ON THE CONVERGENCE OF GALERKIN APPROXIMATIONS

by

Guillermo RESTREPO

Let X be a separable Banach space over the reals and let X^* be its dual. If $x \in X$ and $u \in X^*$, we will write $\langle x, u \rangle$ instead of $u(x)$. Also, if $P : X \to X$ is a linear operator we will denote by P^* the adjoint from X^* into X^* which is defined by $\langle x, P^* u \rangle = \langle P x, u \rangle$. The strong convergence in X will be denoted by $x_n \to x$, the weak convergence in X by $x_n \rightharpoonup x$, and the w^*-convergence in X^* by $x_n \rightharpoonup^* x$.

We say that X has property (B) if there is a sequence $\{P_n\}$ of bounded linear operators from X into itself such that,

i) $P_n(X) = X_n$ is finite dimensional for every n.

ii) $P_n^2 = P_n$.

iii) $P_n x \to x$ for every $x \in X$ and $P_n^* u \to u$ for every $u \in X^*$.

It follows from condition ii) that $(P_n^* P_n)^2 = P_n^* P_n$, and it follows from condition i) that $P_n^* (X^*) = X_n^*$ is finite dimensional. We observe that $P_n x \to x$ for every $x \in X$ implies $P_n^* u \rightharpoonup^* u$ for every $u \in X^*$. Further, any separable Hilbert space satisfies property (B). Also, the space c_0 of all real sequences which converge to zero satisfies property (B). More generally, any Banach space with a biorthogonal basis (see [7; p. 64]) has property (B).

Let X be a separable Banach space with property (B) and let $A : X \to X^*$ be an operator (nonlinear in general) and consider the nonlinear operator equation

$$(1) \quad A x = u, \quad u \in X^*$$

Let $A_n = P_n^* A P_n$, $u_n = P_n^* u$. Then we can write the approximating equation
which is a nonlinear operator equation in finite dimensional subspaces. We say that any
solution \(x_n \) of (2) is an \(n \)-th order Galerkin approximation of (1) and \(\{ x_n \} \) is a
Galerkin approximating sequence for the equation (1). In general, the sequence \(\{ x_n \} \)
does not converge either strongly or weakly to a solution of the equation \(Ax = u \).

In this paper we give some general conditions which assure that the weak or strong limit
points of the approximating sequence \(\{ x_n \} \) are solutions of the equation \(Ax = u \).

THEOREM 1: Assume that the equation (1) has a Galerkin approximating sequence
\(\{ x_n \} \). Then,

i) Any strong limit point of \(\{ x_n \} \) is a solution of the equation (1) provided \(A \) is
continous.

ii) Any weak limit point of \(\{ x_n \} \) is a solution of the equation (1) provided \(A \) is
continuous from the weak topology of \(X \) to the \(w^* \)-topology of \(X^* \).

For the proof of this theorem we need the following lemmas.

LEMMA 1:

i) \(y_n \to y \) implies \(P_n y_n \to y \), \(y_n, y \in X \)

ii) \(u_n \to u \) implies \(P_n u_n \to u \), \(u_n, u \in X^* \)

iii) \(y_n \rightharpoonup y \) implies \(P_n y_n \rightharpoonup y \)

iv) \(u_n \rightharpoonup u \) implies \(P_n u_n \rightharpoonup u \)

PROOF.

i) By the principle of uniform boundedness the set \(\{ \| P_n \| \} \) is bounded,
so \(\| y - P_n y_n \| \leq \| y - P_n y \| + \| P_n y - P_n y_n \| \to 0 \) if \(n \) tends to infinity.

ii) For any \(u \in X^* \) we have

\[\langle P_n y_n, u \rangle = \langle y_n, P_n^* u \rangle = \langle y_n, u \rangle + \langle y_n, P_n^* u - u \rangle \to 0 \] if \(n \) tends to infinity. The proof of ii) is similar to the proof of i), and so are the proofs of iii) and iv).
LEMMA 2: If A is continuous, then $A_n y \to Ay$ for every $y \in X$.

Proof. Since $P_n y \to y$, it follows that $AP_n \to Ay$.

Thus $P_n^* A P_n y = A_n y \to Ay$ by lemma 1.

Proof of Theorem 1. i) If x is a strong limit point of x_n there is a subsequence $\{x_{n_k}\}$ which converges to x, so $P_{n_k}^* A x_{n_k} \to Ax$ by lemma 1 (part ii).

Since $P_{n_k}^* A x_{n_k} = u_{n_k} \to u$, it follows that $Ax = u$.

ii) Let $x_{n_k} \overset{w}{\to} x$. Then one uses part iv) of lemma 1 to show that $Ax = u$.

Theorem 2: We make the following assumptions:

i) Let $D(A)$ be the domain of the operator A from X into X^*. Let $y_n \overset{w}{\to} y$ and $Ay_n \overset{w^*}{\to} v$. Then $y \in D(A)$ and $Ay = v$.

ii) There is a Galerkin approximating sequence $\{x_n\}$ for the equation $Ax = u$ such that $\{A x_n\}$ is bounded.

Then any weak limit point of $\{x_n\}$ is a solution of the equation (1).

The proof of this theorem is based on the following lemma:

Lemma 3: Assume that the equation (1) has a Galerkin approximating sequence $\{x_n\}$. Then $\{A x_n\}$ is bounded if and only if $A x_n \overset{w^*}{\to} u$ (we do not assume that A is continuous).

