SOME NON-MAXIMAL ARITHMETIC GROUPS

by

Nelo D. ALLAN

Let k be a non-finite Dedekind domain, and ρ be the ring of its integers. We shall assume that the ring $R = \mathcal{J}/(2)$ is finite. Let us denote by $M_{\rm n}^{\rm (k)}$ (resp. $M_n(\gamma)$) the ring of all n by n matrices with entries in k (resp. in \mathscr{O}'), and $\left\{\mathcal{U}_{n}(k)\right\}$ its group of units. We denote by $\mathbb{S}\boldsymbol{\ell}_{\mathbf{n}}(\mathbf{k})$ the subgroup of $\mathbb{G}\boldsymbol{\ell}_{\mathbf{n}}(\mathbf{k})$ whose elements g have determinant, det g , equal to one. Let $H \in M_{\mathbf{n}}(\mathbf{\beta})$ be a symmetric matrix, i.e., $H = {^{\circ}H}_{\mathbf{n}}$ where H denotes the transpose matrix of H. We let G = $\text{SO(H)} = \left\{ g \in \text{SL}_n(k) \mid \right. \frac{\text{t}}{g} \text{Hg} = \text{H} \right\}, \text{ and we let } G_{\pmb{\varphi}} = \text{GIM}_n(\pmb{\varphi})$. We want to exhibit certain H for which *^Gff* is not maximal in G, in the sense that there exists a subgroup Δ of G such that Δ contains G_A properly and $[\Delta:\mathbb{G}_{\rho}]$ is finite.

shall denote by $L_{i,j}$ the fractional ideal generated by all the (i,j) -entries of all the elements of L; we 1. Preliminaries. Let L be an order in $M_n(k)$; we shall write

$$
\mathbf{L} = \begin{bmatrix} \mathbf{L}_{11} & \cdots & \mathbf{L}_{1n} \\ \vdots & & \vdots \\ \mathbf{L}_{n1} & \cdots & \mathbf{L}_{nn} \end{bmatrix}
$$

We shall say that L is a direct summand if as an $\not\!\! \! p$ -module L is a direct sum of $L_{i,j}^{\quad e}i,j}$ where $e_{i,j}$ are the units of $\mathbb{M}_{n}(\kappa)$.

in $\mathbb{M}_{n}(k)$ are conjugate to the ones which are direct su-It is well known that in our case the maximal orders mmands and $L_{nn} = L_{ij} = f'$, $i, j \neq n$, and $L_{in} = u^{2}$ $L_{n,j} = u, i, j \neq n,$ for some fractional ideal u of k, i .e. ,

$$
L = L(\mathcal{U}) = \begin{bmatrix} \mathcal{P} & \cdots & \mathcal{P} & \mathcal{U}^T \\ \mathcal{E} & \cdots & \mathcal{E} & \mathcal{U}^T \\ \mathcal{U} & \cdots & \mathcal{U} & \mathcal{E} \end{bmatrix}
$$

If L is one of such orders, then by looking at the expansion of g^{-1} , $g \in S\ell_n(k)$, we see that L $\cap S\ell_n(k)$ is a group. Consequently if $G \subset Sl_n(k)$, then $\Delta = G \cap L$ is a group.

For our purposes we shall assume ϑ to be integral.

LEMMA 1. If $R = \frac{\mathcal{O}}{a}$ is finite, then Δ is commensurable to G_o, i.e., $\Delta \cap G_{\rho}$ has finite index in both G_{ρ} and Δ .

