Average time

[s]

Minimum time

[s]

Maximum time

[s]

Memory used

[MB]

6 7 0.001 0 0.016 6

7 8 0.003 0 0.016 6

8 9 0.016 0.015 0.032 6

9 10 0.085 0.078 0.094 7

10 11 0.593 0.578 0.641 11

11 12 4.036 3.890 4.375 28

12 13 30.055 29.641 32.062 103

13 14 224.705 219.016 240.687 403

5 6 7 8 9 10 11 12 13 14

0.001

0.01

0.1

1

10

100

1000

n

C
P
U

T
im

e
[s
]

Figure 4. Running time under Gröbner basis attack for q = 19, l = 1, v = 4 and
r = 3, for several values of n.

Table 4. Time comparison of some Square-Vinegar with embedding systems and
random equations under GB attack. q = 19, l = 1, v = 4, and r = 3.

n
Square-Vinegar

with embedding

Random

equations

6 0.001 0.001

7 0.003 0.003

8 0.016 0.016

9 0.085 0.088

10 0.593 0.611

11 4.036 4.011

12 30.055 30.456

13 224.705 223.988

parameters n = 30, l = 1, v = 4, and r = 3, make Square-Vinegar with
embedding secure against algebraic attacks (more than 280 computations).
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Figure 5. Maximum Degree of Polynomial used by F4 for Square-Vinegar with em-
bedding, q ∈ {19, 23, 31}, l = 1, v = 4, and r = 3.

3.2.3. Differential Attacks

Let us now show how the embedding renders the differential attack of [2] ineffec-
tive and discuss resistance to other differential-style attacks. Recall that the
differential attack on Square-Vinegar makes use of mappings Λuc : K × kv →
K × kv given by

Λuc(X,Xv) = (uX, cXv).

In the attack on Square-Vinegar, one is able to find matrices of the form

L = S−1 ◦ (φ× id) ◦ Λuc ◦ (φ
−1 × id) ◦ S.

In the new case, S−1 does not exist; however, S is injective, so an attacker
may find an analogous matrix with the right-inverse of S, i.e., something of the
form

L̃ = ST (SST )−1 ◦ (φ× id) ◦ Λuc ◦ (φ
−1 × id) ◦ S.

We may find L̃ in the embedding case as easily as one may find L in the
Square-Vinegar case. This is because L̃ acts as L in the sense that

P ◦ L̃ = π ◦ T ◦ φ ◦G ◦ Λuc ◦ (φ
−1 × id) ◦ S.
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The vital fact is that the characteristic polynomials of L and L̃ do not have
the same behavior. The characteristic polynomial of L is that of Λuc but for L̃
the characteristic polynomial is different. Thus, we cannot discover information
about u from this matrix as we can in the Square-Vinegar situation. Without
this ability, the attack is dead.

Note also, that being able to find L̃ puts an attacker in a position similar to
that of an attacker of SFlash [5], and a priori it is possible that the “missing”
polynomials omitted from the public key could be recovered. However, in the
case of SFlash, the knowledge of these hidden multiplication maps is enough
to break the system due to the simplicity of the core map. For Square-Vinegar
with Embedding, the design of G ensures that G◦Λuc cannot be M ◦G for any
linear map M . So, even though such matrices can be found they are of no use
to an attacker.

In light of the above security analysis, we belive that Square-Vinegar with
Embedding is a viable signature scheme under reasonable parameter choices.

4. 2-Square-Vinegar

4.1. Description

Again, we use the field k ∼= Fq with q odd, n, v, r ∈ N, K ∼= Fqn , φ : K → kn.
Documents are vectors in k2n−r, and signatures are vectors in k2n+v. This time
we use a core map G : (K ×K)× kv → K ×K, the components given by

G1(X,Y,Xv) = X2 + β1(Xv)Y + γ1(Xv)

G2(X,Y,Xv) = Y 2 + β2(Xv)X + γ2(Xv),

where βi : k
v → K are linear as in (2) and γi : k

v → K are quadratic as in (3).
The affine maps are S : k2n+v → kn × kn × kv and T : kn × kn → k2n. The
public key is P : k2n+v → k2n−r and is given by (see Figure 6)

P = π ◦ T ◦ (φ× φ) ◦G ◦ (φ−1 × φ−1 × id) ◦ S.

To sign a document (y1, . . . , y2n−r) ∈ k2n−r with 2-Square-Vinegar, we
perform the following steps:

• Randomly “complete” the document with y2n−r+1, . . . , y2n ∈ k.

• Compute (z1, . . . , z2n) = T−1(y1, . . . , y2n) and let

(Z1, Z2) = φ−1 × φ−1(z1, . . . , z2n).

• Choose values w1, . . . , wv for the vinegar variables, letWv = (w1, . . . , wv).
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K ×K × kv
G

// K ×K

φ×φ

��

k2n+v S
//

Public Key P

44kn × kn × kv
G

//

φ−1×φ−1×id

OO

kn × kn
T

// k2n
π

// k2n−r

Figure 6. The 2-Square-Vinegar System.

• Solve the system of equations

X2 + β1(Wv)Y + γ1(Wv) = Z1 (7)

Y 2 + β2(Wv)X + γ2(Wv) = Z2. (8)

This can be done by solving (7) for Y (or (8) for X) and substituting
into the other equation. The resulting univariate quartic equation can be
solved using Berlekamp’s algorithm, for example.

• If a solution in K cannot be found, make a new choice of vinegar variables
and try again. Otherwise, if (X,Y ) ∈ K ×K is a solution to (7) and (8);
the signature is

S−1(φ(X), φ(Y ), w1, . . . , wv) ∈ k2n+v.