Proof. Let $z \in X$ and assume $\{A x_n\}$ is bounded. Then,

$$<z, Ax_n> = <z - P_n z, A x_n> + <P_n z, A x_n>$$

Now, $<z - P_n z, A x_n> \to 0$ and $<P_n z, A x_n> = <z, P_n^* A x_n> = <z, u_n> \to <z, u>$. Therefore $Ax_n \overset{w^*}{\to} u$. If $Ax_n \overset{w^*}{\to} u$ then $\{A x_n\}$ is w^* bounded, so it is norm bounded by a well-known theorem.

Proof of Theorem 2. Let x be a weak limit point of $\{x_n\}$ and let $x_{n_k} \overset{w}{\to} x$.

3
Then \(A x \xrightarrow{w^*} u \) by lemma 3 and condition ii), so \(A x = u \) by condition i).

Theorem 3. The hypothesis of theorem 2. Then,

a) If \(A \) has an inverse \(A^{-1} \) which is continuous from the \(w^* \) - topology into the strong (weak) topology, then \(\{ x_n \} \) converges strongly (weakly) to the unique solution of the equation (1).

b) If \(A^{-1} \) is compact, then \(\{ x_n \} \) converges strongly to the unique solution of equation (1).

Proof. a) Let \(A x_n = v_n \). Then \(v_n \xrightarrow{w^*} u \) by lemma 3, so \(x_n = A^{-1}(v_n) \) converges strongly (weakly), say, to \(x \in X \). By condition ii) \(x \in D(A) \) and \(A x = u \).

b) Since \(A^{-1} \) is compact, it follows that \(\{ x_n \} = \{ A^{-1} v_n \} \) has a strong limit point. If \(x \) is a limit point of \(x_n \), then \(A x = u \) by theorem 2.

Remark. The conditions given in the previous theorem can be applied to unbounded linear operators. If \(A \) is a differential operator, then the domain \(D(A) \) of \(A \) is some dense subspace of a Hilbert space \(H \). If we assume that \(A \) is symmetric and satisfies the condition

\[
< A x, x > \geq c \| x \|^2, \quad c > 0, \quad x \in D(A)
\]

then \(A \) can be extended to an operator \(B[(D(B) \supset D(A)) \) and the restriction of \(B \) to \(D(A) \) is \(A \) such that its range is all of \(X \) and \(B^{-1} \) is continuous. Usually \(B \) is referred to as the Friedrichs extension of \(A \). For details see [4; p. 5]. We observe also that in many boundary value problems the inverse operator \(A^{-1} \) is an integral operator defined by a Green function, so in many cases \(A^{-1} \) is compact. Since

\[
< A_n x_n, x_n > = < p_n A x_n, x_n > = < A x_n, x_n > \geq c \| x_n \|^2
\]
it follows that \(A_n : X_n \to X_n \) is one to one and linear, so the range of \(A_n \) is \(x_n \). Therefore (3) implies the existence of a Galerkin approximating sequence \(\{ x_n \} \) for every \(u \in X \). In general, however, \(\{ A x_n \} \) is not bounded.

Let \(A \) be a strongly monotone map from \(X \) into \(X^* \), i.e. \(A \) satisfies

\[
< x - y, A x - A y > \geq c \| x - y \|^2
\]

for every \(x, y \in D(A) \) and some constant \(c > 0 \). Then it follows from (4) that

\[
\| A_n x - A_n y \| \geq c \| x - y \|, x, y \in X_n.
\]

A simple argument based on Brouwer's theorem on invariance of domain (see Browder [1] or Petryshyn [6]) shows that \(A_n x_n = u_n \) has a unique solution which is denoted by \(x_n \). Therefore, if \(A \) is strongly monotone and \(X_n \subset D(A) \) for every \(n \), then one can show the existence of a Galerkin approximating sequence. Moreover, \(\{ x_n \} \) converges strongly to the unique solution of the equation \(A x = u \) if \(A \) is strongly monotone and continuous, as has been shown by the authors mentioned before. We now state a theorem for noncontinuous, strongly monotone operators. We assume that \(A \) satisfies

\[
\| A x \| \leq M \| x \|
\]

for all \(x \in X_n \) and some constant \(M \) which does not depend upon \(n \).

Theorem 4: Let \(X \) be a reflexive Banach space with property \((B) \) and let \(A \) be a densely defined operator from \(X \) into \(X^* \). Assume that \(A \) satisfies (4) and (6) and \(A^{-1} \) is continuous from the \(w_\ast \)-topology into the strong (weak) topology. Then equation (2) has a unique solution \(x_n \) for each \(n \), and \(\{ x_n \} \) converge strongly (weakly) to the unique solution of equation (1).

Proof. The operator \(A_n \) maps \(X_n \) into \(X_n^* \) and (5) implies that
A_n is one-to-one. Also, (5) implies that the range of A_n is closed. By Brouwer's theorem on invariance of domain, the range of A_n is open. Therefore the range of A_n is x^*_n since it is connected. Thus, we have shown that the equation $A_n x_n = u_n$ has a unique solution. Next, we show that $\{x_n\}$ is bounded. From (5), putting $y = 0$, we obtain

$$c || x_n || \leq || A_n(x_n) - A_n(0) || \leq || u_n || + || A_n(0) || \leq N$$

for some constant N since $u_n \to u$ and $A_n(0) \to A(0)$. Now, (6) implies that $\{A x_n\}$ is bounded, so by lemma 3 $A x_n u^* \to u$. Since $A^{-1} u$ is defined, it follows that $\{x_n\}$ converges strongly (weakly) to $A^{-1} u = x$. This concludes the proof.

REFERENCES

7. VAINBERG, M. M., "Variational methods for the study of monlinear operators", Holden-Day (1964)

University of Puerto Rico
Mayaguez, Puerto Rico