ON THE CONVERGENCE OF GALERKIN APPROXIMATIONS

Lighte administration demonstrate in the solidy and the parameter of

Guillermo RESTREPO

Let X be a separable Banach space over the reals and let X^* be its dual. If $x \in X$ and $u \in X^*$ we will write $\langle x, u \rangle$ instead of u(x). Also, if $P: X \to X$ is a linear operator we will denote by P^* the adjoint from X^* into X^* which is defined by $\langle x, P^* u \rangle = \langle P x, u \rangle$. The strong convergence in X will be denoted by $x_n \to x$, the weak convergence in X by $x_n \overset{w}{\to} x$ and the w^* - convergence in X^* by $x_n \overset{w^*}{\to} x$. We sat that X has property (B) if there is a sequence $\{P_n\}$ of bounded linear operator from X into itself such that,

- i) $P_n(X) = X_n$ is finite dimensional for very n.
- ii) $P_n^2 = P_n$
- iii) $P_n \times X \to X$ for every $X \in X$ and $P_n^* \times U \to U$ for every $X \in X^*$.

Let X be a separable Banach space with property (B) and let $A:X\to X^*$ be an operator (nonlinear in general) and consider the nonlinear operator equation

(1) $A \times u_{\epsilon} \times X^{*}$

Let $A_n = P_n^* A P_n$, $u_n = P_n^* u_n$. Then we can write the approximating equation

(2)
$$A_n x_n = u_n$$
, $x_n \in X_n$, $u_n \in X_n^*$

which is a nonlinear operator equation in finite dimensional subspaces. We say that any solution x_n of (2) is an <u>n-th order Galerkin approximation of (1)</u> and $\{x_n\}$ is a <u>Galerkin approximating sequence</u> for the equation (1). In general, the sequence $\{x_n\}$ does not converge either strongly or weakly to a solution of the equation A = u.

In this paper we give some general conditions which assure that the weak or strong limit points of the approximating sequence $\{x_n\}$ are solutions of the equation Ax = u.

THEOREM 1: Assume that the equation (1) has a Galerkin approximating sequence $\{x_n\}$. Then,

- i) Any strong limit point of $\{x_n\}$ is a solution of the equation (1) provided A is continuos.
- ii) Any weak limit point of $\{x_n\}$ is a solution of the equation (1) provided A is continuous from the weak topology of X to the w^* topology of X^* .

For the proof of this theorem we need the following lemmas .

LEMMA 1: i)
$$y_n \rightarrow y$$
 implies $P_n y_n \rightarrow y$, $y_n \in X$, $y \in X$

ii)
$$u_n \rightarrow u$$
 implies $P_n^* u_n \rightarrow u$, $u_n \in X^*$, $u \in X^*$

iii)
$$y_n \stackrel{w}{\rightarrow} y$$
 implies $P_n y_n \stackrel{w}{\rightarrow} y$

iv)
$$u_n \stackrel{w^*}{\to} u$$
 implies $P_n^* u_n \stackrel{w^*}{\to} u$

<u>PROOF.</u> i) By the principle of uniform boundedness the set $\{\|P_n\|\}$ is bounded, so $||y \cdot P_n y_n|| \le ||y \cdot P_n y|| + ||P_n y \cdot P_n y_n|| \to \text{ o if } n \text{ tends to infinity.}$

ii) For any $u \in X^*$ we have

 $< P_n \ y_n$, $u> = < y_n$, $P_n^* \ u> = < y_n$, $u> + < y_n$, $P_n^* \ u \cdot u> \to o$ if n tends to infinity. The proof of ii) is similar to the proof of i), and so are the proofs of iii) and iv).

<u>LEMMA 2:</u> If A is continuous, then $A_n y \rightarrow Ay$ for every $y \in X$.

<u>PROOF</u>. Since $P_n y \rightarrow y$, it follows that $AP_n \rightarrow Ay$.

Thus $P_n^* A P_n y = A_n y \rightarrow Ay$ by lemma 1.

