Revista Colombiana de Matematicas Volumen IV (1970) pags 7 - 15

ON THE MAXIMALITY OF $Sp(L)$ IN $Sp_n(k)$

by

Ne/o ALLAN

Let *k* be the quotient field of a Dedekind domain O, $(k \neq 0)$ and let $G = Sp_n(k)$ be the Symplectic Group over *k.* G acts on the *2n* -dimensional vector space *V.* Let L be a lattice in *V*, and let $Sp(L)$ be the stabilizer of L in $Sp_n(k)$. Our purpose is to investigate whether or not there exists a subgroup of $Sp_n(k)$ which contains *SP(L)* as a subgroup of finite index. Although in several points we need only weaker assumptions, to describe our methods we shall assume that all residue class fields of k are finite. First of all we would like to point out that the Q -module $A(Sp(L),Q)$ generated by $Sp(L)$ in $M_n(k)$, is an order, i.e., it is a subring which is a finitely generated O-module and generates $M_n(k)$ over k . Also is $\Gamma \supset Sp(L)$ as subgroup of finite index the $O \cdot$ module $A(\Gamma, O)$ is an order containing $A(Sp(L), O)$. The mapping $a: g \rightarrow f^t g J = g^{-1}$, $J = \begin{pmatrix} 0 & E_n \end{pmatrix}$ induces as involution in $M_n(k)$ i.e., an antiauto *.Eⁿ* 0 morphism of order 2 and as Γ and $Sp(L)$ are groups, σ leaves invariant both orders $A(\Gamma, 0)$ and $A(Sp(L), 0)$. On the other hand given a σ -invariant order L in $M_n(k)$, it is easy to see that $L \bigcap Sp_n(k)$ is a group which contains $Sp(L)$ as subgroup of finite index if $L \supset A(Sp(L), 0)$. Our problem is then to calculate the σ -invariant orders, in particular the maximal ones, containing $A(Sp(L), 0)$. We show that $A(Sp(L), 0)$ is contained in precisely one maximal σ -invariant order N, and $N = A(Sp(L), O)$ if and only if the elementary divisors (see §3) of L are square free. Consequently $Sp(L)$ is contained in at most one maximal group in $Sp_n(k)$, and it is maximal if and only if the elementary divisors of L are square free. We also give a rough estimate on the index of $Sp(L)$ in the maximal group.

7

1. The order $A(Sp(L), O)$.

Let *k* be the quotient field of a Dedekind domain *O*. Let $G = Sp_n(k)$ be the Symplectic Group over k , i.e., G is the group of all $2n$ by $2n$ matrices $g\in M_{2n}(k)$ such that ${}^{t}gJg = J$ where $J = \begin{pmatrix} 0 & E_n \ E_n & 0 \end{pmatrix}$ *f*, E_n being the *n* by *n* identity matrix and \int_{g}^{f} being the transpose matrix of g . Let $V = k^{2n}$ be the standard $2n$ *-* dimensional vector space over *k*, with basis $\{e_1, \ldots, e_{2n}\}\$. If we write each vector *x* as a column matrix, then we have an alternating form defined by $f(x, y) = {t_x}Jy$. Let $\{a_1, \ldots, a_n\}$ be ideals in O such that a_i divides a_{i+1} for all $i = 1, \ldots, n\cdot 1$; we consider the lattice $L = Oe_1 + \ldots + Oe_n + a_1e_n$ $+ \cdot \cdot \cdot + a_n e_{2n} \cdot$ Let *Sp(L)* be the group of the *Sp_n(k)* units of L, i.e., *Sp(L)* = { $g \in M$, $gL = L$ }. Let *L* be an order in $M_{2n}(k)$; fixed $1 \leq i$, $j \leq 2n$ we shall denote by L_{ij} the ideal generated by the (i, j) *-* entry of all $g \in L$. We say that L is a direct summand if as 0 -module, $L = \sum_{i,j=1}^{2n} L_{ij}e_{ij}$ where e_{ij} are the matrix of $M_{2n}(k)$. This happens if in particular all e_{ii} **cL**, and in this case we must have $L_{ii} = 0$, otherwise by considering powers of $L_{ii}e_{ii}$, L would not be a finite 0- module. Let $g \in M_{2n}(k)$, and let us define $g(g) = -J^t g J$; g is clearly an involution of the algebra $M_{2n}(k)$, and G is precisely the set of all $g \in M_{2n}(k)$ such that $g_{\sigma}(g) = E_{2n}$. If we write the matrices $g \in M_{2n}(k)$ in four *n* by *n* blocks, say $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, then $\sigma(g) = \begin{pmatrix} t_D & -t_B \\ -t_C & t_A \end{pmatrix}$, We say that L_{max} is σ -invariant if $L = J^t L J$, i.e., if for all $g \in L$, $g(g) \in L$. Clearly if L is any order, then $L \bigcap_{\sigma} (\dot{L})$ is $_{\sigma}$ -invariant. If L is $_{\sigma}$ -invariant, then $L_{ij} = L_{n+j} n+i$, L_{n+ij} = $L_{n+j\,i}$, and $L_{i\,n+j}$ = $L_{j\,n+i}$, for all i,j = 1 , \dots , n . If $\mathrel{{\mathsf{L}}}$ is direct summand, then the converse is also true. If Δ is a subgroup of $Sp_n(k)$, then we shall denote by $A(\Delta, 0)$ the 0-module generated by Δ in $M_{2n}(k)$. From the fact that Δ is a group it follows that $A(\Delta, 0)$ is an order and $\sigma(g) \in A(\Delta, 0)$ whenever $g\mathcal{C}A(\Delta,0)$. If *M* is the order of all *O*-endomorphisms of a lattice L, then we shall set $End_{\sigma}(L) = M \cap \sigma M$. If *a* and *b* are fractional ideals in *k*, then $[a:b]$

