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For the purpose of describing maximal arithmetic groups cn e tccn ique would

be to study the local correspondent problem and then try to put the local results

together. The general theory of Hij ikata and Beuhat-Tits handles the loca"l case.

However in order to globalize one needs to know precise information about the orders and

latt ice involved. This isan expository note with the obj ect ive of providing the

information we need to give complcte proofs to the results announced [5]. Irur

goals are to expl icitely determine, up to inner automorph isrns ,all maximal open

compact subgroups of the Projective Symplectic Group I PSp (k) in the case
n

where k is a locally compact discrete valuation field whose residue class

field has characteristic different from 2. Let denote the Symplectic
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subgroup fj. of a semisimple linear group G C Mn(k) , defined over k

is ar it hmet ic , if it is commensurable to GO = Gn Mn(O) , i.e., fj. 0 Go

has finite index in both fj. and GO' We say that an arithmetic group

is maximal (ro sp. maximal in if it is not a proper

subg-roup of any other arithmetic group (respectively, contained In

is the groupnow on G = Sp (k)
n

From

of all matrices g in

"ill be the Symplectic Group,i.e •. ,

where

J=(O E), E being the
• E 0

G' = GPn (I<) he the s imil itudc group of

all 2n by 2n matrices

G

such that 's!« = J

n hy identity matrix. Letn

J G' is the set of
t
g J g = /l (g)}

PSt' (k) or simply
n

i.e.,

for some /l( g) E k • The Projecth'e Symplectic Croup

s such that

is 10 be defined as the quotient

consider the following representation of

S p (k)n

then its image is cen tcr lcs s , and isomorph io to

then the group

automorph is ms of

We know that if we choose a hasis for M2n( k)

. N ~, 4 n2 • Hence lie

PSp (k).n

has a linear representation in

obtain a linear representation of

uver k, and also we have a

Sp (k) by its center. We shall
n

PSp (k) as a linear group. If we
n
into the group of all inner

PSI)
t: n wh ich is easily seen to be dcl'iu cd

k·rational mapping from

PSPn( k). Th is mapping clearly sends the normal izcr in

is an ari thmct ie group con La in cd in

onto

onto

then fj. is open compact in

is linearly dense in the sense that the

in M21/k) coincides with

sfous., [1] § 33

A( fj. • k) generated by

Gk hence by rc as ons of d ime n-

k.algebra
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because in our case the

We shall denote by N( 11 )

k- algebra generated by

N k( 11) ) the normalizer

of in SPn(k) (respectively in

(respective Iyby

Sp (k». It is easy to see thatn

A (11 ,0)is also open compact and therefore arithmetic. Let us denote by

the O-order generated by

pl et e set of representatives of

in

is finite because the residue class field of

Let us fix once for all a Com-

say I ~ s ••• , Et I which

k has characteristic different

from two. For the sake of completeness we shall prove the following lemma:

Lemma 1. 1) If is an arithmetic group such that

and if gEN(I1), gtGk, then

g'EM2n(k) i.e., g'EGPn(k) and

2) If

11~I1'nSPn(k) , then

Proof. If g EN(I1),

hence «' eijg EM 2n( k)

gO] =:. J t J we get that
g

2g .. Ek
Xl

hence and if

A .. Ek,
Xl

and consequently

assertion 1. Next if

is the kernel of representation of

.g = g'IIa, where (tEO,

J1(g')=a.

andis an arithmetic group

and

11' C N ( 11) .

N (11)111

then

for all

g .. g Ek
Xl sm

g E 11' , then

11'

Clearly 11
0

in arithmetic.

.:' b:.g = (g')"]11 (g')C SPn(k) 11' = 11

every element of N( 11) I 11

34

In particular if is maximal,

is abel ian.

s normalizes

i, j =: l , • • • , 2n, and as

then

for all i,j,s.m=] ••••• 2n,

g .. = A .. g 11' a' = i E kn Xl 11
with aEo,AEk. Hence

iswhere

as group of permuta tions of 11'111.

Hence g = s' I va and

From the assertion 1, it follows that

has order at most two, therefore



this group is an abelian group of order at most 2t+1 "here is
L

the order of U/U Hence as [N(~):~] = [N(~): Nk(~)][N k (~) : ~ ]

we have that N(~) is arithmetic.

~'C N ( !J.) , ~' = N (~ ) , hence

If ~' is maximal, then

Nk(~):= N(~) n SPn(k) = z .
q. e. d.

