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SOME NON-MAXIMAL ARITHMETIC GROUPS

by
Nelo D. ALLAN

Let k be a non-finite Dedekind domain, and £ be
the ring of its integers. We shall assume that the ring
R =g/(2) is finite. Let us denote by Mn(k) ( resp.
Mn(AV)) the ring of all n by n matrices with entries
in k (resp. in £&), and Gln(k) its group of units.
We denote by SQn(k) the subgroup of Gﬂn(k) whose ele-—
ments g have determinant, det g, equal to one. Let
He Mn(/r) be a symmetric matrix, i.e., H = tH where

H denotes the transpose matrix of H. We let G =

so(n) ={g e st (k) *glig = u}, and we let G, = CNM (&)
We want to exhibit certain H for which G,z 1is not
maximal in G, 1in the sense that there exists a sub-
group A of G such that N contains QAV properly and
[A:Gg] is finite.

1. Preliminaries. Let L be an order in Mn(k); we
shall denote by Lij the fractional ideal generated by
all the (i,j)-entries of all the elements of Li we

shall write

Lll L Lln
L = .. : .
Lnl oo Lnn

We shall say that L is a direct summand if as an g-mo-
dule L is a direct sum of Lijeij where eij are
the units of Mn(‘k).
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It is well known that in our case the maximal orders
in Mn(k) are conjugate to the ones which are direct su-
mmands and L __=1L.. =€, i,j # n, and L, ='t"£-1 .

' nn ij # in
Lnj =, i,j # n, for some fractional ideal ‘i of k,
l1.€4,
.1

L=1) = | o oo e !
AL eee AL A~
If L 1is one of such orders, then by looking at the ex-
pansion of g_l, g € S@n(k), we see that L || Sen(k) is
a group. Consequently if G c an(k), then A= G N L is
a group.

For our purposes we shall assume ¢ to be integral.

R~~~

surable to G4 ji.e., All G has finite index in

both G,o— and A .

1)

Proof: We shall follow Ramanathan’s proof ( . First
we consider the subgroup A ) = { g € (z}c_( g =L mod 'UL}.
The index [(}/: D(w)] is finite because it is at most
the order of the group Gzn(R), which is clearly finite.
Supposg tha.ft g, g’e A and that '(,’l(gij ~ g;J) is divi=-
sible by @° for all (i,j), i.e., g=g+7V, V=
(vij) and vijEO modulo W for all (i, j)s; hence
g-lg' = B + g-lV, and it is easy to see that g_lV =
Ivln(c‘"). Consequently g_lg’ € GoIIA . Now there is
only finitely many classes L modulo zULa, hence on-—
1y finitely many classes A modulo Al Go 5 i.€.y
[6: AN G.] is finite. Next as G,OAll Cu D A(0), it
follows that [G&: A G&] is finite. q.e.d.
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2. MAIN RESULT. We shall use the block notation

for the matrices and write

2
O W

where V is r by r and W is s by s, T + s =ng
such H we shall denote sometinmes by V. W. If 1?'2 ’
.?_ prime, A a positive integer, we say that H 1is
13-even, if for any integral 4 bv n matrix x,
t)dthO(modulo ‘f:“‘) (As f-‘,&IZ, to say that H
is ﬁ?—even is equivalent to say that f? divides all
the diagonal entries of H, where H = Khij)’ since mod
2, and a fortiori modulo %ﬁ ’ txHx;;xihll +  eee +
Xihnn .) We shall denote by J(a), a €L, the matrix

2.

We may assume that ZTA , otherwise we can replace J(a)

by Usr(a)s = J(a + 21) = J(0) where

1 %
S = o 1
a =-2\, A €4t under such replacement, the maximality

or not of Gg, for H= V,LJ(a)’ is not affected.