will denote the ideal $(a/b)\bigcap O$. If L is σ -invariant, then $L\bigcap Sp_n(k)$ is a group; if, moreover, L is direct summand, then it is not true in general that $L = L'$, where $\mathsf{L}' = A(L \cap Sp_n(k), 0).$

LEMMA 1: If $e_{ii} \in L^{\bullet}$, for all $i = 1, \ldots, 2n$, then $L = L^{\bullet}$.

PROOF: Clearly L is direct summand, and $L' \subset L$, or $L'_{ij} \subset L_{ij}$ for all (i, j) . We consider elements $g = g(A, D) = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \in Sp_n(k)$, (i.g., ${}^tAD = E_n$), with $A = E_n + ae_{ij}$, $i \neq j$, $i, j = 1, ..., n$, and ae_{Lij} ; consequently $e_{ij}ge_{jj} = ae_{ij}$ lies in L', hence $L_{ij}^{\prime} \supset L_{ij}$, or $L_{ij}^{\prime} = L_{ij}$ and, since $L_{ii}^{\prime} = O$, this is true for all $i, j = 1, ..., n$; by the σ -invariance we get the same result for all $i, j =$ $n+1$,..., $2n$. Now we consider elements $g = g(H) = \begin{pmatrix} E & H \\ 0 & E \end{pmatrix} \in Sp_n(k)$, i.e., ${}^{t}H = H$, and choose $H = a(e_{ij} + e_{ji})$, $i, j = 1, ..., n$, $i \neq j$ and $a \in L_{i,n+j} =$ $L_{j,n+i}$; thus $e_{ii}ge_{n+jn+j}=ae_{in+j}\boldsymbol{\epsilon} L'$, or $L'_{in+j}=L_{in+j}$. Similar argument applied to ${}^t g(H)$, but with $a \in L_{n+i}$ $i = L_{n+i}$ yields L'_{n+i} $i = L_{n+i}$, for all $i, j = 1, ..., n$, $i \neq j$. To complete our proof, it suffices to consider $g(H)$ and ${}^t g(H)$, $H = ae_{ii}$ where $ae_{L_{in+i}}$, and $ae_{L_{n+i}}$, respectively.

 $q.e.d.$

Before calculating the order $A(Sp(L), 0)$ we shall observe that $Sp(L) = End_a(L)$ $Sp_n(k)$.

