A NOTE ON GENERALIZED MOBIUS μ -FUNCTIONS

by

V.S. ALBIS

In [1] the ooncept of a conjugate pair of sets of positive integers is introduced. Briefly, if Z denotes the set of positive integers and P and Q denote non-empty subsets of Z such that: if $n_1 \in Z$, $n_2 \in Z$, $(n_1, n_2) = 1$, then

(1) $n = n_1 n_2 \in P(\text{resp. } Q) \iff n_1 \in P, n_2 \in P \text{ (resp. } Q),$ and, if in addition, for each integer $n \in \mathbb{Z}$ there is a unique factorization of the form

$$
(2) n = ab, a \in P, b \in Q,
$$

we say that each of the sets P and Q is a direct factor set of Z , and that (P,Q) is a conjugate pair. It is clear that $P \cap Q = \{1\}$. Among the generalized functions studied in $[1]$, we find

(3)
$$
\mu_{P}(n) = \sum_{\substack{d \mid n \\ d \in P}} \mu(n/d)
$$

a generalization of MOBIUS p-function. The following results are also proved in [1]:

(i)
$$
\mu_{\rm p}
$$
 is a multiplicative function.

(ii)
\n
$$
\sum_{\substack{\text{d} \mid n \\ \text{d} \in \mathbb{Q}}} \mu_{\rm p}(n/\text{d}) = \rho(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1 \end{cases}
$$

6

Here we shall show that $\mu_{\rm p}$ is the unique arithmetical function satisfying (ii) above. Let μ^* be such that

(4)
$$
\sum_{\substack{\text{d} \text{ln} \\ \text{d} \in \mathbb{Q}}} \mu^{\star}(n/d) = \rho(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1 \end{cases}
$$

If μ^* is multiplicative, it suffices to prove that $\mu_{\rm p}({\rm p}^{\ldots})$ = $\mu^{\infty}({\rm p}^{\ldots})$ for every prime p and every integer $k > 0$. So let μ^* be a multiplicative function; it fo**llows from** (4) and (ii) that $\mu_p(1) = \mu^*(1)$, thus $\boldsymbol{\mu}_{\rm p}({\rm p})$ = $\boldsymbol{\mu}^{\star}({\rm p})$ for every prime $\;$ p. We will now show by induction on k that $\mathbf{u}_{\mathrm{p}}(\mathrm{p}^{\kappa}) = \mathbf{\mu}^{\pi}(\mathrm{p}^{\kappa})$. Suppose this relation holds for $u > k \geq 0$. From (ii) we obtain

$$
(5) \qquad \mu_{\mathbf{p}}(\mathbf{p}^{\mathbf{u}}) = -\sum_{\substack{\mathbf{l} \leq \mathbf{i} \leq \mathbf{u} \\ \mathbf{p} \mathbf{i} \in \mathbb{Q}}} \mu_{\mathbf{p}}(\mathbf{p}^{\mathbf{u}}/\mathbf{p}^{\mathbf{1}}) \quad ,
$$

because $1 = p^{\circ} \in Q_{\bullet}$ On the other hand, from tain

(6)
$$
\mu^{*}(p^{u}) = -\sum_{\substack{1 \leq i \leq u \\ p^{1} \in Q}} \mu^{*}(p^{u}/p^{i}) ,
$$

because $1 = p^{\circ} \in Q$. But by the induction hypothesis, $\mu_{\rm p}({\rm p}^{\tt u-i})$ = $\mu^*(\rm p}^{\tt u-i})$ (i = 1,..., u). Thus the rigth members in (5) and (6) are equal, so that $\mu_p(p^u) = \mu^*(p^u)$.

In view of the above result, it suffices to show that any function μ^* satisfying (4) is multiplicative, thus proving the following

THEOREM 1. If μ^* satisfies (4) for every $n \in \mathbb{Z}$, then $\mu^* = \mu_{\rm p}$.

7

In order to prove this theorem we begin with some lemmata. $([2])$

LEMMA 1. Let *g* be a multiplicative function. If $g(1) = 0 \Rightarrow g(n) = 0$ for every $n \in \mathbb{Z}$. If $g(1)$ $\neq 0$ => $g(1) = 1$.

 $LEMMA$ 2. Let f be an arithmetical function. If $\sum_{d|n_d} f(n/d) = 0$ for every $n \in \mathbb{Z}$, then $f(n) = 0$ for every $n \in \mathbb{Z}$.

Proof: As in $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ hemma $2\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, we proceed by induction on n, noting that $f(n)$ always appears in the involved sum, because $l \in Q$.

 $LEMMA$ 3. Let g be a multiplicative function. If f is suoh that

$$
g(n) = \sum_{\substack{d \mid n \\ d \in \mathbb{Q}}} f(n/d)
$$

then f is multiplicative.

