SOME NON-MAXIMAL ARITHMETIC GROUPS

by

Nelo D. ALLAN

Let k be a non-finite Dedekind domain, and \mathcal{O} be the ring of its integers. We shall assume that the ring $R = \mathcal{O}/(2)$ is finite. Let us denote by $M_n(k)$ (resp. $M_n(\mathcal{O})$) the ring of all n by n matrices with entries in k (resp. in \mathcal{O}), and $GL_n(k)$ its group of units. We denote by $SL_n(k)$ the subgroup of $GL_n(k)$ whose elements g have determinant, $\det g$, equal to one. Let $H \in M_n(\mathcal{O})$ be a symmetric matrix, i.e., $H = tH$ where tH denotes the transpose matrix of H. We let $G = SO(H) = \{g \in SL_n(k) | t^gHg = H\}$, and we let $G_\mathcal{O} = G \cap M_n(\mathcal{O})$. We want to exhibit certain H for which $G_\mathcal{O}$ is not maximal in G, in the sense that there exists a subgroup Δ of G such that Δ contains $G_\mathcal{O}$ properly and $[\Delta : G_\mathcal{O}]$ is finite.

1. Preliminaries. Let L be an order in $M_n(k)$; we shall denote by L_{ij} the fractional ideal generated by all the (i,j)-entries of all the elements of L; we shall write

$$
L = \begin{pmatrix}
L_{11} & \cdots & L_{1n} \\
\vdots & \ddots & \vdots \\
L_{n1} & \cdots & L_{nn}
\end{pmatrix}.
$$

We shall say that L is a direct summand if as an \mathcal{O}-module L is a direct sum of $L_{ij}e_{ij}$ where e_{ij} are the units of $M_n(k)$.

21
It is well known that in our case the maximal orders in $\mathbb{M}_n(k)$ are conjugate to the ones which are direct summands and $L_{nn} = L_{ij} = \epsilon^r$, $i,j \neq n$, and $L_{in} = \alpha^{-1}$, $L_{nj} = \alpha^r$, $i,j \neq n$, for some fractional ideal \mathcal{U} of k, i.e.,

$$L = L(\mathcal{U}) = \left(\begin{array}{cccc}
\phi & \ldots & \phi \alpha^{-1} \\
\vdots & & \vdots \\
\phi & \ldots & \phi \alpha^{-1} \\
\alpha & \ldots & \alpha \phi
\end{array}\right)$$

If L is one of such orders, then by looking at the expansion of g^{-1}, $g \in SL_n(k)$, we see that $L \mid SL_n(k)$ is a group. Consequently if $G \subset SL_n(k)$, then $\Delta = G \cap L$ is a group.

For our purposes we shall assume \mathcal{U} to be integral.

Lemma 1. If $R = \mathcal{O}/\alpha$ is finite, then Δ is commensurable to $G_\mathcal{O}$, i.e., $\Delta \cap G_\mathcal{O}$ has finite index in both $G_\mathcal{O}$ and Δ.

