ALGORITHMIC REPRESENTATION OF WERMUS' CONSTRUCTIONS OF ORDINAL NUMBERS

Ьу

HARTWIG FUCHS

In his paper [3] Wermus defines ordinal numbers as "Z-symbols" of the form $[a_1, \dots, a_k]$, $k \geqslant 1$ and $[a_1] = a_1$, where the a_j , $1 \leqslant j \leqslant k$, are natural numbers or Z-symbols. It will be demonstrated that Wermus' constructions can be described by means of a special Neumer algorithm, the constructive algorithm of [1], part I and V resp. a descriptive algorithm of [2], part III; more precisely: that there can be established a 1-1 correspondence between Z-symbols: $[a_1, \dots, a_k]$ and algorithmic symbols $T[a_1, \dots, a_k]$ such that $[a_1, \dots, a_k]$ and $T[a_1, \dots, a_k]$ represent the same ordinal number. This comparision of the two systems further allows the determination of the least ordinal number which is inaccesible by Wermus' constructions in [3].

A few notations and assumtions are needed. A symbol $\lim A(n)$ is an abreviation for $\lim_{n<\omega} A(n)$. The symbol σ_{β} , β ordinal number $>\sigma$, denotes the sequence consisting of β zeros; especially σ_{σ} is the void sequence. If $\alpha(VJ\beta)^r$ is an algorithmic symbol then let $\alpha(VJ\beta)^{\sigma}=\alpha$, $\alpha(VJ\beta)^{1}=\alpha VJ\beta$, $\alpha VJ^{\sigma}=\alpha V$. Assume for the Z-symbol $[\alpha_1,\alpha_2,\ldots,\alpha_{s+1},\alpha_{s+2}]$, s>-1, that

(1.0)
$$[a_1, a_2, \dots, a_{s+1}, a_{s+2}] = a_1 < \omega$$
 if $s = -1$

(1.1)
$$\sigma \leqslant \alpha_1 \leqslant [\sigma, \alpha_2 + 1, \dots, \alpha_{s+1}, \alpha_{s+2}]$$

(1.2)
$$\sigma \leqslant \alpha_2 < [\sigma_2, \alpha_3 + 1, \dots, \alpha_{s+1}, \alpha_{s+2}]$$

: :

100

(1.s+1)
$$\sigma \leqslant a_{s+1} < [\sigma_{s+1}, a_{s+2} + 1]$$

(1.s+2)
$$\sigma < \alpha_{s+2} < [\sigma_{s+2}, 1]$$

and define

- (2) $T_{\alpha} = \alpha$ if the -symbol $\alpha < \omega$;
- (3) $T([\sigma, 1] + 1) = (T[\sigma, 1]) + 1$ for the least transfinite Z-symbol $[\sigma, 1]$ Then the following "representation theorem" can be proved:

THEOREM 1.

$$T[a_{1, a_{2}, \dots, a_{s+1}, a_{s+2}}] = ((\dots ((1(V^{s})^{T_{a_{s+2}}})(V^{s-1})^{T_{a_{s+1}}})\dots)(V^{1})^{T_{a_{3}}})V^{T_{a_{2}}} + T_{a_{1}}$$

where

$$Ta_j = a_j$$
 if $a_j < \omega$, $1 \le j \le s+2$,
$$T[a_1, a_2, \dots, a_{s+1}, a_{s+2}] = a_1$$
 if $s = -1$,
$$T[a_1, a_2, \dots, a_{s+1}, a_{s+2}] = 1V^{Ta_2} + Ta_1$$
 if $s = \sigma$.

Since the system of the Z-symbol is well - ordered (cf. [3], p.3 σ 3) the proof will be given by transfinite, recursion; it relies heavily on the "fundamental sequences" $X = \{X^{(n)}\}$ which Wermus assigns to each Z-symbol X of the second Kind (cf. [3], p. 311-312) and on the definitions of the "operators" V and (cf. [1], p.397-398).

PROOF OF THE THEOREM.

$$s=-1$$
 implies $[a_1]=a_1<\omega$ and $T[a_1]=a_1$ by (2). Let $s\geqslant\sigma$ and $[a_1,a_2,\cdots,a_{s+2}]=$. Assume :

1. $a_1 > \sigma$, a_1 of the first Kind.

Put
$$a_1 = \delta + 1$$
 and $= [\sigma, a_2, \dots, a_{s+2}] + a_1 = +\delta + 1$. Now $T(+\delta) = -\delta + 1$

 $T+T\delta$ by hypothesis and since $Z'+\delta$ and $TZ+T\delta$ represent the same ordinal number the same holds for $Z'+\delta+1$ and $TZ'+T\delta+1$; therefore $T[\alpha_1,\alpha_2,\cdots,\alpha_{s+2}]=T[\sigma,\alpha_2,\cdots,\alpha_{s+2}]+T\alpha_1$.