<u>PROOF OF THEOREM</u> 1. i) If x is a strong limit point of x_n there is a subsequence $\{x_n\}$ which converges to x, so $P_{n_k}^* A x_{n_k} \to Ax$ by lemma 1 (part ii). Since $P_{n_k}^* A x_{n_k} = u_{n_k} \to u$, it follows that Ax = u.

ii) Let $x_{n_k} \stackrel{w}{\longrightarrow} x$. Then one uses part iv) of lemma 1 to show that Ax = u.

THEOREM 2: We make the following assumptions:

- i) Let D(A) be the domain of the operator A from X into X^* . Let $y_n \stackrel{w}{\longrightarrow} y$ and $Ay_n \stackrel{w^*}{\longrightarrow} v$. Then $y \in D(A)$ and Ay = v.
- ii) There is a Galerkin approximating sequence $\{x_n\}$ for the equation Ax = u such that $\{Ax_n\}$ is bounded.

Then any weak limit point of $\{x_n\}$ is a solution of the equation (1).

The proof of this theorem is based on the following lemma:

<u>LEMMA 3</u>: Assume that the equation (1) has a Galerkin approximating sequence $\{x_n\}$. Then $\{Ax_n\}$ is bounded if and only if $Ax_n \stackrel{w^*}{\to} u$ (we do not assume that A is continuous).

<u>PROOF.</u> Let $z \in X$ and assume $\{Ax_n\}$ is bounded. Then, $\langle z, Ax_n \rangle = \langle z \cdot P_n z, Ax_n \rangle + \langle P_n z, Ax_n \rangle$

Now, $\langle z \cdot P_n z, A x_n \rangle \to o$ and $\langle P_n z, A x_n \rangle = \langle z, P_n^* A x_n \rangle = \langle z, u_n \rangle \to \langle z, u \rangle$. Therefore $A x_n^{w_n^*} u$. If $A x_n^{w_n^*} u$ then $\{A x_n\}$ is w^* , bounded, so it is norm bounded by a well-known theorem.

<u>PROOF OF THEOREM</u> 2. Let x be a weak limit point of $\{x_n\}$ and let $x_{n_k}^w \to x$.

Then $A \times_{n_k}^{w^*} u$ by lemma 3 and condition ii), so $A \times u$ by condition i).

THEOREM 3. The hypothesis of teorem 2. Then,

- a) If A has an inverse A^{-1} which is continuous from the w^* topology into the strong (weak) topology, then $\{x_n\}$ converges strongly (weakly) to the unique solution of the equation (1)
- b) If A^{-1} is compact, then $\{x_n\}$ converges strongly to the unique solution of equation (1).
- <u>PROOF.</u> a) Let $A \times_n = v_n$. Then $v_n \stackrel{w^*}{\to} u$ by lemma 3, so $x_n = A^{-1}(v_n)$ converges strongly (weakly), say, to $x \in X$. By condition ii) $x \in D(A)$ and $A \times u = u$
- b) Since A^{-1} is compact, it follows that $\{x_n\} = \{A^{-1}v_n\}$ has a strong limit point. If x is a limit point of x_n , then Ax = u by theorem 2.

REMARK. The conditions given in the previous theorem can be applied to unbounded linear operators. If A is a differential operator, then the domain D(A) of A is some dense subspace of a Hilbert space H. If we assume that A is symmetric and satisfies the condition

(3)
$$\langle A x, x \rangle \geq c ||x||^2, c > 0, x \in D(A)$$

then A can be extended to an operator $B[(D(B) \supseteq D(A))]$ and the restriction of B to D(A) is A) such that its range is all of X and B^{-1} is continuous. Usually B is referred to as the Friedrichs extension of A. For details see [4; p.5]. We observe also that in many boundary value problems the inverse operator A^{-1} is an integral operator defined by a Green function, so in many cases A^{-1} is compact. Since

$$\langle A_n | x_n, x_n \rangle = \langle P_n^* | A | x_n, x_n \rangle = \langle A | x_n, x_n \rangle > c ||x_n||^2,$$

it follows that $A_n: X_n \to X_n$ is one to one and linear, so the range of A_n is X_n . Therefore (3) implies the existence of a Galerkin approximating sequence $\{x_n\}$ for every $u \in X$. In general, however, $\{A \times_n\}$ is not bounded.

