Revista Colombiana de Matemáticas Volumen II. 1.968. Páginas 166-168

REMARKS ON WEAKLY CONTINUOUS FUNCTIONS IN BANACH SPACES

por

Guillermo Restrepo

Let E be a Banach space over the reals and let E* be the dual space. Let = $(\alpha_1, \ldots, \alpha_n)$ be a finite sequence of non-negative integers and $u = (u_1, \ldots, u_n)$ a finite sequence of elements in E*. The notation $u^{\alpha} = u_1^{\alpha_1} \ldots u_n^{\alpha_n}$ is standard and will used throughout. We will write $|\alpha| = \alpha_1 + \ldots + \alpha_n$. Any real valued function in E of the form $P = \sum_{\substack{\alpha \mid \leq n \\ l \mid \leq n}} a_{\alpha} u^{\alpha}$, a_{α} a real number, is said to be a polynomial. Clearly, every polynomial is weakly continuous. THEOREM 1. - Let E be a reflexive Banach space and let $f : E \rightarrow R^1$. Then f is weakly continuous if and only if there is a sequence $\{P_n\}$ of polynomials that converges to f uniformly on every bounded set.

<u>THEOREM 2</u>. - Let E be an infinite dimensional Banach space over the reals, A E an open and bounded subset. Let $f: \overline{A} \longrightarrow \mathbb{R}^{\perp}$ be weakly continuous. Then $f(\overline{A}) \subset f(\overline{A})$. (A is the boundary of A).

Proof. It is enough to show that \overline{A} is contained in the weak closure of ∂A . Let x be an interior point of A and V(x) = $A \cap (\bigcap_{i=1}^{-1} u_i^{-1})(]u_i(x) - \mathcal{E}, u_i(x) + \mathcal{E}[) a weak neighborhood$ of x in A. Since E is infinite dimensional, there is some $y \neq 0$ such that $u_i(y) = 0$ for i = 1, 2, ..., n. Now, $x + ty \in OA$ for some t, because A is bounded and open, so x + ty $\in VODA.$ It is proved in ([2]); p.76) that if $f : E \longrightarrow R^1$ has a compact derivative $f' : E \longrightarrow E^*$, then f is weakly continuous. The following example shows that the converse is not true. <u>EXAMPLE</u>.- Let ℓ^2 be the usual Hilbert space of real sequences $X = (x_1, x_2, ...)$ such that $\sum_{i=1}^{r} x_i^2 < \infty$. Let $\Omega_r =$ $= \left\{ x \left\{ \left\| x \right\| \leq r < 1 \right\} \text{ and let } a_{n} = (a_{1}^{n}) \text{ where } a_{1}^{n} = 0 \text{ if } i \neq n, \\ a_{n}^{n} = r. \text{ Define } f : \Omega_{1} \longrightarrow \mathbb{R}^{1} \text{ by } f(x) = \sum_{n=1}^{\infty} n^{-1} x_{n}^{n}. \right.$ Then $|f(x) - \sum_{n=1}^{P} n^{-1} x_{n}^{n}| = |\sum_{n>0} n^{-1} x_{n}^{n}| \le (\sum_{n>0} n^{-2})^{\frac{1}{2}} (\sum_{n>0} x_{n}^{2n})^{\frac{1}{2}}$ $\leq \sum_{n>p} n^{-2}$, since $|x_n| \leq 1$ for all n. This shows that f is weakly continuous since it is the uniforme limit of polynomials on every Ω_r . However, $f'(x) = \sum_{n=1}^{\infty} x_n^{-1} e_n$ is not compact since $f'(a_n) = a_n$. REMARK. The example above shows that a weakly continuous function of class C¹ from an infinite dimensional Hilbert space into the reals can not be approximated, in general, by polynomials in the topology of uniform convergence of f and its derivatives on bounded sets. For suppose there is a sequence $\{P_n\}$ of polynomials such that $\{P_n\} \longrightarrow f, \{p_n'\} \longrightarrow f'$ uniformly in every bounded set. A trivial calculation shows that $P^{i}(E)$ is finite dimensional for every polynomial P.This would imply that f^{i} is compact (see [2]; Th l.l p. 10).

REFERENCES

1.- J. Dugundji

"Topology, Allyn and Bacon (1966)

2.- M.M. Vainberg,

"Variational Methods for the study of Nonlinear Operators," Holden Day (1964).