2. $a_1 > \sigma$, a_1 of the secons Kind.

Then $[a_1,a_2,\cdots,a_{s+2}]=\{[a_1^{(n)},a_2,\cdots,a_{s+2}]\}$ where $\Im a_1=\{a_1^{(n)}\}$. By hypothesis $T[a_1^{(n)},a_2,\cdots,a_{s+2}]=T[\sigma,a_2,\cdots,a_{s+2}]+Ta_1^{(n)}$ and $[\sigma,a_2,\cdots,a_{s+2}]+a_1^{(n)}$, $n<\omega$, resp. $\lim_{n \to \infty} a_1^{(n)}$ and $\lim_{n \to \infty} Ta_1^{(n)}$ represent the same ordinal numbers; therefore $\lim_{n \to \infty} T[a_1^{(n)},a_2,\cdots,a_{s+2}]=T[\sigma,a_2,\cdots,a_{s+2}]+\lim_{n \to \infty} Ta_1^{(n)}=T[\sigma,a_2,\cdots,a_{s+2}]+Ta_1=T[a_1,a_2,\cdots,a_{s+2}]$. By 1 and 2 the "additive part" of the theorem is proved.

- 3. $\alpha_1 = \sigma$ and $Z = [\sigma_{s+1}, 1]$, $s \geqslant \sigma$.
 - a) $s = \sigma$: $\mathfrak{F}[\sigma, 1] = \{n\}$ and by (2) and definition of V $T_n = n$, $\lim_{n \to \infty} T_n = \lim_{n \to \infty} T_n = 1$ or $T[\sigma, 1] = 1$ V^1 .
 - b) s > 1: $\mathfrak{F}[\sigma_{s+1}, 1] = \{Z^{(n)}\}$ where $Z^{(1)} = [\sigma_s, 1]$, $Z^{(1+n)} = [\sigma_s, Z^{(n)}]$ for $n \ge 1$. The hypothesis yields $TZ^{(1)} = I(VJ^{s-1})^1$, $TZ^{(1+n)} = I(VJ^{s-1})^{1-2}$ and $\lim_{n \to \infty} TZ^{(n)} = \lim_{n \to \infty} \{I(VJ^{s-1})^1, \dots, I(VJ^{s-1})^1, \dots, I(VJ^{s-1})^1, \dots, I(VJ^{s-1})^1, \dots, I(VJ^{s-1})^1\}$

 $1(V \mathbf{J}^{s-1})^1 , 1(V \mathbf{J}^{s-1})^1 (V \mathbf{J}^{s-1})^1 1(V \mathbf{J}^{s-1})^1 (V \mathbf{J}^{s-1})^1 (V \mathbf{J}^{s-1})^1 \\ 1(V \mathbf{J}^{s-1}) . = 1(V \mathbf{J}^{s})^1 .$ Thus $T[\sigma_{s+1}, 1] = 1(V \mathbf{J}^{s})^1 .$

- 4. $a_1 = \sigma$ and $\vec{z} = [\sigma_t, a_{t+1}, \dots, a_{s+2}], a_{t+1} \neq \sigma, 1 \leq t \leq s+1, Z \neq [\sigma_{s+1}, 1].$
 - a) a_{t+1} of the first Kind.

Put $a_{t+1} = \delta + 1$. $\Im[\sigma_t, \delta + 1, \dots, a_{s+2}] = \{ Z^{(n)} \}$ where $Z^{(1)} = [\sigma_t, \delta, \dots, a_{s+2}]$ $Z^{(1+n)} = [\sigma_{t-1}, Z^{(n)}, \delta, \dots, a_{s+2}], n \geqslant 1. \text{ If now } t = 1 \text{ then } T \ \overline{Z}^{(1)} = 1.$

 $(\dots(1(VJ^s)^{T_{\alpha_{s+2}}})\dots)V^{T\delta} \quad \text{and since obviously} \quad \mathbf{Z}^{(n)} = \mathbf{Z}^{(1)} \quad n \, ,$ $n \geqslant 1 \, , \quad \lim T\mathbf{Z}^{(n)} = \lim T(\mathbf{Z}^{(1)}n) = ((\dots(1(VJ^s)^{T_{\alpha_{s+2}}})\dots)V^{\delta}V.$

