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UNA REPRESENTACION DE LA TRANSFORMACION DE HANKEL

por

Yu TAKEUCHI

§ 0 Introduccion

Para la demostracion de la formula inversa de Hankel se usa generalmente
un método andlogo a la demostracion del teorema de Fourier - Plancherel (3],
[2]1,(4) . En este trabajo , primero se demuestra que el espacio lineal deter-
minado por el sistema de funciones {'e'kx , k=1,2,.. {es denso en L 5(0,%),
y se construye una base del espacio L, , {¢, (x), n=1,2,.. } por e/ méctodo

- 2x
X e-.\‘

de Schmidt , donde ¢ (x) es una combinacion lineal de e, nx .

vee , €

n
b (%) = z/;_] E,pe® (n=1,23... ).

Se puede determinar los coeficientes E, , utilizando la propiedad ortogonal
de los polinomios de Jacobi , asi
. /
E = (o1&l 3 (n+k-1)
nk = DN R O B

De la misma forma , se demuestra que el espacio lineal determinado por el sis

tema de funciones | (1/2k) exp.(-x/4k) , k=1,2,... {es denso en LA0,<) y

se construye otra base del espacio 1.2 . {¢n(x) . Pero tememos

2n
entonces los coeficientes de 1 (x) son iguales a los coeficientes de ®,,(%),

("% c'kx ) =( I ?-x/4n ,ZL/C ()-x/-ik ) para todo n,k

o sea

U, (%) = z}:j By kg o i m=1,23.. )

Como los dos tipos de funciones exponenciales ok , (1/2k) X/ 4k estin
relacionadas por la transformacion integral de Hankel [7] [12] entonces las
dos bases {én P {(//n} estdn ligadas por la transformacicn , asi se demuestra

que la transformacion de Hankel es un operador unitario en el espacio L,.
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§ 1 Algunas propiedades de los sistemas de funciones en Lz(o,wl

Lema 1.

Sea A(x) medible en [0, ~ ) tal que |\(x)|, 1/|\| sean acotadas en
cualquier intervalo acotado. Sea fgSn(x)} un sistema de funciones en
L,(0,) tal que Ap, € L0, ) paratodo n, entonces el sistema | ¢n}
determina un subespacio lineal denso en L, siy solo si el sistema i)\d),,}
determina un subespacio lineal denso en L2 .

Demostracion

Dada fe L, dado cualquier ¢ (> 0) existe N tal que

f 0|2 dx < (/22

fitx) = fx)  (x<N) ,  fi(x)=0 (xxN)

entonces
Wf-fll <e2. (1)

i) Supongamos que {d)n { determina un subespacio lineal denso en L, . Como

fl/’\ pertenece a LZ(O' ~) entonces existe una combinacion lineal de by tal

que

n ‘
[l fi/X - Eie=1 Ap dy |l < e/2M

M=S A
1 xeuo,Nl] (x)l .

Multiplicando por N se tiene :

H f] - Ek=

donde

LAl <M = 2 (2)

De (1) y (2) tenemos :
7
17=2 A agp)ll < e
0 sea que { )\q‘)k } determina un subespacio lineal densc en L2 .

ii) Supongamos que i)\qsn} determina un subespacio lineal denso en L, .

Como fl)\ pertenece a L2 , entonces existe una combinacion lineal de Adp

tal que

| fA = 2’:’ L Be Qg |l < /2
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donde M’ = Sup | 1/Xx)|. Dividiendo por ) tenemos
xdo,1]

I/ - an By ¢y | <_2€W M = /2. (3)

De (1) y (3) se tiene que el sistema {¢k§ determina un subespacio lineal
denso en L2.

Lema 2.

Sea y una funcion medible , estrictamente creciente y derivable tal que

p) =0 , p(+%o) =+,
Si {d)n ,n=1,2,... } es un sistema ortonormal completo en LZ(O,oc) enton

ces el sistema :

U o) f’® n=123 ... |
también lo es .

Demostracion
D g ) TR g u) i (@) dx
o
= [ Bulu(0) Tl w9 de = [ G, (0) G0 At = By

ii) Sea f(x) € L2(0, o~ ) entonces
fm | f(x)|? dx < 400,
o

Sea y la funcion inversa de p » entonces haciendo un cambio de variable

x =p(t) (es decir t =p(x) ) tenemos :

.fw L) |2 v ) dt < 4o,

o

esto es !

fw) v € L0, =) .