LEMMA 2: ¹ The order $L = A(Sp(L), 0)$ is precisely $End_{\sigma}(L)$; it is direct summand and

$$
L_{ij} = L_{n+1, n+i} = [a_j : a_i] = a_i^T L_{n+j} = a_j L_{i, n+j}
$$

PROOF: First of all we observe that $g = g(H)$, $H = ae_{jj}$, $j = 1, ..., n$, $a \in a_i^{-1}$, lies in $End_{\alpha}(L)$ because $g^{-1} = g(-H)$, and if $x \in L$, $gx = x + ax_{n+i}e_i$ and ax_{n+j} €O. Similar argument applies to ${}^{t}g(H)$ with $a \in a_{j}$. Consequently $L_{n+jj} \supset a_j$, $L_{jn+j} \supset a_j^{-1}$, and $a_j e_{n+jj}$, $a_j^{-1} e_{jn+j} \subset L$; hence $e_{jj} \in L$ for all $j = 1, \ldots, 2n$, L is direct summand and by lemma 1, $L = End_{\sigma}(L)$. Hence 1. 1 This lemma has been mistated in [2] p.7.

 $L_{n+ij} = a_j$ and $L_{jn+j} = a_j^{-1}$. Now let a be an ideal. Then for all x L (de j)x, $(ae_{n+i\ n+i})x\subset L$ if and only if ax_ie_i , $ax_{n+i}e_{n+i}\subset L$, $a\subset O$ and $aa_i\subset a_j$, or equivalently $a = (a_j/a_i)\bigcap O = [a_j:a_i]$. Consequently $L_{ij} = [a_j:a_i]$. Finally as $(L_{ij}e_{ij})(L_{jn+j}e_{jn+j}) = L_{ij}L_{jn+j}e_{in+j}$ and as $(L_{in+i})^{-1} = L_{n+i}$ we get that $L_{ij}L_{jn+j} = L_{in+j}$ and similarly $L_{n+1,n+j}L_{n+j} = L_{n+j}$. Therefore $L_{in+j} =$ $[a_i : a_i] a_i^{-1}$ and $L_{n+i j} = [a_i : a_j] a_j$

We shall introduce the matrix notation : $L = \begin{pmatrix} L_{11} \cdots L_{1n} \\ L_{n1} \cdots L_{nn} \end{pmatrix}$

and set $a_{ij} = a_i/a_j$, we get that

 $A(Sp(L), 0) = \begin{pmatrix} 0 & a_{21} & \cdots & a_{n1} & a_1^{-1} & a_1^{-1} & \cdots & a_1^{-1} \\ & & & & & & \\ 0 & 0 & \cdots & a_{n2} & a_1^{-1} & a_2^{-1} & \cdots & a_2^{-1} \\ & & & & & & \\ 0 & 0 & \cdots & 0 & a_1^{-1} & a_2^{-1} & \cdots & a_n^{-1} \\ & & & & & & \\ a_1 & a_2 & \cdots & a_n & 0 & 0 & \cdots & 0 \\ & & & & & & & \\ a_n & a_n & \cdots & a_n & a_{n1} & a_{n2} & \$

We say that a σ -invariant order in $M_n(k)$ is maximal if it is not properly contained in any other σ -invariant order.

THEOREM 1: There exists at most one maximal σ -invariant order containing $L = A(Sp(L), O)$, and L is maximal if and only if the elementary divisors of L are square free.

PROOF: Let M be any σ -invariant order containing L. If $M = (M_{ij})$, then $M_{ij} \supset L_{ij}$ for all $i, j = 1, ..., 2n$. Consequently $e_{ji} \in M$, M is direct summand, and $M_{i n+i} = a_i^{-1} = (M_{n+i}i)^{-1}$, $i = 1, ..., n$. Now $M = J^t M J$ implies that

$$
[(JiMJ)n+i n+j en+i n+j] (aj en+j) (Mjk ejk) = MjiMjk aj en+i k
$$

Hence $M_{ji}M_{jk}a_j \subset M_{n+j,k}$ for all $i, j, k = 1, ..., n$. In particular if $i = k$ we have

$$
(M_{jk})^2 a_j \subset M_{n+kk} = a_k \quad \text{or} \quad (M_{jk})^2 a_{jk} \subset O
$$