Let A be a strongly monotone map from X into X^* , i.e A satisfies

(4)
$$\langle x \cdot y, Ax \cdot Ay \rangle \geq c ||x \cdot y||^2$$

for every x, $y \in D(A)$ and some constant c > 0. Then it follows from (4) that

(5)
$$||A_n \times A_n y|| \ge c ||x \cdot y||, x, y \in X_n$$
.

A simple argument based on Brouwer's theorem on invariance of domain (see Browder [1] or Petryshyn [6]) shows that $A_n x_n = u_n$ has a unique solution which is denoted by x_n . Therefore, if A is strongly monotone and $X_n \subset D(A)$ for every n, then one can show the existence of a Galerkin approximating sequence. Moreover, $\{x_n\}$ converges strongly to the unique solution of the equation A x = u if A is strongly monotone and continuous, as has been shown by the authors mentioned before. We now state a theorem for noncontinuous, strongly monotone operators. We assume that A satisfies.

(6)
$$||A x|| \leq M ||x||$$

For all $x \in X_n$ and some constant M which does not depend upon n.

THEOREM 4: Let X be a reflexive Banach space with property (B) and let A be a densely defined operator from X into X^* . Assume that A satisfies (4) and (6) and A^{-1} is continuous from the w^* -topology into the strong (weak) topology. Then equation (2) has a unique solution x_n for each n, and $\{x_n\}$ converge strongly (weakly) to the unique solution of equation (1).

<u>PROOF</u>. The operator A_n maps X_n into X_n^* and (5) implies that

 A_n is one - to - one. Also, (5) implies that the range of A_n is closed. By Brouwer's theorem on invariance of domain, the range of A_n is open. Therefore the range of A_n is X_n^* since it is connected. Thus, we have shown that the equation $A_n x_n = u_n$ has a unique solution. Next, we show that $\{x_n\}$ is bounded. From (5), putting y = 0, we obtain

$$c \mid \mid x_n \mid \mid \leq \mid \mid A_n(x_n) - A_n(0) \mid \mid \leq \mid \mid u_n \mid \mid + \mid \mid A_n(0) \mid \mid \leq \mid N \mid \mid$$

for some constant N since $u_n \to u$ and $A_n(0) \to A(0)$. Now, (6) implies that $\{Ax_n\}$ is bounded, so by lemma 3 $Ax_n^{w*} \to u$. Since $A^{-1}u$ is defined, it follows that $\{x_n\}$ converges strongly (weakly) to $A^{-1}u = x$. This concludes the proof.

REFERENCES BO BOND IN THE COMMENT OF THE PROPERTY OF THE PROPE

- 1. BROWDER, F. E., "Monlinear accretive operators in Banach spaces", Bull
 Amer. Math. Soc. 73 (1967) 470 476
- 2. BROWDER, F. E., "Approximation solvability of monlinear functional equations in normed linear spaces", Arch. Rat. Mech. and Analysis, 26 (1967).
- 3. MINTY, G. J., "Monotone (monlinear) operators in Hilbert space", Duke Math. J., 29 (1962) 344-346.
- 4. MINKHLIN, S. G., "The problem of the minimum of a quadratic functional", Holden Day (1965).
- 5. PETRYSHYN, W. V., "Projection methods in monlinear functional analysis", J. Math. and Mech. 17 (1967).
- 6. PETRYSHYN, W. V., "Remarks on the approximation-solvability of monlinear functional equations", Arch. for Rat. Mech. and Analysis, 26 (1967) 43-49.
- 7. VAINBERG, M. M., "Variational methods for the study of monlinear operators", Holden-Day (1964)

University of Puerto Rico
Mayaguez, Puerto Rico