Luego , podemos desarrollar /(V(t)).fy‘ (t) como sigue :

fo@) Yv'@ = Ekzl Ay ¢p(1) (4)

donde s |Ak|2 L oo
k=1

En (4) reemplazando v(t) = x tenemos :
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1 00
f(x) = Ekzl Ak ¢k(ﬂ(’€))

w’(x)
ya que t=y(x), v'() =1/ (x). Multiplicando por 1’41'(") se tiene
fix) = Ek:I Ay dpu(x) o1’ (x) . (5)

esto nos demuestra que i gbk(#(x))»/p,'(x , k=1,2,... } es un sistema

completo .

Corol ario
Si {¢n(x) } es un sistema ortonormal completo , entonces los siguien-

tes sistemas también lo son :

i) {qsn(xz)-,"zT} ii) {ann(azx)} (a>0),

§ 2. El sistema de las funciones e"* ,n =12, ...

Teorema 1

Las funciones e, e2%, ... , e , ... determinan un subespacio
lineal denso en L0, ).
Demo stracién

Dada una funcion [ € L2(0, ~) ydadoun ¢ > 0 existe [I(x) (61(4]

fl(x) = 0% e, (%) =a,+ayx+ ... +a,x

tal que
H /'f] H < /2.

Sea m
Dp(x) = |a, +]a;| x+.00 +a,|x

entonces existe B tal que

f: { 4,,(x) 2% dax < /32 (6)

En el intervalo [0, B], p,(x) es continua uniformemente , entonces existe

o tal que
| x-x| < 8 implica | p, (x) pm(x')| <e/32. (7)

Abora , consideramos el siguiente cambio de variable :

1-e%=y (x 20, 0gy<1)
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enlonces

2 n
x=-log(1-y)=y+_§_+..,. + L + R

n
donde -
R = Y & #
P o
(#) Nota: &
I+y+.. +y»1 = 1-y
1-y
n n
clog(ley)= (L _ady =yy.., + 2L Y d
yfl_yyy R
y
* % * ¥ .““
Si y{yozl-e'B< 1 entonces
n Yo n+1
Rl Lty g 1%y ay =1 09
ol-y 1-y, "o I-y, n+ 1.

Como Y, es menor que 1 existen tal que

1 (yo)n+1<6
1-y, n+1

entonces tenemos (por (7)) :

n k
| Dy(%) - P’"(Ek=l_yl-e- }-< el2
La siguiente funcion :
n k n -x k
p (S L= pyZ [Mee’)
869 = Pnl 5 s k SR W )
es una combinacion lineal de
1o, %, 2% ., , enmx
Tenemos o
fo |D,,(%) - &(x) |2 e2% gx
_ B 2 22x 4 p 2 2%y
= fo |2 (%) - 8(x)|“ e % + fB |2, (%) - 8(x) |© e x
Pero 2 k - k
= 2] < )<
e = 10,05 =) < 4 (3 20 ) < anl®

(8)

(9)
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entonces

2 4,(x) =2|q,(x)] 2op(¥)| + lex)| > | D (%) - 8&(x) l 5
por lo tanto se tiene la siguiente desigualdad :

g |on(® - 80 |2 & dx < 4 [y Vapo P e?¥ax < /8 (10)
Por otra parte , de (8) tememos

B B
fo 1pm(x) - g(x) |2 2 dx & (62/4)f 2% dx < (52/8)‘ (11)
()

De (9), (10) y (11) tenemos :

2 2 -2 2 2 2
[ op(x) - g(x) |% e X dx <?f + £ =L4
0 sea que
[ £y -8t e[| = || p,(x) ¥ - gx) ¥ || < /2 (12)
[
Nota.

Profesor Juan Jorvath (Universidad de Maryland) me mandg |a siguien-
te demostracion sencilla del teorema .
Las funciones [ continuas que se anulan para x grande forman un con -

junto denso en L;(0, ). Sea luego [ una tal funcién con [(x) = 0 para

x >a, Pongamos

fl-log t) ,
S S si B stsl
F@) =
0 si 0<t< B

donde 3 = -log a. Por el teorema de Weierstrass existe para ¢ > 0 un
polinomio S a, " tal que | F(t)- Za,1"| < ¢ y ademds se puede

tomar a, = 0. Entonces

0o 1
[ ftx) 2 a, e (lim)x [2 dx = [ |f(<logt)-Za, pirl [2 %
0 o

1 1
= [ |F®-= ant”|2tdt\<52f tdt = /2,
2] o
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. . X _e2x -
A partir del sistema e, % , ..., e ..., por el método de Schmidt

se puede construir un sistema ortonormal completo {g&n(x) ,n=12,0..1% :

(P Bp) = [ Sul*) dplx) dx = 5,

donde ¢ (x) es una combinacion lineal de e”*, 2%, ..., ", digamos

b,(x) = En,] e + En,2 P En,n P (13)

Abora , vamos a encontrar los valores de En ke
Sean Gn(z,z,t) =F(mn+2,n,2,1t (n=0,1,... )los polinomios de

Jacobi , entonces sabemos la siguiente relacion oftogonal : (81(11][10]

g _ 1
J: ti Gn-l(t) Gk_l(t) } dt ——2-;3- 8n,k .