Now from

$$
(M_{in+j}e_{in+j})(a_je_{n+j}) = M_{in+j}a_je_{ij}
$$

$$
(a_i^1e_{in+i})(M_{n+ij}e_{n+i,j}) = a_i^1 M_{n+ij}e_{ij}
$$

and from

$$
(M_{ij}e_{ij})(a_j^{-1}e_{jn+j}) = M_{ij}a_j^{-1}e_{in+j} \cdot (a_i e_{n+ij})(M_{ij}e_{ij}) = a_i M_{ij}e_{n+ij}
$$

we shall $\frac{4M}{M}M^{3}M^{2} = \frac{1}{M}a_{\rm B} \frac{1}{a_{\rm B}}\frac{1}{a_{\rm B}}$

we get that

$$
M_{ij} = M_{i n + j} a_j = M_{n + i j} a_i^{-1} \quad \text{for all} \quad i, j = 1, \ldots, n \qquad (1)
$$

Let now $j > k$ and write $a_{jk} = b_{jk}^2 \ t_{jk}^2$ with b_{jk} , t_{jk}^2 integral ideals such that t_{jk} is square free ; if we set $M_{jk} = P/\mathcal{Q}$, $(P,Q) = 1$, P,Q integra ideals, then $Q^2|a_{jk}$ or $Q|b_{jk}$, i.e., $M_{jk} \subset b_{jk}^{-1}$. If $j < k$, then $M_{jk}^2 \subset a_{kj}$ or $a_{kj} | M_{jk}^2$ hence $b_{kj} t_{kj} | M_{jk}$ or $M_{jk} \subset b_{kj} t_{kj}$. Consequently if *a*_{n1} is square free, then $b_{jk} = 0$, $a_{jk} = t_{jk}$ and $L_{ij} = M_{ij}$ for all *i*, *j* = *1 ,* $\cdot\cdot\cdot$ *,* $\cdot\cdot$ *o* $\cdot\cdot$ invariance and (1) imply $L = M \cdot$ We now define $N_{jk} = b_{jk}^{-1}$ or $N_{jk} = b_{kj}t_{kj}$ according to whether $j > k$ or $j < k$, $j, k = 1, ..., n$, $N_{kk} = N_{n+k} n_{+k} = 0$, and

$$
N_{kj} = N_{n+j\,n+k} = a_j N_{kn+j} = a_k^{-1} N_{n+k\,j}
$$

We claim that the direct sum N of $N_{ij}e_{ij}$, $i,j = 1, ..., 2n$ is an order. As e_{ij} **EN** for all $i = 1, ..., 2n$ it suffices to verify that $N_{ij}N_{jk}CN_{ik}$ for all $i, j, k = 1, \ldots, 2n$. We shall consider first the case $i, j, k = 1, \ldots, n$. We

 \mathbb{N} 101 $\mathbb{N} = \mathbb{N}$ $\mathbb{N} = \mathbb{N}$

have that $i < j < k$ implies

$$
b_{ki}^{2}t_{ki} = a_{ki} = a_{kj} a_{ji} = (b_{ji} b_{kj})^{2} t_{ji} t_{kj}
$$

or there exists an integral ideal u_{ijk} such that

$$
u_{ijk}^2 t_{ki} = t_{ji} t_{kj}, \quad b_{ji} b_{kj} u_{ijk} = b_{ki}, \quad u_{ijk} | t_{ji}, t_{ki}, b_{ki}
$$

and consequently

 $N_{ij}N_{ik} = b_{ji}t_{ji}b_{kj}t_{kj} = u_{ijk}N_{ik}$

and if $k < j < i$

$$
N_{ij}N_{jk} = b_{ij}^{-1} b_{jk}^{-1} = b_{ik}^{-1} u_{kji} = u_{kji}N_{ik}
$$

Next for $i < k < i$ we have

$$
N_{ij}N_{jk} = t_{ki}b_{ki}(t_{jk}u_{ikj}^{-1}) = N_{ik}(t_{jk}u_{ikj}^{-1})
$$

Ja_{leni}M = GM

similarly $j < k < i$ implies $N_{ij}N_{jk} = N_{ik}(t_{kj}u_{jk}^{\dagger}i)$

the two last remaining situations we get $k < i < j$ and $N_{ij} N_{jk} = N_{ik} (t_{ji} u_{kij}^1)$, $j < i < k$ and $N_{ij}N_{jk} = N_{ik}(t_{ik}u_{jk}^{-1})$.

