SOBRE DERIVACIONES GENERALIZADAS

por

J.M. ANDERSON

En el libro citado en la bibliografía, JACOBSON introduce el concepto de (s_1,s_2) -derivación. Aquí se muestra que una vasta clase de (s_1,s_2) -derivaciones son interiores; de manera que este trabajo es un suplemento al corolario 1, página 174, de [1].

<u>DEFINICION</u>. <u>Sean</u> **A y** B <u>anillos</u>. <u>Si</u> s_1 **y** s_2 son homomorfismos de **A** en B, entonces una aplicación $d:A \rightarrow B$ se llama una (s_1, s_2) -derivación si: 1) d(a + b) = d(a) + d(b), **y** 2) $d(ab) = d(a)s_1(b) + s_2(a)d(b)$.

Se obtiene un ejemplo de (s_1, s_2) -derivación cuando A y B son ambos iguales al cuerpo de los números complejos, s_1 es el automorfismo que envía un número complejo en su conjugado, s_2 es el automorfismo identidad, y se define d por la relación

$$d(z) = \frac{i}{2} (z - \overline{z}).$$

Si $A \subseteq B$ y si $s_1 = s_2$ es la aplicación idéntica, entonces una (s_1, s_2) -derivación no es otra cosa que una derivación en el sentido ordinario.

Es fácil ver que los siguientes subconjuntos de A

$$A_{(s_1,s_2)} = \{x \in A \mid s_1(x) = s_2(x)\}$$

у

$$A_{d} = \{x \in A \mid d(x) = 0\}$$

son sub-anillos de A. Es claro que $s_1 = s_2$ si y

sólo si $A_{(s_1,s_2)} = A$; y que d = 0 si y sólo si $A_d = A$.

TEOREMA 1. Si d es una (s_1, s_2) -derivación, diferente de cero, con $s_1 \neq s_2$, de un anillo conmutativo A en un anillo conmutativo B sin divisores de cero distintos de cero, entonces

$$^{A}(s_1,s_2) = ^{A}d .$$

Demostración. Sea $x \in A_d$; como $d \neq 0$, existe $y \in A$ tal que $d(y) \neq 0$; se tiene entonces

$$d(xy) = d(x)s_1(y) + s_2(x)d(y) = s_2(x)d(y)$$
,
 $d(yx) = d(y)s_1(x) + s_2(y)d(x) = d(y)s_1(x)$;

como A es conmutativo, d(xy) = d(yx), de donde

$$d(y)[s_2(x) - s_1(x)] = 0.$$

Y como $d(y) \neq 0$, se tiene $s_2(x) - s_1(x) = 0$, puesto que B no tiene divisores de cero distintos de cero. Luego resulta $x \in A_{(s_1,s_2)}$. Recíprocamente, sea

 $x \in A(s_1, s_2)$, es decir, tal que $s_1(x) = s_2(x)$. En-

tonces

$$d(xy) = d(x)s_1(y) + s_2(x)d(y)$$

= $d(y)s_1(x) + s_2(x)d(x) = d(yx)$;

por tanto, para todo y E A se tiene

$$d(x)[s_1(y) - s_2(y)] = 0,$$

y como $s_1 \neq s_2$, se tiene d(x) = 0, es decir, $x \in A_d$.

<u>DEFINICION</u>. La aplicación d_x , <u>donde</u> x <u>es un elemento de</u> B,

$$d_x = x_L s_1 - x_R s_2$$

donde x_L es multiplicación por la izquierda y x_R es multiplicación por la derecha, se llama una (s_1, s_2) -derivación interior.

Se puede verificar fácilmente que, para cada xEB, d es una (s₁,s₂)-derivación. Enunciamos ahora el resultado principal:

TEOREMA 2. Sea d una (s_1, s_2) -derivación de un cuerpo A en un cuerpo B, con $s_1 \neq s_2$. Entonces d es una (s_1, s_2) -derivación interior.

<u>Demostración</u>. Si d = 0, basta tomar x = 0. Si $d \neq 0$, consideremos $a \in A - A_d$; sabemos entonces (teorema 1) que

$$\sigma(a) = \frac{d(a)}{s_1(a) - s_2(a)}$$

está bien definido, ya que $s_1(a) \neq s_2(a)$ y $d(a) \neq 0$.

Mostremos que si $b \in A - A_d$, entonces $\sigma(a) = \sigma(b)$.

En efecto:

$$\frac{\sigma(a)}{\sigma(b)} = \frac{d(a)}{s_1(a) - s_2(a)} \frac{s_1(b) - s_2(b)}{d(b)}$$

$$= \frac{d(a)s_1(b) - d(a)s_2(b)}{d(b)s_1(a) - d(b)s_2(b)}$$

$$= \frac{d(ab) - s_2(a)d(b) - d(a)s_2(b)}{d(ab) - s_2(b)d(a) - d(b)s_2(b)} = 1$$

Póngase entonces $x = \sigma$ (a). Es claro que así

$$d(a) = \sigma (a) [s_1(a) - s_2(a)]$$

= $xs_1(a) - s_2(a)x$,

para todo a E A.

1.q.q.d.

Universidad de Puerto Rico Mayagüez, Puerto Rico. Recibido, abril de 1967.

REFERENCIAS

- [1] JACOBSON, N.: Structure of Rings, American Math. Soc., Providence, Rhode Island, 1956.
- N.de la R.: El autor utiliza la palabra <cuerpo para designar un cuerpo conmutativo.

El autor desea expresar su más profundo agradecimiento a los Profesores Jean DIEUDONNE y G.H.
METSTERS.