SOME NON-MAXIMAL ARITHMETIC GROUPS

by

Nelo D. ALLAN

Let k be a non-finite Dedekind domain, and ρ' be the ring of its integers. We shall assume that the ring $R = \rho'(2)$ is finite. Let us denote by $M_n(k)$ (resp. $M_n(\rho')$) the ring of all n by n matrices with entries in k (resp. in ρ'), and $Gl_n(k)$ its group of units. We denote by $Sl_n(k)$ the subgroup of $Gl_n(k)$ whose elements g have determinant, det g, equal to one. Let $H \in M_n(\rho')$ be a symmetric matrix, i.e., $H = {}^tH$ where tH denotes the transpose matrix of H. We let G = $SO(H) = \{g \in Sl_n(k) \} {}^tgHg = H \}$, and we let $G_{\rho'} = G \cap M_n(\rho')$. We want to exhibit certain H for which $G_{\rho'}$ is not maximal in G, in the sense that there exists a subgroup Δ of G such that Δ contains $G_{\rho'}$ properly and $[\Delta:G_{\rho}]$ is finite.

1. Preliminaries. Let L be an order in $M_n(k)$; we shall denote by L_{ij} the fractional ideal generated by all the (i,j)-entries of all the elements of L; we shall write

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_{11} & \cdots & \mathbf{L}_{1n} \\ \vdots & & \vdots \\ \mathbf{L}_{n1} & \cdots & \mathbf{L}_{nn} \end{pmatrix}$$

We shall say that L is a direct summand if as an γ -module L is a direct sum of $L_{ij}e_{ij}$ where e_{ij} are the units of $M_n(k)$. It is well known that in our case the maximal orders in $M_n(k)$ are conjugate to the ones which are direct summands and $L_{nn} = L_{ij} = \mathcal{C}$, $i, j \neq n$, and $L_{in} = \mathcal{U}^{-1}$, $L_{nj} = \mathcal{U}$, $i, j \neq n$, for some fractional ideal \mathcal{U} of k, i.e.,

$$L = L(\mathcal{U}) = \begin{pmatrix} \mathcal{O} & \cdots & \mathcal{O} & \mathcal{N}^{-1} \\ \mathcal{O} & \cdots & \mathcal{O} & \mathcal{O}^{-1} \\ \mathcal{O} & \cdots & \mathcal{O} & \mathcal{O}^{-1} \\ \mathcal{O} & \cdots & \mathcal{O}^{-1} \end{pmatrix}$$

If L is one of such orders, then by looking at the expansion of g^{-1} , $g \in S\ell_n(k)$, we see that L $\cap S\ell_n(k)$ is a group. Consequently if $G \subset S\ell_n(k)$, then $\Delta = G \cap L$ is a group.

For our purposes we shall assume ${\mathcal O}$ to be integral.

LEMMA_1. If $R = \mathcal{O}/\Omega$ is finite, then Δ is commensurable to $G_{\mathcal{O}}$, i.e., $\Delta \cap G_{\mathcal{O}}$ has finite index in both $G_{\mathcal{O}}$ and Δ .

Proof: We shall follow Ramanathan's proof ⁽¹⁾. First we consider the subgroup $\Delta(\alpha) = \{g \in G_{\sigma} | g \equiv E \mod \alpha\}$. The index $[G_{\sigma}: \Delta(\alpha)]$ is finite because it is at most the order of the group $Gl_n(\mathbf{R})$, which is clearly finite. Suppose that $g, g' \in \Delta$ and that $\mathfrak{U}(g_{ij} - g'_{ij})$ is divisible by \mathfrak{N}^2 for all (i,j), i.e., g' = g + V, V = (v_{ij}) and $v_{ij} \equiv 0 \mod \mathcal{U}$ for all (i,j); hence $g^{-1}g' = E + g^{-1}V$, and it is easy to see that $g^{-1}V \in$ $M_n(\mathfrak{C})$. Consequently $g^{-1}g' \in G_{\mathfrak{C}} \cap \Delta$. Now there is only finitely many classes \mathfrak{A} modulo \mathfrak{M}^2 , hence only finitely many classes Δ modulo $\Delta \cap G_{\mathfrak{C}}$, i.e., $[\Delta: \Delta \cap G_{\mathfrak{C}}]$ is finite. Next as $G_{\mathfrak{C}} \supset \Delta(\mathfrak{U})$, it follows that $[G_{\mathfrak{C}}: \Delta \cap G_{\mathfrak{C}}]$ is finite. q.e.d. 2. MAIN RESULT. We shall use the block notation for the matrices and write