Haciendo el cambio de variable t = e* se tiene :
o
[ € Gpuy(e™) Gpye™) (-¢™) dx = (1/207) 8,
0 X ex -x -x -x 1
[ A7 G (™ Gy (™)) dx = =73 8, (14)
” .
Como e'xGn_I(e'x) es una combinacion lineal de e™* , 2%, .., "X, enton-
ces tememos la siguiente identidad :
bu(x) = € G, (&) V20 = V203 &F Fnil, onil, 2, ), (15)

Utilizando la expresion explicita de los polinomios de Jacobi , tenemos

w2 .12 2 2

_ 3 X -1 . n<-1 )(" -2 ) -3x
- 92 -1 , 2120 2%)

¢n(X) n {e 201 /)2 3(2/)2 e

(P13, AP (- -1)%} X
o ) TR }

(0212 (n?-22)(n?-3%) -
4 (31)°

(16)

Entonces , tenemos los coeficientes de la combinacion como sigue :

T n2e1?
E'I:V-z—;z 2”%(—1_1_)-2- s e s s s e

n
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En general

E

n,

= (pFl 7

g = (k1

o3 (2-12)(n2-22) . . . (n?- (k-1)?)

(k-1)!

k ((k-1)! )%

(nrk-1)!

k! (n-k)! o

En la tabla 1 se muestra algunos valores de E, b

TABLA |
Nk 1 2 3 4 5 6
1 V2
2 4 -6
3 346 | -1246 | 10yG
4 8Y2 | -60Y2 | 120vVZ | -70¥2
5 510 | -60410 | 210970 | -280+T0| 12610
6 1243 | -210¥3 | 112043 -252093| 252093 -924¢3

(17)

También , se puede demostrar inmediatamente que ¢ (x) satisface la sigui-

ente ecuacion diferencial :

(e*-1)

§ 3. El sistema de-las funciones

Teorema 2

&£ ¢

X
n + e

dx?

Las funciones

emX/2 X,

X/ 2 gx/2 ,

, e-x/2 o-x/k ,

determinan un subespacio lineal denso en L2(0,oo) .

Demo stracién

Sabemos que las siguientes funciones .'[5][10]
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un(x)—Ln(x)e n 011'21-

ek k=1,2,...
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donde Ln(x) es el polinomio de Laguerre de gradon ,

forman un sistema ortonormal completo en LZ(O' x). Sea

[y(x) = eX/2 oxlk - Z:=O a,(f) u,(x)

entonces
@B = (o) = [ Lyl explte X)) ds
o

Utilizando la relacion conocida .'[5] (71

11 = 2"" L i
== expl 1-ti S (%)

se tiene

Emof: L,(x) expl- x(1+—i—- )} dx "

n=

_ 1 & . _xt . 114
_T:fo expl I-tlexp{ x(1+k)§ x

1 -_k_ s

k =

Yy

Por lo tanto :

o= kL, k=126 4
. k+1  k+ 1

Sean

k) _ 1 .
b —uo+_k:+_1.u1+ +(k+1)n

Si QW es el subespacio lineal determinado por el sistema (21) entonces

N 00 N 1
1 (k) = A 3 ——1 u;
—N—zk:1 ¢ Yoty 2j=1{1e=1 (k+1) I
Pero :
< ¢ e a2 =2 B =l I -
1N 3oy el j=1 N2© k=l (k)

k . (-
k+1 1-t/(k+]1) k+1 n=o (k+1)"?

un+...

N

(19)

(20)

(21)

59



N+I 00 00
1 1 2 1 1 2
< { —dy} S Y

=1 2 * 1
- {l N 1) 2 > 0 N 5 »
—~7 {logN+1)} +‘,{“,7 52 G- 12 ( )

esto es ;

N
1 (k)
N 2k=1 b - uo (en L2(O:°°) ) cuando N 5 o,

0 sea que

u, €.