Therefore $T[\sigma, \alpha_2, \dots, \alpha_{s+2}] = (\dots(1(V-s)^{T_{\alpha_{s+2}}}) \dots) V^{T_{\alpha_2}}$. If t > 1 then $TZ^{(1)} = (\dots(1(VJ^s)^{T_{\alpha_{s+2}}}) \dots) (VJ^{t-1})^{T_{\delta}}$, $TZ^{(1+n)} = (TZ^{(1)})$ $(VJ^{t-2})^{T}Z^{(n)}$, n > 1 and $\lim_{t \to \infty} TZ^{(n)} = \lim_{t \to \infty} \{TZ^{(1)}, (TZ^{(1)})(VJ^{t-2})^{T}Z^{(1)}\}$ $\{TZ^{(1)}(VJ^{t-2})(TZ^{(1)})(VJ^{t-2})^{T}Z^{(1)}\}$ $\dots \} = (TZ^{(1)}(VJ^{t-2})J = ((r...(1(VJ^s))^{T_{\alpha_{s+2}}}) \dots)(VJ^{t-1})^{T_{\delta}})VJ^{t-1}$ which implies that the theorem holds for $Z = [\sigma_t, \alpha_{t+1}, \dots, \alpha_{s+2}]$

b) a_{t+1} of the second Kind.

Put $a_{t+1} = \delta$, $\Im \delta = \{ \delta^{(n)} \}$. Then $\Im [\sigma_t, \delta, \ldots, a_{s+2}] = \{ [\sigma_t, \delta^{(n)}, \ldots, a_{s+2}] \}$. Now $\lim \delta^{(n)} = \delta$ implies $\lim T \delta^{(n)} = T \delta$ and since $T[\sigma_t, \delta^{(n)}, \ldots, a_{s+2}] = (\ldots (1(VJ^s)^{Ta_{s+2}}) \ldots) (VJ^{t-1})^T \delta^{(n)} \text{ by hypothesis also } \lim T[\sigma_t, \delta^{(n)}, \ldots, a_{s+2}] = (\ldots (1(VJ^s)^{Ta_{s+2}}) \ldots) (VJ^{t-1})^T \delta$. This completes the proof.

Remark concerning the restrictions (i.i) $,1 \le i \le s+2$, for Z-symbols. By representation theorem $T[\sigma_k,\alpha_{k+1},\cdots,\alpha_{s+2}]=Q$ where \mathcal{L} $Q=(\dots(1(V \mid S)^{T_{\alpha_{s+2}}})\dots)(V \mid K^{-1})^{T_{\alpha_{k+1}}}$ and

- (4) $TZ = Q(V J k^2)^{T\alpha} k$ for $Z = [\sigma_{k-1}, \alpha_k, \alpha_{k+1}, \dots, \alpha_{s+2}], 2 < k < s+2$.

 Obviously (4) can be proved by recursion only if $T_{\alpha_k} < T$.
- (5) Suppose now $a_k = [\sigma_k, a_{k+1} + 1, \dots, a_{S+2}]$ (cf.(1.k)). Then $T_{\alpha_k} = Q(V J^{k-1})$ and T_{α_k} is the first critical number of the sequence $\{Q(V J^{k-2})^{\lambda}\}; i.e. \ Q(V J^{k-2})^{T_{\alpha_k}} = T_{\alpha_k} \text{ since } Q(V J^{k-1}) = \lim\{Q(V J^{k-2}), Q(V J^{k$

Assuming (5) therefore amounts to $TZ = Ta_k$ and the recursive argumentation in the proof of theorem 1 must fail without (1.i), $1 \le i \le s+2$.

Moreover, the constructive algorithm does not make use of symbols.

(6) $Q(V J^t)^u$ where $u \ge Q(V J^{t+1})$.

But it is clear that once theorem 1 is proved under the restrictive conditions (1.i), it also holds if these assumptions are dropped: one only has to replace the constructive algorithm by a descriptive algorithm ([2], III) which contains symbols of the form (6) and if any of (1.i) do not hold one identifies formally

$$T[a_1, \dots, a_i, \dots, a_{s+2}]$$
 with $(\dots((\dots)(VJ^{i-2})^{T_{\alpha_i}}) \dots) V^{T_{\alpha_2}} + T_{\alpha_1}$.

This identification will be carried out now and in this way justified first for a very general situation.

Wermus defines "amplification A_k " of a Z-symbol by

- (7) $A_k[\alpha_1, \dots, \alpha_{k-1}, \alpha_k, \alpha_{k+1}, \dots, \alpha_{s+2}] = [\alpha_1, \dots, \alpha_{k-1}, [\alpha_k, \alpha_{k-1}, \alpha_{k+1}, \dots, \alpha_{s+2}]],$ 1 < k < s+2, where on the right side at least (l.k) does not hold. Now
- (7') $A_k[a_1, \dots, a_k, \dots, a_{s+2}] = [a_1, \dots, a_k, \dots, a_{s+2}]$ (cf. [3:], p. 317, th. 91).