$$H = \begin{pmatrix} V & O \\ O & W \end{pmatrix},$$

where V is r by r and W is s by s, r + s = n; such H we shall denote sometimes by VLW. If $p^{\alpha}|_{2}$, p prime, α a positive integer, we say that H is p^{α} -even, if for any integral 1 by n matrix x, $t_{xHx} \equiv 0 \pmod{p^{\alpha}}$. (As $p^{\alpha}|_{2}$, to say that H is p^{α} -even is equivalent to say that p^{α} divides all the diagonal entries of H, where $H = (h_{ij})$, since mod 2, and <u>a fortiori</u> modulo p^{α} , $t_{xHx} \equiv x_{1}^{2}h_{11} + \cdots + x_{n}^{2}h_{nn}$.) We shall denote by $J(\alpha)$, $\alpha \in \mathcal{O}$, the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix}$$
.

We may assume that 2Ia, otherwise we can replace J(a)by ${}^{t}SJ(a)S = J(a + 2\lambda) = J(0)$ where

 $S = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$

a =-2 λ , $\lambda \in \mathcal{O}$: under such replacement, the maximality or not of $G_{\mathcal{O}}$, for $H = V \perp J(a)$, is not affected.

LEMMA 2. Let G = SO(H), $H = V \perp J(a)$. If V is p^{4} -even, and p^{4}/a , then the \mathcal{O} -ring generated by G_{o} in $M_{n}(k)$ is contained in the order L(p).

Proof: Since $G_{\mathcal{O}} \subset M_n(\mathcal{O})$, it suffices to prove that for all j = 1, ..., n-1, $|\mu|g_{nj}$. If we write $g \in G_{\mathcal{O}}$ as

$$g = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

A being n-2 by. n-2 and D being 2 by 2, then

 $t_{gHg} = H$ implies that $t_{AVA} + t_{CJ}(a)C = V$ and $t_{BVB} + V_{CJ}(a)C = V$ ^tDJ(a)D = J(a). Let us write $V = (v_{ij})$; now V is p^{α} -even, so that $p^{\alpha}|v_{ii}$ for all i = 1, ..., n-2. Let us write $C = (x_1, \dots, x_{n-2})$, where x_i are the column vectors of C, and similarly $D = (y_1, y_2)$. We have $(^{t}AVA)_{ij} + ^{t}x_{j}J(a)x_{j} = v_{ij}, j = 1, ..., n-2,$ $({}^{t}BVB)_{ij} + {}^{t}y_{j}J(a)y_{j} = \delta_{j2}a, j=1,2, \delta_{12}=0, \delta_{22}=1.$ Consequently if $z = x_1, \dots, x_{n-2}, y_1$, then $t_{zJ}(a)z \equiv 0 \pmod{p^d}$. Writting $t = t(z_1, z_2)$, this implies that $2z_1z_2 + az_2^2 \equiv 0 \pmod{p^d}$

or

 $az_{2}^{2} \equiv 0 \pmod{\phi^{d}},$

and as ϕ^{*} 1a, thus $\phi | z_{2}$. This means precisely that the last row of C is divisible by -p, as well as the entry (2,1) of D. q.e.d.

