Representación de medidas vectoriales

Representation of Vector Measures
MARTHA GUZMÁN-PARTIDA1

1Universidad de Sonora, Hermosillo, México. Email:martha@gauss.mat.uson.mx 


Resumen

En este artículo panorámico se presentan cuatro versiones equivalentes de la propiedad de Radon-Nikodým de un espacio de Banach: el teorema de representación de Riesz, el teorema de Lewis-Stegall, un teorema sobre diferenciabilidad de funciones absolutamente continuas y una caracterización geométrica del espacio.

Palabras clave: Medidas vectoriales, integral de Bochner, propiedad de Radon-Nikodým.


2000 Mathematics Subject Classification: 46G10, 46G12.

Abstract

In this survey article, we give four equivalent classical versions of the Radon-Nikodým property for Banach spaces, namely, the Riesz representation theorem, the Lewis-Stegall theorem, a result on differentiability of absolutely continuous functions and finally, a geometric characterization of the Banach space.

Key words: Vector measures, Bochner integral, Radon-Nikodým property.


Texto completo disponible en PDF


Referencias

[1] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis 1, `Colloquium Publications´, (2000), Vol. 48, AMS, Providence, United States.

[2] O. Blasco, Radon-Nikodým versus Fatou, `Aportaciones Matemáticas´, (1997), Vol. 20 of Serie Comunicaciones, p. 1-5.

[3] R. Bourgin, Geometric Aspects of Convex Sets With the Radon-Nikodým Property, Vol. 993 of Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, Germany, 1983.

[4] A. Bukhvalov and A. Danilevich, `Boundary Properties of Analytic and Harmonic Functions with Values in Banach Spaces´, Math. Notes 32, (1982), 104-110. English Translation

[5] J. Diestel and J. Uhl, Vector Measures, `Mathematical Surveys´, (1977), Vol. 15, AMS, Providence, United States.

[6] N. Dinculeanu, Vector Measures, Pergamon Press, New York, United States, 1967.

[7] G. Edgar, `Analytic Martingale Convergence´, J. Funct. Anal. 69, (1986), 268-280.

[8] M. Guzmán-Partida and S. Pérez-Esteva, `A Formulation of the Analytic Radon-Nikodým Property by Temperature Functions´, Arch. Math. 67, (1996), 510-518.

[9] S. Qian, `Nowhere Differentiable Lipschitz Maps and the Radon-Nikodým Property´, J. Math. Anal. Appl. 185, (1994), 613-616.

[10] H. Rosenthal, `The Banach Spaces C(K) and Lp(μ)´, Bull. Am. Math. Soc. 81, 5 (1975), 763-781.

[11] B. Shangquan, `A new Characterization of the Analytic Radon-Nikodým Property´, Proc. Am. Math. Soc. 128, 4 (2000), 1017-1022.

(Recibido en abril de 2010. Aceptado en octubre de 2010)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv44n2a06, 
    AUTHOR  = {Guzmán-Partida, Martha}, 
    TITLE   = {{Representación de medidas vectoriales}}, 
    JOURNAL = {Revista Colombiana de Matemáticas}, 
    YEAR    = {2010}, 
    volume  = {44}, 
    number  = {2}, 
    pages   = {129-147} 
}