Proof: The proof is a convenient and trivial adaptation of that of lemma 3, **[2].** For the sake of clearness we repeat it. If $g(1) = 0$, then $g(n) = 0$ for every $n \in \mathbb{Z}$, so by lemma 2, $f(n) = 0$ for every $n \in \mathbb{Z}$. If $g(1) = 1$ it is clear that that $f(1) = 1$. Let us consider the following proposition:

 $P\{m,n\}$: $\leq (m,n)=1$ => $f(mn) = f(m)f(n)$ >>.

If m or $n = 1$, the above proposition is true. Let us suppose that $P\{m,n\}$ is false for some pair (m,n) , and let

 $\mathbf{m}_{\mathbf{0}}$ = min $\mathbf{1}$ m; \mathbf{u} ne \mathbf{Z} with (m,n)=1 such that $\mathbf{P}\{\mathbf{m,n}\}$ is false]

8

then there exists an n such that
$$
(m_0, n) = 1
$$
 and
\n $P{m_0, n}$ is false. Now let
\n $n_0 = min\{n; (m_0, n)=1 \text{ and } P{m_0, n}\}$ is false.

But m_0/d and n_0/δ are smaller than m_0 and n_0 resp., if $d_0 \delta \neq 1$; thus from the above relation and the hypothesis on (m_o, n_o) , we conclude that

$$
f(m_0 n_0) - f(m_0) f(n_0) = 0,
$$

contradicting ii). So *Plm,n* is always true.

We remark that no explicit calculation for $\mu_{\rm p}$ is

is needed in the above reasonings. Further, if we use the following theorem $\begin{bmatrix} 1, & \text{theorem} & 3 \end{bmatrix}$:

THEOREM 2. If f and g are arithmetical functions, then

(iii)
$$
g(n) = \sum_{\substack{\text{d} \text{ } n}} f(n/d) \iff f(n) = \sum_{\substack{\text{d} \text{ } n}} g(d) \mu_{\rm p}(n/d),
$$
,
d n d n

the uniqueness of $\,\mathfrak{u}_{{}_{\mathrm{D}}} \,$ is easily proved. Here we have proved Theorem 1 without help of this result; but we will prove more: $\mu_{\rm p}$ is the sole function that can perform the inversion in Theorem 2. For this we have to prove the following

LEMMA.4. If
$$
f(1) \neq 0
$$
 and $\Sigma_{e|n} f(e) \rho^*(n/e) = f(n)$,
\nthen $\rho^*(n) = \rho(n)$ for every $n \in \mathbb{Z}$.
\nProof: See [2, lemma 4].
\nSuppose now that μ^* is such that
\n(7) $g(n) = \Sigma f(n/d) \iff f(n) = \Sigma g(d) \mu^*(n/d)$.

$$
(7) \quad g(n) = \sum_{\substack{\text{d} \mid n \\ \text{d} \in \mathbb{Q}}} f(n/d) \quad \Longleftrightarrow \quad f(n) = \sum_{\substack{\text{d} \mid n \\ \text{d} \mid n}} g(d) \mu^*(n/d).
$$

Then

$$
f(n) = \sum_{d \mid n} g(d) \mu^*(n/d) = \sum_{d \mid n} \mu^*(n/d) \cdot \sum_{\delta e = d} f(e)
$$

\n
$$
= \sum_{\delta e \mid n} f(e) \sum_{\delta e = n} \mu^*(\delta') = \sum_{e \mid n} f(e) \sum_{\delta \delta' = n/e} \mu^*(\delta'),
$$

\n
$$
= \sum_{\delta e = d} f(e) \sum_{\delta e \in Q} \mu^*(\delta') = \sum_{\delta e \in Q} f(e) \sum_{\delta e \in Q} \mu^*(\delta'),
$$

writting $\rho^*(n) = \sum_{n=\delta d, d \in \mathbb{Q}} \mu^*(\delta)$ we have $f(n) =$ $f(e)\rho^*(n/e)$, so by lemma 4 and theorem 1,

$$
\rho(n) = \rho^*(n) = \Sigma \quad \mu^*(\delta) \quad \Rightarrow \quad \mu^* = \mu_P.
$$

Thus we have proved the

THEOREM 3. Let f and g be arithmetical functions such that $g(1) \neq 0$. If

 $g(n) = \sum f(n/d) \iff f(n) = \sum g(d) \mu^*(n/d)$ din dln $d \in Q$

then μ^* = $\mu_{\rm p}$.

REFERENCES

- 1. COHEN, E.: A class of residue systems (mod r) and related arithmetical functions, I. A generalization of Mobius function, Pacific J. of Math., $vol.9(1959).13.$
- 2. SATYANARAYANA, U.V.: On the inversion property of the Mobius u-function, The Math. Gazette, vol. XLVII(1963), 38-42.

Departamento de Matemáticas y Estadística Universidad Nacional de Colombia (Recibido en marzo de 1968)