THEOREM 1. Let V be p^{α} -even and let p^{α} ta. Suppose that we can find in \mathscr{O} a unit η and an element b such that (ba/2) lies in f⁻¹ but is not integral and $\eta^2 + b\eta = 1$. Then G_{φ} is not maximal in G, in the sense explained before.

Proof: As $\mathscr{O}/(2)$ is finite, we have \mathscr{O}/p finite $\Delta = L(q_k) \cap G$ is commensurable to $G_{\mathcal{O}}$. It suffiand ces to show that Δ contains G, properly. We consider $g = E_{n-2} \perp g'$ with

24

$$g' = \begin{pmatrix} \eta^{-i} & ab/2 \\ 0 & \eta \end{pmatrix}$$

Clearly $g \in L(q_2)$, and it is easy to see that $t_{g'J(a)g'} = J(ab\eta + \eta^2 a) = J(a(b\eta + \eta^2)) = J(a).$ Therefore $g \in L(q_2) \cap G$ and $g \notin G_{g'}$.

q.e.d.

COROLLARY. Let W	be any unimodular matri	<u>x</u> ,i.e;,
$W \in M_{n-2}(\mathscr{O})$ and	det W is a unit, and let	CE
p ² . Let us assume	also the existence of y	and
b like in the theo	$\underline{\text{rem}} \cdot \underline{\text{If}} H = W \perp cJ(a),$	then
Gr is not maximal.		

Proof: First of all, we observe that if det $H \neq 0$ then $g \in SO(H)$ if and only if ${}^{t}g \in SO(H^{-1})$, for as $g^{-1} \in SO(H)$, ${}^{t}g^{-1}Hg^{-1} = H$ if and only if $gH^{-1}g =$ H^{-1} . Now the mapping $g \longrightarrow {}^{t}g$ maps subgroups onto subgroups, and preserves **integrality** of matrices and indices; hence $SO(H)_{\theta'}$ is not maximal if and only if $SO(H^{-1})_{\theta'}$ is not maximal. Now $H^{-1} = W^{-1} \perp c^{-1}J(a)^{-1}$, or $cH^{-1} = cW^{-1} \perp J(a)^{-1}$. As before our situation does not change if we replace $J(a)^{-1}$ by $J(O)J(a)^{-1}J(O) =$ J(-a). Hence $SO(H)_{\theta'}$ is not maximal if and only if $SO(H')_{\theta'}$ is not maximal where $H' = cW^{-1} \perp J(-a)$. Finally it is easy to see that cW^{-1} is f^{α} -even, consequently $SO(H')_{\theta'}$ is not maximal. Therefore, $SO(H)_{\theta'}$

q.e.d.

3. APPLICATIONS. We shall look first into the case where k is a dyadic local field with residue class field having more than two elements. We observe the following trivial lemma.

LEMMA 3. Let f_{k} be the prime of \mathscr{G} and let (2) = $p^{a}, a \ge 1$. If $a \in p$, then the equation $x^{2} + ax + 1 = 0$ is always solvable in \mathscr{O} , and its solution is a unit.

Proof: In \mathscr{O}/p our equation become $x^2 - 1 = 0$. By Hensel's lemma $x^2 + ax - 1 = 0$ is always solvable in \mathscr{O} , $a \in p$, and its solution does not lie in p. q.e.d.

Now we discuss the unramified case:

<u>THEOREM 2.</u> If k is an unramified dyadic field, then $G_{\mathcal{P}}$ is not maximal in G for $H = V_{\perp}c_{J}(\varepsilon)$ if

a) V is even, $2 \not\in and c = 1$. b) V is unimodular, c = 2 and $2 \not\in c$.

Proof: We first observe that in theorem 1 we can take $b = \sqrt[q]{-n} \eta$ and $x = \eta$. It remains to show that we can always choose η such that 2 b. Now $\frac{\partial}{\partial \mu}$ is a finite dimensional vector space over the prime field, hence its group of units has odd order, i.e., if $\eta \neq 1 \pmod{2}$, then $\eta^2 \neq 1 \pmod{2}$.