We present some results when Berlekamp’s algorithm is used in Table 5. In
each case 100 different random documents were signed for 10 different keys1.

Table 5. Signing times for 2-Square-Vinegar systems, for r = 3.

q n 2n v 2n+ v
Average time

to sign [s]

Average # of

tries to sign

19 15 30 4 34 0.014123 1.579

19 16 32 4 36 0.015273 1.567

19 15 30 6 36 0.014104 1.610

19 16 32 6 38 0.015337 1.630

23 15 30 4 34 0.014971 1.623

23 16 32 4 36 0.016902 1.587

23 15 30 6 36 0.015758 1.609

23 16 32 6 38 0.017144 1.628

1On an Intel(R) Core(TM)2 Duo CPU 2.00GHz processor with 2.00 GB of memory in-
stalled.
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Notice again that these signing times are much faster than those when
using Quartz parameters: t ≈ 2.6 s, when q = 2, D = 129, n = 103, v = 4 and
r = 3 [1].

4.2. Security Analysis

4.2.1. Algebraic Attacks

See Section 3.2.2 for a general description of algebraic attacks. For 2-Square-
Vinegar, a summary of our experimental results2 are shown in Table 6 and
Figure 7. We can see how the average time and memory used by F4 to solve
the system of equations grow exponentially in n.

Table 6. Algebraic attack for 2-Square-Vinegar, with q = 19, v = 4 and r = 3, for
several values of n.

n 2n
Average time

[s]

Minimum time

[s]

Maximum time

[s]

Memory used

[MB]

4 8 0.003 0 0.016 6

5 10 0.086 0.062 0.109 7

6 12 4.002 3.890 4.328 28

7 14 221.886 218.078 240.531 403

4 4.5 5 5.5 6 6.5 7 7.5

0.001

0.01

0.1

1

10

100

1000
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Figure 7. Running time under GB attack for 2-Square-Vinegar, with q = 19, v = 4
and r = 3, for several values of n.

As in the case of Square-Vinegar with Embedding, the results suggest
that with reasonable parameter choices, an algebraic attack against 2-Square-
Vinegar is infeasible.

2On an Intel(R) Core(TM)2 2.40 GHz processor with 1.99 GB of memory installed.
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4.2.2. Invariant Subspace Attacks

In short, 2-Square-Vinegar resists the invariant subspace attack on Square-
Vinegar because the properties that a univariate core map grants to its asso-
ciated matrices are not granted by the bivariate version.

Let us consider the map G1 : k2n+v → kn given by

G1 = φ ◦G1 ◦ (φ
−1 × φ−1 × id).

This map has components

G1(x1, . . . , xn, y1, . . . , yn, x
′
1, . . . , x

′
v) =


G11(x1, . . . , xn, y1, . . . , yn, x

′
1, . . . , x

′
v)

...

G1n(x1, . . . , xn, y1, . . . , yn, x
′
1, . . . , x

′
v)


 .

These components are quadratic polynomials and due to the structure of
G1, terms of the form xiyj , xix

′
j , and yiyj do not appear. Thus the matrices

associated to the G1i are all of the form



∗ 0 0

0 0 ∗

0 ∗ ∗


 (the 0 and ∗ represent blocks),

which does have kn × {(0, . . . , 0)} ⊂ k2n+v as an invariant subspace. How-
ever, a similar analysis of G2 and the analogous G2i reveals that the matrices
associated to these will be of the form



0 0 ∗

0 ∗ 0

∗ 0 ∗


 ,

with {(0, . . . , 0)} × kn × {(0, . . . , 0)} ⊂ k2n+v as an invariant subspace. The
public key polynomials’ associated matrices are linear combinations of both
types. So we cannot expect a common invariant subspace to exist.

4.2.3. Differential Attacks

Before looking at the differential of the core map, we note the following: for
the univariate case, we were able to assume that the core polynomial G had
no oil-vinegar cross terms, since the proposed core map is equivalent to such a
map via a change of variables. This fact was crucial to the differential attack.
But a change of variables cannot yield the same simplification in the bivariate
case. The oil and vinegar variables are irrevocably intertwined.
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Now let us take a closer look at the differentials of G1 and G2.

DG1

(
(X,Y,Xv), (A,B,Av)

)
= 2AX + β1(Xv)B + β1(Av)Y +Dγ1(Xv, Av),

and

DG2

(
(X,Y,Xv), (A,B,Av)

)
= 2BY + β2(Xv)A+ β2(Av)X +Dγ2(Xv, Av).

This means that for a, b ∈ K, c ∈ k,

DG1

(
(aX, bY, cXv), (A,B,Av)

)
−DG1

(
(X,Y,Xv), (aA, bB, cAv)

)
=

(b − c)[β1(Av)Y − β1(Xv)B,

and

DG2

(
(aX, bY, cXv), (A,B,Av)

)
−DG2

(
(X,Y,Xv), (aA, bB, cAv)

)
=

(a− c)[β2(Av)X − β2(Xv)A.

The important point is that the right hand sides here are nonzero; they
are precisely the differentials of the terms that mix oil and vinegar. Given this
observation, it seems that an investigation of the differentials of the public key
will not give an attacker information about field multiplications.

5. Conclusions

In this paper we describe two new signature schemes, Square-Vinegar with
Embedding and 2-Square-Vinegar. For Square-Vinegar with Embedding, we
show how signatures could be computed when an embedding is used, how the
dangerous property of the related characteristic polynomials is destroyed, and
how the threat of algebraic attacks can be managed by informed parameter
choices. Similarly, for 2-Square-Vinegar, we give the construction and show
that the scheme is secure against known attacks.
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