Proof: We shall follow Ramanathan's proof (1). First we consider the subgroup $\Delta(\alpha) = \{ g \in G_\mathcal{O} \mid g \equiv \epsilon \mod \mathcal{U}\}$. The index $[G_\mathcal{O} : \Delta(\alpha)]$ is finite because it is at most the order of the group $GL_n(R)$, which is clearly finite. Suppose that g, $g' \in \Delta$ and that $\mathcal{U}(g_{ij} - g'_{ij})$ is divisible by \mathcal{U}^2 for all (i,j), i.e., $g' = g + V$, $V = (v_{ij})$ and $v_{ij} \equiv 0$ modulo \mathcal{U} for all (i,j); hence $g^{-1}g' = E + g^{-1}V$, and it is easy to see that $g^{-1}V \in M_n(\mathcal{O})$. Consequently $g^{-1}g' \in G_\mathcal{O} \cap \Delta$. Now there is only finitely many classes αL modulo \mathcal{U}^2, hence only finitely many classes Δ modulo $\Delta \cap G_\mathcal{O}$, i.e., $[\Delta : \Delta \cap G_\mathcal{O}]$ is finite. Next as $G_\mathcal{O} \supset \Delta \cap G_\mathcal{O} \supset \Delta(\alpha)$, it follows that $[G_\mathcal{O} : \Delta \cap G_\mathcal{O}]$ is finite. q.e.d.
2. MAIN RESULT. We shall use the block notation for the matrices and write
\[H = \begin{pmatrix} V & 0 \\ 0 & W \end{pmatrix}, \]
where \(V \) is \(r \) by \(r \) and \(W \) is \(s \) by \(s \), \(r + s = n \); such \(H \) we shall denote sometimes by \(V \perp W \). If \(p^a \nmid 2 \), \(p \) prime, \(\alpha \) a positive integer, we say that \(H \) is \(p^\alpha \)-even, if for any integral \(1 \) by \(n \) matrix \(x \),
\[t^x H x \equiv 0 \pmod{p^\alpha}. \]
(As \(p^\alpha \nmid 2 \), to say that \(H \) is \(p^\alpha \)-even is equivalent to say that \(p^\alpha \) divides all the diagonal entries of \(H \), where \(H = (h_{ij}) \), since mod 2, and a fortiori modulo \(p^\alpha \), \(t^x H x \equiv x_1^2 h_{11} + \ldots + x_n^2 h_{nn} \).) We shall denote by \(J(a), a \in \mathcal{O} \), the matrix
\[\begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix}. \]
We may assume that \(2 \nmid a \), otherwise we can replace \(J(a) \) by \(t S J(a) S = J(a + 2\lambda) = J(0) \) where
\[S = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \]
a = 2\lambda, \(\lambda \in \mathcal{O} \): under such replacement, the maximality or not of \(G_{\mathcal{O}} \), for \(H = V \perp J(a) \), is not affected.

LEMMA 2. Let \(G = \text{SO}(H), H = V \perp J(a) \). If \(V \) is \(p^\alpha \)-even, and \(p^\alpha \nmid a \), then the \(\mathcal{O} \)-ring generated by \(G_{\mathcal{O}} \) in \(M_n(k) \) is contained in the order \(L(p) \).

Proof: Since \(G_{\mathcal{O}} \subset M_n(\mathcal{O}) \), it suffices to prove that for all \(j = 1, \ldots, n-1 \), \(p \mid g_{nj} \). If we write \(g \in G_{\mathcal{O}} \) as
\[g = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \]
A being \(n-2 \) by \(n-2 \) and \(D \) being 2 by 2, then
$tgHg = H$ implies that $tAVA + tCJ(a)C = V$ and $tBVB + tDJ(a)D = J(a)$. Let us write $V = (v_{ij})$; now V is p^α-even, so that $p^\alpha | v_{ii}$ for all $i = 1, \ldots, n-2$. Let us write $C = (x_1, \ldots, x_{n-2})$, where x_j are the column vectors of C, and similarly $D = (y_1, y_2)$. We have

$$(tAVA)_{jj} + tx_j J(a)x_j = v_{jj}, \quad j = 1, \ldots, n-2,$$

$$(tBVB)_{jj} + ty_j J(a)y_j = \delta_j x_j, \quad j = 1, 2, \delta_{12} = 0, \delta_{22} = 1.$$

Consequently if $z = x_1, \ldots, x_{n-2}, y_1$, then

$$tzJ(a)z \equiv 0 \pmod{p^\alpha}.$$

Writing $z = (z_1, z_2)$, this implies that

$$2z_1z_2 + az_2^2 \equiv 0 \pmod{p^\alpha}$$

or

$$az_2^2 \equiv 0 \pmod{p^\alpha},$$

and as $p^\alpha | a$, thus $p | z_2$. This means precisely that the last row of C is divisible by p, as well as the entry $(2,1)$ of D.

q.e.d.