Proof: We shall follow Ramanathan's proof (1) . First we consider the subgroup $\Delta(\mathbf{u}) = \int g \in \mathbb{G}_{\mathbf{z}} | g \equiv \mathbb{E} \mod \mathbf{u}$. The index $\left[\mathbf{G}_{j\!\!,\mathbf{z}}\colon\Delta(\boldsymbol{u})\right]$ is finite because it is at most the order of the group $\mathbf{G} \ell_{n}(\mathbf{R})$, which is clearly finite. Suppose that $g, g' \in \Delta$ and that $\mathcal{U}(g_{1,j} - g'_{1,j})$ is divisible by π^2 for all (i,j) , i.e., $g' = g + V$, V $(v_{i,j})$ and $v_{i,j} \equiv 0$ modulo $\mathcal U$ for all (i,j) ; hence $g^{-1}g' = E + g^{-1}V$, and it is easy to see that $g^{-1}V =$ $\mathbb{M}_{n}(\mathcal{C})$. Consequently $g^{-1}g' \in \mathbb{G}_{\mathcal{L}} \cap \Delta$. Now there is only finitely many classes α L modulo u^2 , hence only finitely many classes Δ modulo $\Delta \cap G_{\Delta}$, i.e., $[\Delta: \Delta \cap G_{\mathbf{A}}]$ is finite. Next as $G_{\mathbf{A}} \supset \Delta \cap G_{\mathbf{A}} \supset \Delta(\mathbf{u}),$ it follows that $[G_{\phi} : \Delta \cap G_{\phi}]$ is finite. $q.e.d.$

2. MAIN RESULT. We shall use the block notation for the matrices and write

$$
H = \begin{pmatrix} V & O \\ O & W \end{pmatrix},
$$

where V is r by r and W is s by s, $r + s = n$; such H we shall denote sometimes by $V\perp W$. If $\phi^4|2$, \mathcal{A} prime, λ a positive integer, we say that H is μ^2 -even, if for any integral 1 by n matrix x_j $t_{xHx} \equiv o(\text{modulo } h^x)$. (As $h^x|2$, to say that H is p^x -even is equivalent to say that p^x divides all the diagonal entries of H, where $H = (h_{i,j})$, since mod where $\pi = (\mu_{i})$ 2, and <u>a fortiori</u> modulo ϕ^{α} , $x \pm x_{1}^{2}$ \cdots + x_{n}^{2} h_{nn}.) We shall denote by J(a), a ϵ_{θ} , the matrix

$$
\begin{bmatrix} 0 & 1 \\ 1 & a \end{bmatrix}.
$$

We may assume that 2fa , otherwise *Vie* can replace by ${}^{t}SJ(a)S = J(a + 2\lambda) = J(0)$ where

 $S = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$

a $=-2\lambda$, $\lambda \in \mathcal{X}$: under such replacement, the maximality or not of $G_{\boldsymbol{\alpha}}$, for $H = V \boldsymbol{\perp} J(a)$, is not affected.

 $LEMMA_{2}$. Let G = SO(H), H = V $\bot J(a)$. If V is p^{α}/a , then the $\mathcal{O}-\text{ring}$ generated by ${}^{\mathbb{G}}\boldsymbol{\phi}$ in $\mathbb{M}_{n}(\mathbf{k})$ is contained in the order $\mathbb{L}(\boldsymbol{\mu})$.

Proof: Since $G_{\mathbf{\mathcal{C}}} \subset M_{\mathbf{n}}(\mathbf{\mathcal{N}})$, it suffices to prove that for all $j = 1, ..., n-1, \beta | \mathcal{E}_{nj}$. If we write $g \in G_{\mathbf{A}^*}$ as

$$
g = \begin{pmatrix} A & B \\ C & D \end{pmatrix},
$$

A being n-2 by. n-2 and D being 2 by 2, then

 t_{gHg} = H implies that t_{AVA} + $t_{CJ(a)C}$ = V and t_{BVB} + $\text{DJ}(a) D = J(a)$. Let us write $V = (v_{ij})$; now V is ϕ^{α} -even, so that $\phi^{\alpha}|v_{1i}|$ for all i = 1, ..., n-2. Let us write $C = (x_1, \ldots, x_{n-2})$, where x_j are the column vectors of C, and similarly $D = (y_1, y_2)$. We have $({}^{\text{t}}$ AVA) $_{jj}$ + ${}^{\text{t}}$ x_jJ(a)x_j = v_{jj}, j = 1, ..., n-2, $({}^{t}$ BVB) $_{jj}$ + ${}^{t}y$ $_{j}$ J(a)y_j = δ $_{j2}$ a, j=1,2, δ ₁₂=0, δ ₂₂= 1. Consequently if $z = x_1, \ldots, x_{n-2}, y_1$, then $t_{zJ(a)z=0}$ (modulo μ^{d}). Writting $t = t(z_1, z_2)$, this implies that $2z_1z_2 + az_2^2 \equiv 0 \pmod{\phi^{\alpha}}$ or