For the sake of simplicity we shall denote by the e lemen t of N(~)

g' / -.ra. Clearly given if it exists suchwhich can be wr itten as

then it is unique. modulo and is uniquely determined

modulo

such that

in
2U/U

ex

We shall denote by U(~) the set of a II

can be chosen in U. U(~)/~ is injectedHence

and N(~)/U(~) is a group of order at most 2; it has order 2

for some generator TTprecisely when there exists an element gTT E N(~)

of p. Clearly U (t-J is generated by ~

ex runs in a subset of { ft, ••• , ft I .

Lemma 2.

in SPn(k)

and N( ~ 1)

to ~ 1 in

Proof. Let

and where

Let ~ and ~ 1 be two arithmetic groups contained

such that Nk(~)=~ and Nk(~1)=~1' If N(~)

are conjugate in SPn( k) .. then ~ is conjugate

We set ~2 = g ~] gO] () ~ and

~2 are ar ithme t ic and gO]~ogC~]Hence ~o and

~]

because inner automorphisms preserve indices of subgroups. As

henceare I inearly dense we get that

~o and
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Finally as s EN(Sp (k)),n then and

Il (g') = a.

q. e. d.

It is clear that there exists a one to one correspondence between the set of all

maximal arithmetic groups in and the set of all maximal arithmetic

groups in acts on and if L is a

lattice in v, then we can always find a basis of L in such a v\'ay

that L = Oe1+ .. .+ Oen + A 1en+1 + •• .+ Ane2n (see [71, p. 35)

ordp A 1 ~ ..• ;S ordp An' Qrdp A = a meaning that A = pa ,

set [tx , y) = txJy, then I( "r en+j) = 1 = -l! en+j' ej)

where

and if we

and

j(ei' ej) = 0 otherwise. We call this basis a canonical basis for L

we set n(L)=A1 and cal I {A/A1, i=l, ••• ,n theelemen-

tary divisors of L ; it is well known that these ideals are invariants of L.

Let L be an order in MJk) .. we set and we say

that L is a- invariant if Clearly if

End L = (End L)a

L is a lattice and

End L = { gEM n( k) I g L eLl , then (End LP is

a- invariant, and any a- invariant order L is conta ined in some

Let L be an order and let (L) i s r or simplyxJ

gEL. We let

be the ideal

the direct sum as a-module of L ..e .. ;
1J xJ

t.lJis is true if

:[A. : A.]
x J

if L is

e .. EL
11

generated by all (i, j). entries of all

=(A./A.)x J O. We say that L is a direct summand

for a II i = 1, •.. , 2n •

Lemma 3. (Hijikata). We set L := A( 6. (L), a)
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then L is a direct summand. L = End La

. = L. .A. = L . .s:! = [ A. : A. ] .
n+1 tn+1 1 n+11 1 1:

and for all i , j = 1, . ~., n,

L .. =L .
'1 n+1

Moreover End Lo is maximal o • invariant if and only if the elementary

divisors of L are square free.

Proof. It follows from [4]. thc orem 1. and also [6]. theorem 5.4. For

the sake of completeness we shall compute this order. Clearly
E H 1A-

g( H) = ( ) , H = ae ., , a E . ,o E 11 1We first observe that if then

g(H) E6. (L) and similarly ae .. EL ,n+/J

if H = aejj' a EAj,

Ln+j j = Aj, Lj n+j = Aj1

for all t r ! ••• ~,n; hence for those indinea

and consequently e.·ELtt
for al\ i = 1,••. ,2n,

and j = 1, ... , n, Hence both L and End Lo
are direct summands.

Now if
Ag(A, D) = ( o

A = E + aeij' i i= j, tVA = E , then

g E6. (L) if and only if gL = L, or equivalently

valid if and only if

and this is

a EO and aE[A.:A.]
1 1

Con-

sequently L .. =[A.:A.].
'J ; 1

Since both L and End La are

0- invariant we get that L .. =L.. L .. =L ..
n+1n+1 '1' n+IJ n+J'

and L.. = L...
tn-i-] 171+1

Now ae !. is a direct summand order the other assertions follows from

L..L .. =L ..
'J ;n+1 m+J

and L . .L .. = L ..•
n+Jn+J n+JJ 71+'1

q. e. d.

2. Necessary c09ditions. Our objectives now are to study necessary cond it ions for
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the max ima l ity of the normalizer N(t,.) of a subgroup of

We want to find conditions under which a group t,. == N(t,.) n SpJ k) /I non

maximal in SPn( k) ., have its normalizer rnax imal , We start studying the beha-

vior of the group U( t,.) with respect to the maximal groups in

vv h ich contains 6, •

Lemma 4. Let be such that Nk ( t,.) = 6,. Let

ha=[aga. gaSN(6,).