Theorem 1. Let V be p^α-even and let $p^\alpha | a$. Suppose that we can find in θ a unit η and an element b such that $(ba/2)$ lies in p^{-1} but is not integral and $\eta^2 + b\eta = 1$. Then G_θ is not maximal in G, in the sense explained before.

Proof: As $\theta/(2)$ is finite, we have θ/p finite and $\Delta = L(p) \cap G$ is commensurable to G_θ. It suffices to show that Δ contains G_θ properly. We consider $g = E_2 \bot g^*$ with
Clearly \(g \in L(\mu) \), and it is easy to see that
\[
g' = \begin{bmatrix} \eta^{-1} & ab/2 \\ 0 & \eta \end{bmatrix}
\]
Therefore \(g \in L(\mu) \cap G \) and \(g \notin G_{\phi} \).

q.e.d.

COROLLARY. Let \(W \) be any unimodular matrix, i.e., \(W \in M_{n-2}(\phi) \) and \(\det W \) is a unit, and let \(c \in \phi^\times \). Let us assume also the existence of \(\eta \) and \(b \) like in the theorem. If \(H = W \perp cJ(a) \), then \(G_{\phi} \) is not maximal.

Proof: First of all, we observe that if \(\det H \neq 0 \) then \(g \in SO(H) \) if and only if \(t g \in SO(H^{-1}) \), for as \(g^{-1} \in SO(H) \), \(t g^{-1} H g^{-1} = H \) if and only if \(g H^{-1} g = H^{-1} \). Now the mapping \(g \mapsto t g \) maps subgroups onto subgroups, and preserves integrality of matrices and indices; hence \(SO(H)_{\phi} \) is not maximal if and only if \(SO(H^{-1})_{\phi} \) is not maximal. Now \(H^{-1} = W^{-1} \perp c^{-1} J(a)^{-1} \), or \(c H^{-1} = c W^{-1} \perp J(a)^{-1} \). As before our situation does not change if we replace \(J(a)^{-1} \) by \(J(0) J(a)^{-1} J(0) = J(-a) \). Hence \(SO(H)_{\phi} \) is not maximal if and only if \(SO(H')_{\phi} \) is not maximal where \(H' = c W^{-1} \perp J(-a) \). Finally it is easy to see that \(c W^{-1} \) is \(\phi^2 \)-even, consequently \(SO(H')_{\phi} \) is not maximal. Therefore, \(SO(H)_{\phi} \) is not maximal.

q.e.d.

3. APPLICATIONS. We shall look first into the case where \(k \) is a dyadic local field with residue class field having more than two elements. We observe the fol-
lowing trivial lemma.

Lemma 3. Let \(\mathfrak{p} \) be the prime of \(\mathfrak{o} \) and let \((2) = \mathfrak{p}^\alpha, \alpha > 1 \). If \(a \in \mathfrak{p} \), then the equation \(x^2 + ax + 1 = 0 \) is always solvable in \(\mathfrak{o} \), and its solution is a unit.

Proof: In \(\mathfrak{o} / \mathfrak{p} \) our equation become \(x^2 - 1 = 0 \). By Hensel's lemma \(x^2 + ax - 1 = 0 \) is always solvable in \(\mathfrak{o} \), \(a \in \mathfrak{p} \), and its solution does not lie in \(\mathfrak{p} \).

q.e.d.

Now we discuss the unramified case:

Theorem 2. If \(k \) is an unramified dyadic field, then \(G_{\mathfrak{p}} \) is not maximal in \(G \) for \(H = V \downarrow cJ(e) \) if

a) \(V \) is even, \(2 \uparrow e \) and \(c = 1 \).

b) \(V \) is unimodular, \(c = 2 \) and \(2 \uparrow e \).