 (7) and (7') suggest then, that also
- (8) $T[a_1, \dots, a_{k-1}, [a_k, \sigma_{k-1}, a_{k+1}, \dots, a_{s+2}]] = T[a_1, \dots, a_{k-1}, a_k, a_{k+1}, \dots, a_{s+2}]$ should hold. By theorem 1 or by the identification $T[\sigma_{k}, a_{k+1}, \dots, a_{s+2}] = Q$, where $Q = (\dots(1(VJ^s)^{Ta_{s+2}}) \dots)(VJ^{k-1})^{Ta_{k+1}}$.
- (9) $T[a_{k}, \sigma_{k-1}, a_{k+1}, \dots, a_{s+2}] = Q + T_{a_k}$,
- (10) $T[\sigma_{k-1}, \alpha_k, \alpha_{k+1}, \dots, \alpha_{s+2}] = Q(VJ^{k-2})^{T_{\alpha_k}}$,
- (11) $T[\sigma_{k-1}, [\alpha_k, \sigma_{k-1}, \alpha_{k+1}, \cdots, \alpha_{s+2}]] = 1 (V \int^{k-2})^{Q+T} \alpha_k$, using (9). By the algorithmic "theorem of parallelism" ([2], II p. 44) is $Q(V \int^{k-2})^{\lambda} = 1(V \int^{k-2})^{Q+\lambda}$, λ arbitrary, and therefore with (10), (11).
- (12) $T[\sigma_{k-1}, \alpha_k, \alpha_{k+1}, \cdots, \alpha_{s+2}] = T[\sigma_{k-1}, [\alpha_k, \sigma_{k-1}, \alpha_{k+1}, \cdots, \alpha_{s+2}]]$ A slight generalization of (12) yields (8).

Since now every Z-symbol $[\alpha_1, \dots, \alpha_i, \dots \alpha_{s+2}]$ which does or does not fulfill (1.i), $1 \le i \le s+2$, may be written in the amplified form, then with (8) there is always a corresponding symbol of a descriptive algorithm for it.

In the two remaining cases, where (1.1) or $(1. \ s+2)$ do not hold, identification is trivial. Suppose $a_1 \geqslant [\sigma, a_2+1, \ldots, a_{s+2}]$ resp. $a_{s+2} > [\sigma_{s+2}, 1]$ and let the identification be performed for a_1 resp. a_{s+2} (if necessary). Then in both cases identify $T[a_1, a_2, \ldots, a_{s+2}]$ with $(\ldots (1(V-s)^{Ta_{s+2}}) \ldots)^{Ta_2} + Ta_1$.

Conclusión.

THEOREM 2.

Theorem 1 holds without assuming (1.i), $1 \le i \le s+2$, if the algorithmic symbols belong to a descriptive algorithm.

Wermus considers only Z-symbols $Z=[a_1,\ldots,a_t]$ with $t<\omega$. By theorem 1 and its generalization it is obvious that there always exist natural numbers f< g such that $[\sigma_f,1]\leqslant Z<[\sigma_g,1]$. Now $\lim [\sigma_n,1]=\lim T[\sigma_n,1]=\lim T[\sigma_n,1]=\lim T[\sigma_n,1]$

Therefore

THEOREM 3.

The least ordinal number which is inaccessible by Wermus' constructions in [3] is $1\,V\,J^{-1\,V}$.

REFERENCES

- [1] NEUMER: Zur konstruction von Ordnungszahlen I-V; Math. Zeitschrift,
 I: Vol. 58 (1953)
 V: Vol. 64 (1956)
- [2] NEUMER: Algorithmen fur Ordnungszahlen und Normalfunktionen I-III;

 Zeitschrif f. math. Logik u. Grundlagen der Mathematik;

1: Vol. 3 (1957)

man bodd II: Vol. 6 (1960) am ad your (2 da 2 b) 1 (1.11 Hilly wan

III: forthcoming 1970/71

[3] WERMUS: Eine konstruktiv-figurliche Begrundun eines Abschnitts der zweiten Zahlenklasse; Commentarii Math. Helv. Vol. 35 (1961).

bold. By recorson I or by the identification $I_{i\sigma_{k},\alpha_{k+1},\dots,\alpha_{m+1}}^{VI}$ and

The least ordinal number which is inaccessible by Wermus' constructions

The way and the same of a gray to be

Universidad de los Andes Bogotá, Colombia.