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A NOTE ON GENERALIZED MOBIUS f-FUNCTIONS

by
V.S. ALBIS

In [1] the ooncept of a conjugate pair of sets of
positive integers is int~oduoed • Briefly, if Z deno-
tes the set of positive integers and P and Q denote
non-empty subsets of Z such that. if nl E Z, n2 E Z,
(nl,n

2
) 1, then

(1) n = nln2E P(resp.Q) <=> nlEP,n2EP (resp. Q),

and, if in addition, for each integer n E Z there is
a unique factorization of the form

(2) n = ab , a E P, b E Q,

we say that each of the sets P and Q is a direct
factor set of Z, and that (p,Q) is a conjugate pair.
It is clear that pnQ = {11. Among the generalized func-
tions studied in [lJ, we find

(3) pp(n) = E ~(n/d)
din
dEP

a generalization of MOBIUS Jl-function. The following
results are also proved in [1]:

(i) pP is a multiplicative function.

E fJp(n/d)
dIn
dEQ

if n = 1

if n > 1
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Here we shall show that flp is the unique arithmeti-
cal function satisfying (ii) above. Let r- be such
that

-f: if n = 1
(4 ) I: ,...11 (n/d) = p (n)

dIn if n > 1
dEQ

If ~* is multiplicative, it suffices to prove that
~p(p ) = ~~(pk) for every prime p and every integer
k> O. So let ~* be a multiplicative function; it fo-
llows from (4) and (ii) that Jlp(l) = Jloll' (1), thus
~(p) = p*(p) for every prime p. We will now show by
induction on k that ~(pk) = r~(pk). Suppose this
relation holds for u > k > O. From (ii) we obtain

(5) ~(pU) = _ ~ pp(pU/pi)
l<l.<u
piE"Q

because
tain

o1 = P E Q. On the other hand, from

( 6) _ I: J1* (pu/pi)
l<i<u
rE"Q

because 1 = p0
E Q. But by the induction hypothesis,

f1p(pU-i) = Jlt(pU-i) ( i = 1,•••, u)• Thus the rigth mem-
bers in (5) and (6) are equal, so that Jip(pU) = fl~(PlJ.)

In view of the above result, it suffices to show
that any function p~ satisfying (4) is multiplicati-
ve, thus proving the following

'rg:§QB!2~Ll. If J1~ satisfies (4) for every nEZ,
then ...4 = J1p •
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In order to prove this theorem we begin with some le-
mmata. ([2})

!:~~~~L1·Let e be a multiplicative function. If
gel) = 0 => g(n) = 0 for every n E Z. If gel)
I 0 => gel) = 1.

!:~~~g. Let f be an arithmetical function. If
Edln,dEQ fen/d) 0 for every nEZ, then fen) = 0

for every n E Z.
Proof: As in [1, lemma 2] , we proceed by induotion

on n, noting that fen) always appears in the invol-
ved sum, beca.use 1 E Q.

1~~~2. Let g be a multiplioative function. If
f is suoh that

g(n) E fen/d)
dIn
dEQ

then f is multiplicative.
Proof: The proof is a convenient and trivial adapta-

tion of that of lemma 3, [2]. For the sake of clearness
we repeat it. If gel) = 0, then g(n) = 0 for every
nEZ, so by lemma 2, fen) = 0 for every n E Z. If
gel) ~ 1 it is clear that that f(l) = 1. Let us con-
sider the following proposition:

P t m,n' : « (m,n )=1 => f (mn) = f (m)f (n) >> •

If m or n = 1, the above proposition is true. Let us
suppose that Pfm,n\ is false for some pair (m,n), and
let

mo min {m; 3: nEZ with (m,n)=l suoh that P(m,n\is false}
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then there exists an n such that
Pfmo,n\ is false. Now let

(m ,n) = 1 ando

no = min{n; (m ,n)=l ando

We have then:
i) 1 < m < n and (m ,n ) 1-0 0 o 0

ii) plmo,no\ is false.
iii) Plk,nl is true for every n and each k such

that 1 < k < m and (k,n) = 1.- 0

iV) Pfm ,tl is true for each t such that 1 < t < n
0 0

and (m ,t) = 1.
0

If now we take gem n) we findo 0

L f(m nit) = gem n ) = gem )g(n )
t
' 0 0 0 0 0 0
1m no 0

= E f(m /d) ,.
dim 0

o
dEQ

E fen 10)
0\ n 0

o
oEQ

tEQ

using the multiplicativity of g and (1); so that

E [f(m n Ido)o 0
dim ,olno 0

d,OEQ

- f(m Id)f(n lo)} = °o 0

But m Id and n 10 are smaller than m and n
0 0 0 0

resp., if d,o f 1; thus from the above relation and
the hypothesis on (m ,n ), we conclude thato 0

f(m n ) - f(m )f(n ) = 0,o 0 0 0

contradicting ii). So Plm,n\ is always true.

We remark that no explicit calculation for pP is
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is needed in the above reasonings. Furtlier, if we use the
following theorem [1, theorem ~:

~g~QB§M_g.If f and g are arithmetical functions,
then

(iii) g(n) = E
din
dEQ

the uniqueness of ~
ved Theorem 1 without

fen/d) <=> fen) = l:g(d)f-lp(n/d).,
din

is easily proved. Here we have pro-
help of this result; but we will

prove more: pP is the sole function that cartperform
the inversion in Theorem 2. For this we have to prove
the following

k§M!M_4. If f(l) f 0 and E f (e)pJt (n/e ) fen),eln
then p* (n) pen) for every n E Z.

Proof: See [2, lemma 4].
Suppose now that ~~ is such that

(7 ) g(n) = E fen/d)
dIn
dEQ,

Then
fen) E g(d)P.*(n/d)

dIn

<=> fen) = l: g(d),..*(n/d).
dIn

= E fee) l: ~*(6')
eIn d6 '=n

6e=d
6EQ

writting p*(n) = En=6d,dEQ p*(6)

= E ~*(n/d)'l: fee)
d ]n 6e=d

6EQ
= E fee) E ~'It(6');.
el n M '=n;e

6EQ

we have fen) =
f(e)p* (n/e) , so by lemma 4 and theorem 1,

Thus we have proved the
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!g~Q~M_~.Let f and
such that g(l) I O. If

g(n) = E f(n/d) <=>
djn
dEQ

then 1"11" = tIp •

g be arithmetical functions

f(n) = E g(d)~~(n/d)
din
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