THEOREM 3. Let k be a dyadic ramified field. Then $G_{\mathcal{O}}$ is not maximal in G, for $H = V \perp cJ(a)$, if

- a) V is π^{λ} -even, c = 1, $a = \epsilon \pi^{\beta}$, ϵ unit and $\alpha > \lambda > \beta > 0$.
- b) V is unimodular, $c = \pi^{\lambda}$, $a = \mathbf{E}\pi^{\beta}$, \mathbf{E} unit and $\dot{\alpha} > \lambda > \beta > 0$.

26

Proof: In order to verify our assertion we find a solution γ of $x^2 + \pi^{\alpha-\beta-1}x = 1$ and set $b = \pi^{\alpha-\beta-1}$ and $\gamma = x$ in the proof of theorem 1, in the case where $\alpha > \beta + 1$. In the case where $\alpha = \beta + 1$, we consider the equation $x^2 + bx = 1$, $b = \gamma^{-1} - \gamma$, $x = \gamma$ where γ is a unit such that $\gamma \uparrow \gamma^{-1} \gamma$. It is always possible to find such unit because \mathcal{O}/γ has more than two elements. The case b) follows from the corollary and from a).

q.e.d.

Now we shall study some consequences for the case k is an algebraic number field.

THEOREM 4. Suppose that 2 is unramified in k and that there exists a unit $\eta \in \mathscr{O}$ such that $\eta \neq 1$ (modulo 2). Then $G_{\mathscr{O}}$ is not maximal in G for H =V \perp cJ(a) in the following cases:

a) V is even, c = 1, a = unit.

b) V is unimodular, c = 2, a = unit.

Proof: Clearly the case b) follows from a) by corollary of theorem 1. Next we observe that we can sharpen lemma 2, to get the \mathscr{N} -ring generated by G contained in L(2); as V is even, we can work all congruences of that lemma modulo 2, and from the last congruence $az_2^2 \equiv 0 \pmod{2}$ we get that $z_2 \equiv 0 \pmod{2}$, because if $p|_2$, then $p^2|_2$. Hence $2|g_{nj}$, $j \neq n$, for all $g = (g_{ij}) \in G_{\mathscr{N}}$. Now in the proof of theorem 1 it suffices to take $b = q^{-1} - q$, x = q, and it is easily seen that ab is relatively prime to 2.

q.e.d.

COROLLARY. If k is a quadratic number field with

27

<u>discriminant</u> a, $a \equiv 5 \pmod{8}$, and if the basic unit of k is $\omega = (m + n\sqrt{a})/2$, m,n being odd integers, then we have the same conclusion as in theorem 4.

Proof: For w' - w = -m or \sqrt{a} and in both cases $2 \uparrow w' - w$.

We close this note observing that our last corollary applies to the case where

a = -3,5,13,21,29,53, 61, 69, 77, 85, 93.(See table 1, (2)).

REFERENCES

- 1. K. RAMANATHAN, Discontinuos Groups F, Goeth. Nach. (1964), 145-164.
- Z. BOREVICH, I. SHAFAREVICH, Number Theory, Academic Press, 1966, New York.

Departamento de Matemáticas y Estadística Universidad Nacional de Colombia

(Recibido en febrero de 1968)

ERRATA: Lines 12 and 13, page 23, should read: "2, and <u>a</u> <u>fortiori</u> modulo \mathcal{A}^{α} , $\mathbf{x}\mathbf{H}\mathbf{x} \equiv \mathbf{x}_{1}^{2}\mathbf{h}_{11} + \cdots + \mathbf{x}_{n}^{2}\mathbf{h}_{nn}$, where $\mathbf{x} = (\mathbf{x}_{1}, \dots, \mathbf{x}_{n})$.)"