
Revista Colombiana de Matematicas
Volumen II,1968, pags. 21- 28

SOME NON-MAXIMAL ARITHMETIC GROUPS
by

Nelo D. ALLAN

Let k be a non-finite Dedekind domain, and ~ be
the ring of its integers. We shall assume that the ring
R =)r/(2) is finite. Let us denote by M (k) (resp.n
Mn()r)) the ring of all n by n matrices with entries
in k (resp. in):f), and ox. (k) its group of units.n
We denote by se (k) the subgroup of O£ (k) whose ele-

n n
have determinant, det g, e~ual to one. Let

be a symmetric matrix, i.e., H = tH where
ments g
HEM (Jf)
t nH denotes the transpose
SO(H) = {g E S~n (k) \ tgHg
We want to exhibit certain

matrix of H. We let G =

H r, and we let Off = GnMn (JY) •

H for which Gff is not
maximal in G, in the sense that there exists a sub-
group A of G such that t::,. contains Off properly and
[e:.:GhJis finite.

shall denote by L ..lJ
all the (i,j)-entries of all the elements of

1. E!~11~1E~Ei~~'Let L be an order in Mn(k); we
the fractional ideal generated by

L', we

shall write

Lnn

We shall say that L is a direct summand if as an;.r-mo-
dule L is a direct sum of L .. e ..

l.J l.J
where e ..

l.J
are

the units of M ('k).n
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It is well known that in our case the maximal orders

]V! (k)
n

are conjugate to the ones "hich are direct su-
=,a-l

L 'nJ

mmands and L = L
1
,J' =;,t:', i,j I n , and L.nn ln

tl , i, j I n, for some fractional ideal ·'U of k,
i .e. ,

L

If L is one of such orders, then by 100kinB at the ex-
-1 )pansion of g , g E Sen(k j we see that L 11 SEn(k) is

a group. Consequently if G c sf (k), then !J.= G n L is
n

a group.

For our purposes we shall assume ~ to be integral.

1~M~~1.If R =~/~ is finite, then ~ is commen-

surable to G-c-,Le., I~n Gff' has finite index in

both Gft and .6. •

Proof: We shall follow Ramanathan's proof (1). First

we consider the subgroup 6.. fa..) = t g E G..c-I geE mod't;'l.1·

The index r~ff:6 ('it)] is finite because it is at most

the order of the group Gl (R), which is clearly fini teo
n

Suppose that g, g'E ~ and that -tt(g" - g~ ,) is divi-
lJ lJ

sible 'by -t't2 for all (i.,j), Le., g'= g + V, V

(v . ,) and v , ,::::0 modulo 17l. for all (i,j); hence
lJ lJ

-1 ,; -1 -1g g E + g V, and it is easy to see that g V E
M (.e;). Consequently g-lg' E G~IIA. Nowthere is
n

only finitely many classes .-ot.L modulo -///,2, hence on-

ly finitely many classes D. modu106 n ,~ , i.e.,

[~: 611 G~] is finite. Next as G~~Arl G..,.,::)td't~), it

follows that fG .....: 6.n G"tl-] is finite •....- q s e v d ,
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2. rMIN m~SULT. We shall use the block notation
for the matrices and write

H ~ G ~}
where V is r by rand W is s by s, r + s =nj
such H we shall denote sometimes by V.l H. If 1''''12,
.} prime, ~ a positive integer, we say that H is

~ J-r -even, if for any integral 'I bv n matrix xI

\cHx:O(modulo r"'). (As ","12, to say that H
is #x-even is equivalent to say that f~ divides all
the diagonal entries of H, where H = (h. ), since mod

c( t 2 lJ
modulo "r, xllxa xlhll + ••• +

denote by J(a), a E~, the matrix
2, and a fortiori
x2h .) We shalln nn

We may assume that
by tSJ(a)S = J(a +

(~ ~J
2fa , otherwise Vie can replace
2 A.) J (0) where

under such replacement, the maximality
G..tY' for H = V J. J (a)~ is not affected.

1~~1l.L;s. Let G = SO(H), H = VJ.J(a). If V is
j,t}..Ya,,~ 1 then the -tY-ring generated by

is contained in the order L (Jt ).

a = -no , A. E -8' :
or not of

Proof: Since G o c Mn (.{Y), it suffices to prove
1, ..• , n-l,/" [g .• If we writeI'" njthat for all J =

g E G,e-- as

g" (~ ~) ,

A being n-2 by. n-2 and D being 2 by 2, then
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tgHg = H implie's that tAYA + tCJ(a)C = V and tBVB +

tDJ(a)D = J(a). Let us write V = (v..)~ now V is
1.J

that )nrJ.lv..for all i = 1, •••, n-2. Let
,- 1.1.

= (xl,••• ,xn_2), where x
j

are the column
vectors of C, and similarly D (Yl'Y2). We have

0(,f -even, so
us write C

(tAVA) .. + tx .J(a)x. v .. , j = 1, ..., n-2,
JJ J J JJ

(tBVB) .. ty.J(a)y. o j2a, j=l,2, 612=0, 6'22= 1.+
JJ J J

Consequently if Z = xl' •••, xn_2' Yl' then

tzJ (a)z= 0 (modulo fat ).
Writting t z = t(Zl'Z2)' this implies that

2Z1z2 + az~ == 0 (modulo r-~)
or

az~~ 0 (modulo $<l..),

and as itd-ia,thus <p.1 z2. This means precisely that the
last row of C is divisible by 1f ' as well as the en-
try (2,1) of D.

q.e.d.