 $az_0^2 \equiv 0$ (modulo ϕ^d),

and as ϕ^4 ^ta, thus ϕ | z_2 . This means precisely that the last row of C is divisible by ϕ , as well as the entry $(2,1)$ of D . q.e.d.

when the v be h^{α} -even and let h^{α} ^{ta}. Suppose that we can find in ϕ a unit η and an element b such that (ba/2) lies in ϕ^{-1} but is not integral and η^2 + b η = 1. Then G_{σ} is not maximal in G, in the sense explained before.

Proof: As $\mathcal{O}'(2)$ is finite, we have \mathcal{O}'/p finite and $\Delta = L(q_k) \cap G$ is commensurable to G_{ℓ} . It suffices to show that Δ contains G_{α} properly. We consider $g = E_{n-2} \perp g'$ with

$$
g' = \begin{bmatrix} \eta^{-1} & ab/2 \\ 0 & \eta \end{bmatrix}
$$

Clearly $g \in L(\phi)$, and it is easy to see that $t_{g'J(a)g' = J(ab\eta + \eta^2a) = J(a(b\eta + \eta^2)) = J(a).$ Therefore $g \in L(\phi) \cap G$ and $g \notin G_{\hat{H}}$.

q.e.d.

 H^{-1} . Now the mapping $g \nightharpoonup^t g$ maps subgroups onto Proof: First of all, we observe that if det $H \neq 0$ then $g \in SO(H)$ if and only if ${}^t g \in SO(H^{-1})$, for as g^{-1} \in SO(H), t_g^{-1} _{Hg}⁻¹ = H if and only if $gH^{-1}g$ = subgroups, and preserves integrality of matrices and indices; hence $\text{SO(H)}_{\ell\!\ell}$ is not maximal if and only if $\text{SO(H}^{-1})$ is not maximal. Now $\text{H}^{-1} = \text{W}^{-1} \text{L} \text{C}^{-1} \text{J(a)}^{-1}$, or $cH^{-1} = cW^{-1}I J(a)^{-1}$. As before our situation does not change if we replace $J(a)^{-1}$ by $J(0)J(a)^{-1}J(0)$ = $J(-a)$. Hence $SO(H)_{\rho}$ is not maximal if and only if SO(H^o)_g is not maximal where $H^{\bullet} = cW^{-1}L J(-a)$. Finally it is easy to see that $c\overline{w}^{-1}$ is ϕ^{α} -even, consequently $SO(H^*)_{\rho}$ is not maximal. Therefore, $SO(H)_{\rho}$ is not maximal.

q.e.d.

3. APPLICATIONS. We shall look first into the case where k is a dyadic local field with residue class field having more than two elements. We observe the following trivial lemma.

LEMMA₂. Let ϕ be the prime of $\mathscr F$ and let (2) = a^d , $d \ge 1$. If $a \in \phi$, then the equation —
11 $x^2 + ax + 1 = 0$ is always solvable in f , and its solution is a unit.

Proof: In \mathcal{P}/p our equation become $x^2 - 1 = 0$. By Hensel's lemma $x^2 + ax - 1 = 0$ is always solvable in \mathcal{P} , $a \in \mathcal{A}$, and its solution does not lie in \mathcal{A} . q.e.d.

Now we discuss the unramified case:

THEOREM 2. If k is an unramified dyadic field, then $G_{\&}$ is not maximal in G for $H = V \bot oJ(\epsilon)$ if

a) V is even, $2 \leq \sin \alpha$ c = 1. b) V is unimodular, $c = 2$ and 2ϵ .