Now

$$
N_{ij}N_{jn+k} = N_{ij} a_k^{-1}N_{jk} \subset a_k^{-1}N_{ik} = N_{in+k}
$$

$$
N_{n+ij}N_{jk} = a_iN_{ij}N_{jk} \subset a_iN_{ik} = N_{n+ik}
$$

 $N_{n+i n+j} N_{n+j n+k} = N_{ji} N_{kj} \subset N_{ki} = N_{n+i n+k}$

 $a_{kj}N_{kj} = N_{jk}$, for if $k < j$ we observe that

$$
a_{kj}N_{kj} = a_{kj}b_{jk}t_{jk} = b_{jk}^{-2}t_{jk}^{-1}b_{jk}t_{jk} = b_{jk}^{-1} = N_{jk}.
$$

11、5 中 diamoni 36. 麻 1.4 线

 \mathbf{r}

and the other case is similar.

Consequently advocated their violence in detection of the second and

$$
N_{i n+j} N_{n+j n+k} = a_j^{-1} N_{ij} N_{kj} = a_{kj} a_k^{-1} N_{ij} N_{kj} = a_k^{-1} N_{ij} N_{jk} \subset a_k^{-1} N_{ik} = N_{i n+k}
$$

$$
N_{n+i n+j} N_{n+j k} = a_j N_{ji} N_{jk} \subset a_i N_{ik} = N_{n+i k}.
$$

Finally $M \subset N \cap \sigma(N)$ which is σ -invariant, hence if M is maximal we have $M = N \cap \sigma(N)$. It is also clear that the matrix $g(A,D)$ where $A = E + \xi^{-1} e_{ij}$ $\xi \in b_{ij} \neq 0$, ${}^tDA = E$, lies in $M-L$.

 $q.e.d. 1$

2. Estimates on indices. 1

From now on we shall assume that all the residue class fields with respect to the non archmedian valuations are finite. The following lemma is a corollary of lemma 1 of [1], and we shall use the same notation as in [1].

LEMMA 3: Let Δ_1 and Δ_2 be arithmetic groups in G_k such that $\Delta_2 \supset \Delta_1$. Let us assume that there exists ideals a,b,c of O such that $ab A(\Delta_2, 0) \subset bA(\Delta_1, 0) \subset M_n(0)$, and $cM_n(0) \subset A(\Delta, 0)$. Then $[\Delta_2 : \Delta_1]$ is at most the cardinal of $abA(\Delta_2, 0)$ modulo a^2bc . Moreover if G is the Symplectic Group, then if suffices to consider the number $m(\Delta_{\mathbf{2}} , \Delta_{\mathbf{1}})$ of classes C in $abA(\Delta_2, 0)$ modulo a^2bc , such that for all $g \in C$, ${}^t g Jg = 0$ modulo a^2b .

PROOF: If $bag_1 \equiv bag_2$ modulo ba^2c , $g_1, g_2 \in \Delta_2$, then $g_1^{-1}g_2 = 1 +$ $(g_1^{-1}a)cw$, $w \in M_n(O)$, and as $g_1^{-1}a \in A(\Delta_1,O)$ we get $g_1^{-1}g_2 \in \Delta_1$; hence our first assertion . If $\Delta_2 \subset sp_n(k)$, then for all $g \in \Delta_2$, $g^1 = abg$, we have i_g ' g' = 0 modulo a^2b^2 and, a fortiori, i_g ' g' = 0 modulo a^2b , and the same happens to any other element in the class of g^1 modulo a^2b . Internals on the state

 $\mathbb{R}_2^{n_1,n_2\cdot d_1}$, then $\mathbb{R}^{n_1\times n_2}\times \mathbb{R}^{n_1\times n_2}\times \mathbb{R}^{n_2}$ and $\mathbb{R}^{n_1}\times \mathbb{R}^{n_2}\times \mathbb{R}^{n_1}\times \mathbb{R}^{n_2}\times \mathbb{R}^{n_1}\times \mathbb{R}^{n_2}\times \mathbb{R}^{n_1}\times \mathbb{R}^{n_2}\times \mathbb{R}^{n_1}\times \mathbb{R}^{n_2}\times \mathbb{R}^{n_1}\times \mathbb{R}$

We remark that the number of classes $ab A(\Delta_2, 0)$ modulo a^2bc is at most n^{λ} where λ is the number of elements in O/a^2bc .