LEMMA 2. Let G = SO(H), H=VviJ(a). If V is

~~~~~~~
1

G, in Mn(k) is contained in the order L()L).

-even, and ‘ﬁ“*&, then the 0/—1‘11’1& &enerated by

Proof: Since GgC Mn(xf), it suffices to prove

that for all j = 1, ..., n-1, plgnj. If we write

).

g € Gb“ as

C Dy
A being n-2 by. n-2 and D being 2 by 2, then
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YoHg = H implies that CAVA + °CJ(a)C =V and 'BVB +

tDJ(a)D = J(a). Let us write V = (vij): now V is

ff‘—even, so that )‘illvii for all i =1, «csoy n=2. Let

us write C = (xl,...,xn_2), where x. are the column

vectors of C, and similarly D = (yl,yz). We have

t

% .
( AVA)J.J. + xJ.J(a.)xj =V = 1y mwey DeE,
(tBVB) # ty J(a)y. = &..ay, J=1,2, 6..=0, &..= 1.
Ji J 3 i 1€y Pqomr Top
= then

Consequently if 2z = Xy ooy xn_2, yl ’

1;zJ(a)zzO (modulo ff" ).

Writting L. t(z 2% ), this implies that

- o
22,2, + azz__O (modulo * )
or

azz.:O (modulo ?L‘*),
and as ftxd’fa, thus (plzz. This means precisely that the

last row of C is divisible by 1}. , as well as the en-

try (2,1) of D.
g.e.d.

Fy A

pose that we can find in 4 a unit

ment b such that (ba/2) lies in fil‘f but is not
1. Then GA?, is not maxi-

7 and an ele-

integral and Q + b;z
in the sense explained before.

mal in G,
Proof: As ¢/(2) is finite, we have /&/7,_ finite
and A= L((ﬁ) (1 G is commensurable to G, . It suffi-

ces to show that () contains G,o, properly. We consi-

der g = En_Z.Lg' with
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. r[" ab/2
o
Clearly g € L(ﬁp), and it is easy to see that
tg'J(a)g' = J(abT-kq%) = J(a(bz + ?2)) = J(a).

Therefore g € L(?L) NG and g ¢ Gp e
q.e.d.

COROLLARY. Let W be any unimodular matrix,i.ej,

N~ S~~~ i~

We Mn_z(a) and det W is a unit, and let ¢ €

=ﬁ1 . Let us assume also the existence of ? and

b like in the theorem . If H = WlcJ(a), then

G is not maximal.

pod

Proof: First of all, we observe that if det H % 0]
then g € SO(H) if and only if tg € SO(H_l), for as
gl esom), Yglug™! = H if and only if gH ‘g =

H-l. Now the mapping g ~— tg maps subgroups onto

subgroups, and preserves 1integrality of matrices and
indices; hence SO(HZy is not maximal if and only if

SO(H—l)ﬁw is not maximal, Now E T = Wil o lr(a)t "

or cH"l = cw_ll J(a)—l. As before our situation does
not change if we replace J(a)-l by J(O)J(a)-lJ(O) =
J(-a). Hence S0(H), is not maximal if and only if
SO(H"), is not maximal where H' = o 'L J(-a). Fina-
1lly it is easy to see that Wl is léa—even, conse~
quently SO(H‘)ﬁ, is not maximal. Therefore, SO(HL&
is not maximal.
q.e.d.

3. APPLICATIONS., We shall look first into the ca-

se where k is a dyadic local field with residue class

field having more than two elements. We observe the fol=-
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lowing trivial lemma.

LEMMA 3. Let jL be the prime of & and let (2) =

~ e~~~

Pﬁ, d>4. If a € , then the eguation

x2 +ax + 1 =0

is always solvable in g, and its solution is a u-

nit.

Proof: In A?/%. our equation become x2 - 1=0.
By Hensel’s lemma x2 + ax - 1 =0 1is always solvable
in 4, a€ fq, and its solution does not lie in ¢ .

g.e.d.
Now we discuss the unramified case:

THEOREM 2. If k is an unramified dyadic Field,

~ ot

then G, is not maximal in G for H = Vict(e)

if

a) V 4is even, 2fe and c = 1.
b) V is unimodular, ¢ = 2 and 2Te.

Proof: We first observe that in theorem 1 we can
take b =f1- 2 and X =W, It remains to show that we
can always choose ? such that ZTB. Now A%%p is a
finite dimensional vector space over the prime field,
hence its &TOUP of units has odd order, i.e., if
)z# 1(modulo 2), then ?z%.. 1(modulo 2).

g.e.d.

THEOREM 3. Let k be a dyadic ramified field.Then

viei(a), if

is - not maximal in G, for H

enf, & unit and

[

a) V is mnt-even, c =1, a

dz_}\>P>O.

A .
b) V is unimodular, c = 1 4 & = Enp , € unit

and % > A>pg > O.
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Proof: In order to verify our assertion we find a
solution 9 of x° + %" P=1ly. 1 and set b = n%F1
and B = x in the proof of theorem 1, in the case
where o > p+ 1. In the case where d=p+ 1, we consi-
der the equation x° + bx = l, b=g"1n, x =Y where
p is & unit such that 1 fi-q. It is always possible
to find such unit because /0/71 has more than two ele-
ments. The case b) follows from the corollary and
from a).

q.e.d.

Now we shall study some consequences for the case

k is an algebraic number field.

THEOREM 4. Suppose that 2 1is unramified in k and

A~~~ i~~~

that there exists a unit Q € such that @é 1
(modulo 2). Then G, is not maximal in G for H =

V1ecJ(a) in the following cases:

a) V is even, ¢ =1, a = unit.

b) V is unimodular, ¢ = 2, a = unit.

Proof: Clearly the case b) follows from a) by coro-
llary of theorem 1. Next we observe that we can sharpen
lemma 2, to get the .#-ring generated by G contained
in L(2); as V is even, we can work all congruences
of that lemma modulo 2, and from the last congruence
azZ;gO(modulo 2) we get that 2z, =O(modulo 2), because
if 11|2, then zTé. Hence 2|g 3 J % n, for all g =

) € GA?' Now in the proof of theorem 1 it suffices
to take b‘-q ny, x="0 ,and it is easily seen that

ab is relatively prime to 2.
q.e.d.

COROLLARY. If k is a quadratic number field with

~~~ T~~~ ~
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discriminant a, a=5(modulo 8), and if the basic
unit of k is w=(m + nVa)/2, m,n being odd inte-

gers, then we have the same conclusion as in theorem

4e

Proof: For W -—w= - m or \a and in both cases
wa‘i— w e

We close this note observing that our last corollary

applies to the case where
a = -3,5,13,21,29,53, 61, 69, 77, 85, 93.
(see table 1, (2)).
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(Recibido en febrero de 1768)

ERRATAs Lines 12 and 13, page 23, should read: " 2, and & _

fortiori modulo 74."‘ ’ k 2

xEHx=x h.. + eee + x°h s Whers
n nn
Is= (xl’ooo,xn)o)"
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