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A NOTE ON GENERALIZED MOBIUS P—FUNCTIONS

by
V.S. ALBIS

In rl] the concept of a conjugate pair of sets of
positive integers is introduced, Briefly, if Z deno-
tés the set of positive integers and P and Q denote

non-empty subsets of Z such thats if n, € Z, n, € Z,
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(nl,nz) = 1, then

(1) n=n,n_e P(resp.Q) <=> n P (resp. Q),
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and, if in addition, for each integer n € Z there is

€Pyn

a unique factorization of the form
(2) n=ab, a€ P, beQ,

we say that each of the sets P and Q is a direct
factor set of Z, and that (P,Q) is a conjugate pair.
It is clear that PIQ ={:1}. Among the generalized func-—-

tions studied in [l], we find

(3) pp(n) = = p(n/d)
din
deP
a generalization of MOBIUS Prfunction. The following

results are also proved in [1]:

(i) PP is a multiplicative function.

(i) (ot om ) 1 if n=1
L d) = -
dlnPPn o 0 if n> 1
deqQ



Here we shall show that PP is the unique arithmeti-
cal function satisfying (ii) above, Let P' be such

that
1 if n=1
(4) L P (n/d) = e(n) =
din 0O if n> 1
deqQ

If p* is multiplicative, it suffices to prove that
PP(P ) = P*(pk) for every prime p and every integer
k > 0. So let p* be a multiplicative functions; it fo-
llows from (4) and (ii) that P,(1) = pf(l), thus
FP(p) = Ff(p) for every prime p. We will now show by
induction on k that PP(pk) = F*(pk). Suppose this
relation holds for u> k > O. From (ii) we obtain
(5) Poeh) = -z (%Y
1<i<u
plE Q
because 1 = po € Q. On the other hand, from (4) we ob-
tain
(6)  preH=-z pre/r)

1<i<u

Preq
because 1 = p° € Q. But by the induction hypothesis,

po(p

bers in (5) and (6) are equal, so that PP(pu) = p*(pu)

u—i) = P*(pu—i) (i=1yee.y u). Thus the rigth mem-

In view of the above result, it suffices to show
that any function p* satisfying (4) is multiplicati-

ve, thus proving the following

o~~~ o~~~

then p¥=p; .



In order to prove this theorem we begin with some le-
mmata. ([2])
LEMMA 1. Let g be a multiplicative function. If

NN~~~ A~~~

g(l) =0 => g(n) =0 for every ne Z. If g(1)
0 = g(1) = 1.
LEMMA 2. Let f Dbe an arithmetical function. If

~mn N~~~

%d|n,deq f(n/d) = 0 for every ne€ Z, then f(n) =0
for every n € Z.

Proof: As in [1, lemma 2], we proceed by induction

on n, noting that f(n) always appears in the invol-

ved sum, because 1 € Q.

LEMMA 3., Let g Dbe a multiplicative function. If

~ A~~~

f is such that

g(n) = £ f(n/d)
din
deqQ

then f is multiplicative.

Proof: The proof is a convenient and trivial adapta-
tion of that of lemma 3, [2]. For the sake of clearness
we repeat it. If g(l) = 0, then g(n) = 0 for every
ne€ %, so by lemma 2, f(n) = 0 for every n € Z. If
g(l) = 1 it is clear that that £(1) = 1. Let us con-

sider the following proposition:
P%m,ni s i (m,n)=1 => f(mn) = f(m)f(n) >>.

If m or n= 1, the above proposition is true. Let us
suppose that me,n% is false for some pair (m,n), and

let

m = minn{m;ﬁ{nsz with (m,n)=l such that P(m,niis false}



then there exists an n such that (mo,n) = 1 and

Pin ,n§ is false. Now let
o
n = min{}u (mo,n)=l and Pimo,n§ is false}.

We have then:
i) 1 < m <mn_ and (mo,no) = 1.
ii) Pimo,nos is false.
iii) Pik,n} is true for every n and each k such
that 1 <k <m and (kyn) = 1.
iv) P{m_,t} is true for each t such that 1<t <n

=1.
and (mo,t)

o

If now we take g(mono) we find

: f(mn/t) = glnn) = g(m_)g(n )

tim n 3
oo 1
teQ
=4 £ f£(n/d)bx{ I f(no/é)r
dlmo 6\no
deqQ J b€Q )

using the multiplicativity of g and (1); so that

X {}(mono/da) - f(mo/d)f(no/é)} =0
dlmo,élno

d,deqQ

But mo/d and no/é are smaller than m, and n o,

resp., if d,d # 13 thus from the above relation and

the hypothesis on (mo,no), we conclude that
f(mono) - f(mo)f(no) = 0,
contradicting ii). So P{m,ni is always true.

We remark that no explicit caloulation for PP is



is needed in the above reasonings. Further, if we use the

following theorem [1, theorem .ﬂ :

N~~~ ~ e~

(iii) g(n) = £ f(n/d) <=> f(n) = 2 g(d)FP(n/d).,
dln dln

deqQ
the uniqueness of PP is easily proved. Here we have pro-
ved Theorem 1 without help of this result; but we will
prove more: PP is the sole function that can perform
the inversion in Theorem 2. For this we have to prove
the following

LEMMA 4. If f£(1) # 0 and Zoin f(e)e* (nfe) = f(n),
then o%(n) = p(n) for every n & Z.
Proof: See [2, lemma 4].

Suppose now that p* is such that

(1) &(n) = f(n/d) <=> f£(n) =12 g(d)p*(n/d%

dln d|n
de@
Then
f(n) = g(d)p?(n/d) = L p*(n/a)-z f(e)
d{n d|n de=d
5eQ
=z fle) = pr(6") =1: fle) & p*(8%)s.
eln ° d6'=nP eln ) 66'=n9e
de=d oeqQ
SEQ

writting o*(n) = Zn=6d,deQ P?(é) we have f(n) = zeln

f(e)g* (n/e) » so by lemma 4 and theorem 1,

p() = F(n) = & PrO) = P - .

Thus we have proved the
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THEOREM 3. Let f and g be arithmetical functions

~ i~~~ i~~~

such that g(1) # 0. If

g(n) = £ f(n/d) <=> f(n) =z g(d)p*(n/d)
djn d|n
deQ

X _
then F == PP .
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