Proof: We first observe that in theorem 1 we can take \(b = \mathfrak{q} - \mathfrak{q} \) and \(x = \mathfrak{q} \). It remains to show that we can always choose \(\eta \) such that \(2 \uparrow b \). Now \(\mathfrak{o} / \mathfrak{p} \) is a finite dimensional vector space over the prime field, hence its group of units has odd order, i.e., if \(\eta \neq 1 \) (modulo 2), then \(\eta^2 \neq 1 \) (modulo 2).

q.e.d.

Theorem 3. Let \(k \) be a dyadic ramified field. Then \(G_{\mathfrak{p}} \) is not maximal in \(G \), for \(H = V \downarrow cJ(a) \), if

a) \(V \) is \(\pi^\lambda \)-even, \(c = 1 \), \(a = e\pi^\beta \), \(e \) unit and \(\alpha > \lambda > \beta > 0 \).

b) \(V \) is unimodular, \(c = \pi^\lambda \), \(a = e\pi^\beta \), \(e \) unit and \(\alpha > \lambda > \beta > 0 \).
Proof: In order to verify our assertion we find a solution \(\eta \) of \(x^2 + \pi^{d-\beta-1}x = 1 \) and set \(b = \pi^{d-\beta-1} \) and \(\eta = x \) in the proof of theorem 1, in the case where \(d > \beta + 1 \). In the case where \(d = \beta + 1 \), we consider the equation \(x^2 + bx = 1 \), \(b = \eta^{-1} - \eta \), \(x = \eta \) where \(\eta \) is a unit such that \(\mathfrak{p} \mid \eta^{-1} \eta \). It is always possible to find such unit because \(\mathfrak{O}/\mathfrak{p} \) has more than two elements. The case b) follows from the corollary and from a).

q.e.d.

Now we shall study some consequences for the case \(k \) is an algebraic number field.

Theorem 4. Suppose that 2 is unramified in \(k \) and that there exists a unit \(\eta \in \mathfrak{O} \) such that \(\eta \neq 1 \) (modulo 2). Then \(\mathfrak{O} \) is not maximal in \(G \) for \(H = V \perp \text{cJ(a)} \) in the following cases:

a) \(V \) is even, \(c = 1 \), \(a = \text{unit} \).

b) \(V \) is unimodular, \(c = 2 \), \(a = \text{unit} \).

Proof: Clearly the case b) follows from a) by corollary of theorem 1. Next we observe that we can sharpen lemma 2, to get the \(\mathfrak{O} \)-ring generated by \(G \) contained in \(L(2) \); as \(V \) is even, we can work all congruences of that lemma modulo 2, and from the last congruence \(az^2 \equiv 0 \) (modulo 2) we get that \(z^2 \equiv 0 \) (modulo 2), because if \(\mathfrak{p} \mid 2 \), then \(\mathfrak{p}^2 \mid 2 \). Hence \(2 \mid g_{nj} \), \(j \neq n \), for all \(g = (g_{ij}) \in G \). Now in the proof of theorem 1 it suffices to take \(b = \eta^{-1} - \eta \), \(x = \eta \), and it is easily seen that \(ab \) is relatively prime to 2.

q.e.d.

Corollary. If \(k \) is a quadratic number field with
discriminant \ a, \ a \equiv 5 \text{(modulo } 8), \text{ and if the basic unit of } k \text{ is } \omega = (m + n\sqrt{a})/2, \ m,n \text{ being odd integers, then we have the same conclusion as in theorem 4.}

Proof: For \ \omega^{-1} - \omega = -m \text{ or } \sqrt{a} \text{ and in both cases } 2\n\omega^{-1} - \omega.

We close this note observing that our last corollary applies to the case where

\[a = -3, 5, 13, 21, 29, 53, 61, 69, 77, 85, 93. \]

(See table 1, (2)).

REFERENCES

Departamento de Matemáticas
y Estadística
Universidad Nacional de Colombia
(Recibido en febrero de 1968)

ERRATA: Lines 12 and 13, page 23, should read: "2, and _fortiori \ modulo } f^\omega x, \ t_x h = x_1^2 h_1 + ... + x_n^2 h_n, \text{ where } t_x = (x_1, ..., x_n)."