Por un procedimiento andlogo al anterior , se puede demostrar (por induccion )

que
u, € W para todo n,
esto es :
W = L,0,~).
Como
o0 1
k+1 RN _
= —_— Ck =120 )
L n=o (k+ 1) "

entonces se concluye que el sistema (fk ,k=1,2,3 ... )determina un sub-

espacio lineal denso en L2(0, o).
Aplicando el lema 1 del pardgrafo 1, tenemos inmediatamente el siguiente

corolario .

Corolario 1

Las funciones e'x/k (k=1,2,3 ...)determinan un subespacio lineal
denso en LZ(O' ) .
Corolario 2

Las funciones L e-x/k ,k=1,2,3 ... determinan un subespacio
2k

lineal denso en Ilz(o,oo) .

Demostracion inmediata. @

Aplicando el método de Schmidt al sistema de funciones del corolario 2

se obtiene un sistema ortonormal completo {(//k(x)} :
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(l/ln, l/lk) =fo U, (%) (/jk(x) dx = an,k

donde l//n(x) es una combinacion lineal de Z—Ik‘ e'x/4k s k=1,2,3, 00, 1m.,

Pero , observando las siguientes relaciones :

1 _-x/4k 1 -x/4n, _ _1 _ r>°(»3:: {-x(L L )} dx = 1
(5 € /HE e = [ e v Ein,
(ekx onx) - foo eXlktn) g - 1
o k+n ,

se ve inmediatamente que los coeficientes de la~combinacion para formar(/;n(x)
son iguales a los coeficientes de la combinacion para ¢,(x) obtenidos en (17),
0 sea que

1 gox/dk (22)

n
¢n(x) = Z 1 En,k _Z_k-

§ 4. Una representacion de la transformacién integral de Hankel

Sean {‘Dn(x) }, {‘Pn(x)} dos sistemas ortonormales completos definidos por

0,0 =B G, <ATx S B, ok

(23)
W) = AT Gx?) =AZE S E

donde {¢,} W} son los sistemas construidos en los pardgrafos anteriores 'y

En,k (k=1,2,. «o,n;n=12,... ) son constantes dadas en (17).

9] [12] [13]

De la siguiente formula conocida A7) [

00

2
fo ek Jo(xy) y dy =1 e-x2/4k (24)

2k

se tiene inmediatamente que

o0 2 w2
{){e-ky VI T o(xy) 7y dy =_2L1: X 4k
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luego
f:q)n(x) Joey)ofxy dy =¥, (x) (n=12... ).
Esto es , la transformacion de Hankel H : [ > Hf=F dada por la integral
Hf =F(x) = f: T x9) {5 fy) dy @5)
transforma el sistema {® } en el sistema {¥, } :

Hq)n:‘l’n n=1,2,3 ¢..

por lo tanto H es un operador unitario. Ademds , si reeemplazamos en (24)

k por 1/4k entonces tenemos :
1 y2/4k -kx?
fo [—275 e ED ]O(xy)-'/xy dy = e ER
esto implica que :
HY = fo Y ) Joxy)fxy dy = @, (x) (n=123 ... ).

Esto es :

H1 & =% (n=123... )

n n

o sea 1
H** = H,. (26)

Por lo tanto , se obtiene la formula inversa de Hankel :

Hf=Fx)= [ ] (sy)y5 f(v) dy
o
. (27)
HF =H1F = f(y) = [ J (xy)yxy F(x) dx .

Nota : La integral impropia (24) converge absolutamente ,luego el operador

H en (27) estd definido en el subespacio lineal determinado por {q)n} (o por
{t¥Y. 1), pero elsistema {® } es completo y por la propiedad unitaria de

H se puede extender H al espacio total LZ(O' ) .

§ 5. Convergencia de la integral de Hankel

Sea [ e L,(0,) tal que la integral impropia :

H= [ 1ot ¥5 f0) d
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converge absolutamente ,
Primero , vamos a demostrar que el operador H es acotado .
Dividiendo el intervalo [0, =) en dos partes [0,R/x] y [R/x ,~ ) con R fijo,

tenemos :

I f Jo(xy) 7 fiy) dy ||

R/x 0o
< |l [ T olxy) =Y f1y) dy 1 “&/x Toxy) 5y fy) dyl|  (28)

i)Si y < R/x (o xy & R) existeuna constante C tal que
| Jo(xy)Alxy | € CAxy,

luego tenemos

R/x 00 R/x ‘
1L Tt fo) dy 12 & € [ xtf Aol dy P dx

<t f a2 s = CRETTY o ay ae
o o o

= C?R [ fo/ydx ylin2ydy = C2R2 [ |yl dy = €2 R2If12

o0 sea

R/x ‘
|| [ Toxn) A%y foy) dy || < CRIf] . (29)
O ‘
ii) Siy > R/x (o xy > R) aplicando la [érmula asintotica de la funcion
de Bessel tenemos : (9] (111 [13)
]o(xy)l/g‘—-fi cos(xy-é.’_ )+ Ax, y) (50)
donde

A(x,y) = O(1/xy) .