Proof: We first observe that in theorem 1 we can take $b = \overline{t} - \overline{t}$ and $x = \gamma$. It remains to show that we can always choose η such that 2 ^{\uparrow}b. Now \mathcal{P}/p is a finite dimensional vector space over the prime field, hence its group of units has odd order, i.e., if $\eta \neq 1$ (modulo 2), then $\eta^2 \neq 1$ (modulo 2). q.e.d.

THEOREM₂. Let k be a dyadic ramified field. Then $G_{\mathcal{O}}$ is not maximal in G, for H = V $LcJ(a)$, if

- a) V is π^{λ} -even, c = 1, a = $\epsilon \pi^{\beta}$, ϵ unit and $\alpha > \lambda > \beta > 0$.
- b) V <u>is unimodular</u>, $c = \pi^{\lambda}$, $a = \epsilon \pi^{\beta}$, ϵ unit and $\alpha > \lambda > \beta > 0$.

26

Proof: In order to verify our assertion we find a solution γ of $x^2 + \pi^{d-p-1}x = 1$ and set $b = \pi^{d-p-1}$ and $p = x$ in the proof of theorem 1, in the case where $d > p + 1$. In the case where $d = p + 1$, we consider the equation $x^2 + bx = 1$, $b = p^{-1} - \eta$, $x = \gamma$ where bet the equation $x + 5x - 1$, $5 - (-7)$, $x - 7$ and $x - 7$ to find such unit because \mathscr{A}/\mathscr{P} has more than two elementa. The case b) follows from the corollary and from a).

q.e.d.

Now we shall study some consequences for the case k is an algebraic number field.

THEOREM 4. Suppose that 2 is unramified in k and that there exists a unit $\eta \in \mathcal{P}$ such that $\rho \neq 1$ (modulo 2). Then G_{ρ} is not maximal in G for H = $V \perp cJ(a)$ in the following cases:

a) V is even, $c = 1$, $a = unit$.

b) V is unimodular, $c = 2$, $a = unit$.

Proof: Clearly the case b) follows from a) by corollary of theorem 1. Next we observe that we can sharpen lemma 2, to get the R -ring generated by G contained in $L(2)$; as V is even, we can work all congruences of that lemma modulo 2, and from the last congruence $a z_2^2 \equiv 0 \pmod{2}$ we get that $z_2 \equiv 0 \pmod{2}$, because if π |2, then μ^2 |2. Hence $2|\vec{g}_{n,j}, j \neq n$, for all $g =$ $(g_{ij}) \in G_{\beta}$. Now in the proof of theorem 1 it suffices $\overline{\cdot}$ to take $b = \bar{\eta} - \eta$, $x = \eta$, and it is easily seen that ab is relatively prime to 2.

 $q.e.d.$

. *QQBQ11ABX.* If k is a quadratic number field with

27

discriminant **a,** $a \equiv 5 \pmod{8}$, and if the basic unit of k is $\omega=(m + n\sqrt{a})/2$, m,n being odd integers, then we have the same conclusion as in theorem **4·**

Proof: For ω^{-1} ω = - m or \sqrt{a} and in both cases $24\omega^{2}$ ω .

We close this note observing that our last corollary applies to the case where

 $a = -3, 5, 13, 21, 29, 53, 61, 69, 77, 85, 93.$ (See table **1,** (2)).

REFERENCES

- 1. K. RAMANATHAN, Discontinuos Groups F, Goeth. Nach. (1964) , 145-164.
- 2. Z.BOREVICH, I. SHAFAREVICH, Number Theory, Academic Press, 1966, New York.

Departamento de Matemáticas y Estadística Universidad Nacional de Colombia

(Recibido en febrero de 1968)

ERRATA: Lines 12 and 13, page 23. should read: " 2. and a 2 $+ ... + x_{n_m}^2$, where n^unn $f(x_1,...,x_n).$

i""'-