Rigidity of the Stable Norm on Tori

Rigidez de la norma estable sobre toros
OSVALDO OSUNA1

1Universidad Michoacana, Morelia, México. Email: osvaldo@ifm.umich.mx 


Abstract

Given a closed, orientable Riemannian manifold, we study the stable norm on the real homology groups. In particular, for n≥ 2 we prove that a Riemanniann-torus, which has the same stable norms as a flat n-torus on the first andn-1 homology groups, is in fact isometric to the flat torus.

Key words: Stable norm, p-norm, Poincaré duality.


2000 Mathematics Subject Classification: 53C23, 53D25, 53C24.

Resumen

Dada una variedad Riemanniana, cerrada y orientable, estudiamos la norma estable sobre sus grupos de homología real. En particular, para n≥ 2 demostramos que si un n-toro Riemanniano tiene normas estables iguales a las normas estables de un n-toro plano sobre el primer y n-1 grupos de homología; entonces es isométrico a dicho toro plano.

Palabras clave: Norma estable, p-norma, dualidad de Poincaré.


Texto completo disponible en PDF


References

[1] D. Y. B. and S. Ivanov, `Riemannian Tori without Conjugate Points are Flat´, GAFA 4, 3 (1994), 259-269.

[2] I. Babenko and F. Balacheff, `Sur la forme de la boule unité de la norme stable unidimensionnelle´,Manuscripta Math. 119, 3 (2006), 347-358.

[3] V. Bangert, `Geodesic rays, Busemann Functions and Monotone Twist Maps´, Calc. Var. Partial Differential Equations 2, 1 (1994), 49-63.

[4] V. Bangert, `Minimal Measures and Minimizing Closed Normal One-Currents´, GAFA 9, (1999), 413-427.

[5] V. Bangert and M. Katz, `Stable Systolic Inequalities and Cohomology Products´, Comm. Pure Appl. Math. 56, (2003), 979-997.

[6] V. Bangert and M. Katz, `An Optimal Loewner-Type Systolic Inequality and Harmonic One-Forms of Constant Norm´, Comm. Anal. Geom. 12, 3 (2004), 703-732.

[7] H. Federer, `Real Flat Chains, Cochains and Variational Problems´, Indiana Univ. J. 86, (1964), 351-407.

[8] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, 1994.

[9] M. Jotz, `Hedlund Metrics and the Stable Norm´, Differential Geometry and its Applications 27, 4 (2009), 543-550.

[10] D. Massart, `Stable Norms of Surfaces: Local Structure of the Unit Ball at Rational Directions´, Geom. Funct. Anal. 7, (1997), 996-1010.

[11] R. Mañé, `On the Minimizing Measures of the Lagrangian Dynamical Systems´, Non Linearity 5, 3 (1992), 623-638.

[12] G. McShane and I. Rivin, `A Norm on Homology of Surface and Counting Simple Geodesic´, Int. Math. Res. Not. 2, (1995), 61-69.

[13] P. A. Nagy and C. Vernicos, `The Length of Harmonic Forms on a Compact Riemannian Manifold´, Trans. Amer. Math. Soc. 356, (2004), 2501-2513.

[14] O. Osuna, `Vertices of Mather's Beta Function´, Erg. Th. and Dyn. Syst. 25, (2005), 949-955.

[15] O. Osuna, `On the Stable Norm of Surfaces´, Bol. Soc. Mat. Mexicana 12, (2006), 75-80.

[16] G. Paternain, `Schrodinger Operators with Magnetic Fields and Minimal Action Functional´, Israel J. Math.123, (2001), 1-27.

(Recibido en julio de 2008. Aceptado en abril de 2010)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv44n1a02, 
    AUTHOR  = {Osuna, Osvaldo}, 
    TITLE   = {{Rigidity of the Stable Norm on Tori}}, 
    JOURNAL = {Revista Colombiana de Matemáticas}, 
    YEAR    = {2010}, 
    volume  = {44}, 
    number  = {1}, 
    pages   = {15-21} 
}