~g:§Qm;;~Ll. Let V be 1toL_~ and let jJ.~ta.Sup-
pose that we can find in ~ a unit ~ and an,ele-

ment b such that (ba/2) lies in ~-1 but is not
integral and 12 + b rz = 1. Then G,Q' is not maxi-
mal in G, in the sense explained before.

Proof: As {,'f// (2) is fini te, we have AJ /1- fini te
and 6. = L( eft) r1 G is commensurable to G.J)".It suffi-
ces to show that .0 contains G~ properly. We consi-
de r g = E '2.1. e' withn-
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e' " [;-' a~/2]
Clearly gEL «~), and it is easy to see that

tg I J (a)g I = J (ab 1+ ~la) J (a(b~ + ~Z ») = J (a)•

Therefore g E L(~) n G and g ~ Gff.
q.e.d.

QQBQ11~Er. Let W be any unimodular matrix,i.e;,
W E Mn_2(ff) and det W is a unit, and let o E
,of" • Let us assume also the existence of tl and
b like in the theorem • If H = W.l cJ(a), then
G
ff

is not maximal.

Now the mapping

observe that if det H
if tg E SO(H-l), for as

if and only if gH-lg =
tg -~ g

I 0

then
-1

g E

-1H •

Proof: First of all, we
g E SO(H) if and only
SO(H), tg-lHg-l = H

maps subgroups onto
subgroups, and preserves 1ntegra11~ of matrices and
indices; hence SO(H)$ is not maximal if and only if
SO (H-l),b' is not maximal. Now H-l = W-l1. c-1J (a)-l ,
or cH-l = cW-ll J(a)-l. As before our situation does
not change if we replace J(a)-l by J(O)J(a)-lJ(O) =

J(-a). Hence SO(H)~ is not maximal if and only if
SO(W)g is not maximal whe re HI = cw-l.l.J(-a). Fina-
lly it is easy to see that cw-l is i~-even, conse-
quently SO(W) ff is not max imal, Therefore, SO(H)fi'
is not maximal.

q.e.d.

3. APPLICATIONS. We shall look first into the ca-
se where k is a dyadic local field with residue class
field having more than two elements. We observe the fol-
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lowing trivial lemma.

1§~~~2· Let} be the prime of /7 and let (2)

r-d., ~ ~1 • If a E 1t-, then the equation-
2 + ax + 1 0x =

is always solvable in ff", and its solution is a u-
nit.

Proof: In h /-p. our equation become 2x - 1 = O.
By Hensel's lemma x2 + ax - 1 = 0 is always solvable
in.ff, a E it' and its solution does not lie in ~ •

q.e.d.

Now we discuss the unramified case:

~ni§QMr!Lg • If k is an unramified dyadic field,
then Gff is not maximal in G for H = v.i, cJ(e.)
if

a) V is even, 2fe and c = 1-

b) V is unimodular, c = 2 and 2t~.
Proof: We first observe that in theorem 1 we can

take -..l and It remains to show that we·b='l-12 x = 1-
can always choose

~
such that Zfb. Now k/ep; is a

finite dimensional vector space over the prime field,
hence its group of units has odd order,
~~l(mOdulo 2), then fll(modulo 2).

Le., if

q.e.d.

T~QB§M~~.Let k be a dyadic ramified field. Then
G.ff is·not maximal in G, for H V .LcJ(a), if

a) V is re~-~, c 1, a = ere 11, £ unit and
cI.> A > P >0.

b) V is unimodular, A ereP e unitc = n , a ,
and 00; ~ A > ~ > o.

26



Proofl In order to verify our assertion we find a
solution 1 of x2 + nd.- ~ - Ix = 1 and set b = 7t d.-,-1

and ~ = x
whe re ol > P + l.

der the equation

in the proof of theorem 1, in the case

~ is a unit such
to find such unit
menta. The case
from a).

In the case where d = ~+ 1, we consi-
2 b b-1

X + X = 1, = ~ .-7. ' x = '2 where
that tr f~7. It is always possible
because AJ-/rp- has more than two ele-

b) follows from the corollary and

q.e.d.

Now we shall study some consequences for the case
k is an algebraic number field.

!g~Q~M_4.Suppose that 2 is unramified in k and
that there exists a unit ~ Eft' such that i(i 1

(modulo 2). Then G~ is not maximal in G for H
Vl.cJ(a) in the following cases:

a) V is even, c= 1, a = unit.
b) V is unimodular, c = 2, a = unit.

Proof: Clearly the case b) follows from a) by coro-
llary of theorem 1. Next we observe that we can sharpen
lemma 2, to get the ~-ring generated by G contained
in 1(2); as V is even, we can work all congruences
of that lemma modulo 2, and from the last congruence
az~~O(modulo 2) we get that z2-;:::O(modulo2), because
if ,!t12,then t~f2.Hence 2lgnj, j 1= n, for all g =
(s .. ) E Gff• Now in the proof of theorem 1 it suffices

1J
-Ito take b = tL - rz '

ab is relatively
x = '2 ,and

prime to 2.
it is easily seen that

q.e.d •
.QQBQ11ABX. If k is a quadratic number field with
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discriminant a, a ~ 5(modul0 8), and if the basic
unit of k is w=(m + nVa)/2, m,n being odd inte-
gers, then we have the same conclusion as in theorem
4·

._,Proof: For W - w = - m or Va and in both cases
21G(r~ w.

We close this note observing that our last corollary
applies to the case where

a = -3,5,13,21,29,53, 61, 69, 77, 85, 93.

(See table 1, (2)).
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