For future reference, and complement of lemma 1 of [1], we shall prove:

LEMMA 4 , If **L** is an order in $M_{\mathbf{z}}(O)$, then $L \cap G_k$ is a group, ,

PROOF: It is well known that there exists an integral ideal *a* in *O* such that $L \supset aM_n(0)$. Let L^* be a maximal o-order containing L. By lemma 1 of [1] $L^*\Lambda G$ is a group commensurable to G_{Ω} and $G_{\Omega}(a)$; from $L^* \cap G \supset L \cap G \supset G_{\Omega}(a)$, we get that $g \in L \cap G$ implies $g^m \in G_{\Omega}(a)$ for some m , i.e., $g^{\bullet}{}^{I}\mathbf{\in} g^{m\bullet}{}^{I}G_{O}(a)\subset\mathbf{L}\cap G$. Hence our assertion . I

 $q, e, d, 1^{0.5}$

3. Application to maximality.

Let L be a lattice in $V \approx k^{2n}$, and *Sp(L)* be its stabilizer in $Sp_n(k)$. By [5] p. B5, we can replace $L_$, if necessary, by another lattice L' in such way that the maximality or not of $Sp(L)$ is preserved, and L' is the lattice considered in section 1, for conveniently chosen ideals $\{a_1, \ldots, a_n\}$; moreover $\{1, a_{21}, \ldots, a_{n1}\}$ are invariants of L called the elementary divisors of L. We have

THEOREM 2: $Sp(L)$ is contained in at most one maximal arithmetic group Δ in $Sp_n(k)$, with index at most $m(\Delta, Sp(L))$. In particular $Sp(L)$ is maximal, as an arithmetic group, in $Sp_n(k)$, if and only if the elementary divisors of L are square free.

PROOF: If Δ is any arithmetic group containing $Sp(L)$, then $A(\Delta, 0) \supset A(Sp(L), O)$. By theorem 1 we have that $A(\Delta, 0) \subset N \cap \sigma(N)$ i.e., $\Delta q N \Lambda \sigma(N)$) $\Delta sp_n(k) = \Delta_N$. If the elementary divisors of L are square free, then by theorem 1 $L = N \cap \sigma(N)$, hence $Sp(L) = \Delta_N$ is maximal in $Sp_n(k)$. If not, the element $g(A, D)$ in theorem 1 lies in $\Delta_{\mathbf{N}}$ but not in $Sp(L)$. The estimate on $\left[\Delta_N:Sp(L)\right]$ is a consequence of lemma 3 with $a = a_{n1}$ and $b = a_1$.

For when reference, and complement of the state of [1], we shall prover

a del termino de cistere (O. A) de essesiolo nomun en lad q. P. d. I

Closing this note we would like to remark that the group Δ_N is maximal containing $Sp(L)$ as subgroup of finite index in the case where O/a_n is finite.

REFERENCES

- 1. *ALLAN,* N. *Some non Maximal Arithmetic Groups, Reuis ta Colombian a de Matematicas Vol. 1I No.1,* 1968, *p.* 21/28.
- 2. *ALLAN,* N. *Arithmetic Sub group so] Some Classical Groups. Anais da Academia Bra sileira de Ciencias,* 1966, *Vol.* 39, *No.1, p.15/18.*
- 3. *GUTNIK,* L. *On the Extension* 0/ *Integral Subgroups* 0/ *Some Groups (Russian) Vestnik Leningrad Uniu, Ser, Math. Mech. and Astr. Vol.* 19 (1957) *p.* 51/79.
- *4. HIJIKATA, H. Maximal Compact Subgroups* 0/ *Some p.Adic Classical Groups, yale Notes* 1964.
- *5. SHIMURA, G. Arithmetic* 0/ *Alternating Forms and Quaternion Hermitian Forms.* J. *Math. Soc. Japan* 15 (1963) *p.* 33/65.

Departamento de Matematieas y E*stadistica Universidad Nac ion al de Colombia Bogota, Colombia S.A. (Recibido Oc tubre de 19(9)*