Entonces existe una constante M tal que

W T A 1) dy ||

R/x

<l f:/;{-—i-_ cos (xy - 41 ) fy) dy ||+ |l f:/x—% fiy) dy ||
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) R/x 3
<l '_cos (xy - Z) foy) dy || + || [ £ cos (xy - ) fiy) dy ||
o m 4 ) - 7

+ HL — f(y) dll, 6D
Pero
H*{Z [ cos (xy-a/4) f(y)dy ||
T o
Sf# | foc cos (xy f(y) dy || + r——i—ll f: sen xy f(y) dy ||
< 242 |f|l  (por el teorema de Fourier Plancherel) (32)
iii)

00 R/x 2
I fR/AV_Z- cos (= w0 fopdy P €20, 1 1, [fy)| dy ¥ dx
o m m

00 R
Fott [ irR/"y"/Z ay (5312 )2 dy } dx
m O o o]
_4yR [®

R/x
[ )’1/2 lf(y)llz dy
o

= 8R 7 jy|? dy = A2
(e}
O sea
R R
1 FZ cos (xy-aé) 0 dy 1| s 2 2R 01111 (33)
o m
iv)

fo—gf(y) dy || éfo{‘g/x = fly) dy
y3/2 dy f:/x y' /2 | fy)|? dy ] dx

fw [-——2' f:/
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) 2 00
ol fj—R=“— 327 12 412 ay §dx

R/x

_ 00 2 .
_£ { fR/y jki x3/2 dx | y1/2|f(y)]2 dy

2 o
= A0 1) 2 gy =AM g2
o
M < _2M (34
gy S % s /0 )

De (28), (29),(31),(32), (33) y (34) tenemos

Ilf Jo(xy) %y fy) dy || § (CR+ 242+ 292 F ||/|1~Coll(;|51)

Abora , consideremos cualquier elemento [ de LZ(O,oo), entonces [ es
desarrollable como sigue :
[=3 Ay @, S (a2 = | f17 <.
k=1 k=1

La transformada de Hankel de [ es entonces:

Hf=3 A, H®, =3 A ¥, . (36)
I= Ser % T 5 TR

Dado ¢ existe n tal que

n o0 1/2 .
Hi- ALY | =13 A 22 < Min (e/3,¢/3C,)
I/ zI‘a=1 k k“ { k=n+1 | kl 0
donde C, es una constante cota del operador H .
n
Sean (x) = 2 A, ®
it k=1 kA
n .
Ep(x) = 2}3_1 A, O si x<m
=0 si x> m.
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entonces existe M tal que

m>M implica llg - g,ll < e/3C,
luego
|[He-He, || = || Hg-g,) || € Coll g-2,ll <e/3.
Sea
[p(%) = f(%) si X &m
=0 si x >m

’

entonces tenemos
| Hf-H[ || <|[Hf-Hg||+|| Hg-Hg,|| +|| Hg,,-Hf,||

L4+ L4 C - < £+ £+ £ =¢ (37)
SEr £ Clleglpll < Lr gt

ya que .
l&m = fyll slle-fll=t 3 |42 12 < 3¢,
k=n+1 B

De (37) se tiene el siguiente resultado :
m
Hf=lLi.me Hf =1Lim [ ], (xy)xy f(z)dy (38)
m - oo m - 00 o
§6. Representacién matricial de la transformacién de Hankel
De (23) del pardgrafo 4 tememos

a,, = @,x), Yp(x))

0 Gk B oy
=23 3 E E L et expl-X ) 2x dx
i=1 =1 Mt ki { 4j
n k
=3 '3 2_ E . E,,;
=1 7=1 T+ 45 ™ &
4ES s® i (nai=1)! (kejo1)! (355
i=1j=1 (L+ 4ij)! (i- 1)/ i! (j=1)! (n-i)! (k-j)!
H = (a,,) es unarepresentacion matricial de la transformacion integral de

Hankel con respecto a la base (I)n f (o tY¥,} ).
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Tabla 2 (a, 1)

k\n 1 2 3 4
1 0.8000 0.3770 0.2486 0.1858
2 0.3770 -0.0314 -0. 1034 -0.7662
3 0.2486 -0.1034 -0.1358 -0. 1340
4 0.1858 -0.7662 -0.1340 -0.0598
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