L*

be the un ion of all A(t,.,o) ha ' for all Then

L* is a a- invariant 0- order. Moreover if as U , then

Proof. Clearly is an order, because

Next L * = SUS hTl
and to prove that L* is an

order, it suffices to show that h2 s L* but
Tl •

From

Jth J - r:Jt J - ,- -1a - Va ga; -. V CXg a and we can write

hence a -1g(X e "»: ."" i.c., L* is a- invariant.

Finally as and as we get that

q. e. d.

Let now K be the field generated by k and all yf.
J

for

all j = 1, ... , t .
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Lemma 5. Let be 'such that

N(/I,.)=U(/I,.). Then there exists a lattice L 'such that N(/I,.)

is contained in N(/I,.( L)).

Proof. The order L* , of lemma 4 is contained in End La for

sone lattice L with elementary divisors square free. Consequently

/I,. c /I,. (L) and from the fact that for all and

we get that normalizes

End La and hence and N(/I,.) C N( /I,. (L)) •

q. e. d.

Lemma 6. Let be an arithmetic group in such that

is not maximal in and N (/1,.) is ma-

x ima}, Then there exists lattices and L" with same square free

elementary divisors such that /I,. (L"). I\i;oreover there exists

such that L" = hL' and with

/l(h) = TT and all lying in Enda (L') for

some convenient generator TT of p

Proof. By lemma 2. if N(/I,.)=U(/I,.), then N(/I,.) is not m a-

ximal. Bence N(/I,.) =I' U(/I,.), i.e., there exists a for a conve-

nierrtly chosen generator TT of p , g EN (/I,.) ;
TT

let L'=End (L)a
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be a maximal a- invariant order containing L* of lemma 4. By lemma 3, the

elementary divisors of L' are square free. Now if gEU(!1), th en by

the same arguments as in the end of lemma 5, s EN(f'.. (L)). Let now

hence L" = End (L") = h (L')h-1a TT TT
and

If we set f'..' =.f'..{L') n ML") , then

ML') and as hence f'.. C f'..' • If

then normal izes L' and modulo L' commu-

tes with gTT" consequently or

U( f'.. ) C N( M L')) n N(M L") ) C N( f'..') ; also as and the inner

automorph ism of induced by transforms ML')

onto M L") we get that Therefore N(/).)CN(f'..')

and by the maximality of N( f'..) , N(/).) = si s», Finally

f'..' C Gk ,,\N(f'..) = S , i.e., /).' = f'... It is clear that if we set

then f1( h) = TT and as h EL* as well as and

we get that all the se Iie in End (L').a

q. e. d.

Let now from f'..=ML') 1'\ MhL')

h'= f h ["1.

we get thatf E GpJ k) "

f M-1 ; !HfL) "Mh' fL) where It is easy to see that

f1 ( h') = ,TT and that Since N ( /).)

is maximal if and only if is maximal, we may replace by

and we may assume that s=O,l, ... ,n, where
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is the lattice which in a canonical basis has and

We set L = End (L )
5 a 5

and let

denote the units of

Lemma 7. Let be such that Il(h)=rr, and

r! tt , Then modulo the operations of the lattice

can be written: hL = L b ·e· ,
5 t t

where

if 1~ i ~p , or n+1;;;i~n+s, or b. = 0
t

if and otherwise, i, e.,

where p+q=nos.

Proof. First of all from it follows that

hence We claim that we can find a basis for

v which is a canonical basis for yielding a basis for as

an o~module. We shall construct this basis by induction. Let us assume that our

assertion is true for dimensions smaller than 2n. Let i = 1, •.• , 2n

be a canonical basis for If for all

both and then letting

be the orthogonal complement of the span of and we have

It suffices to apply induction to

and we are done. If there exists such that then we

may. assume and by taking ei = x and

we get that and
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If we write

Since it

follows from that

Now we apply the induction hypothesis

but there exi sts

and we are done. In the case where for all

xn+1fPA1 '

to

x such that we set

and apply sim ilar argumen t, Also similar argument completes the

induction in the case where n==l, Therefore we can find a canonical basis

for such that in this basis It is

not difficult to see that we may always-replace L by

in such way that A 1 0, i,e., S > o. Since we

have pA.cB.cA. ;
J J J

hence is either p or if

n + s < j < 2n and B.
J

is either o or p, if

Now if for some l~i~ s ,

then we can replace h by such that

ghL =Oe.+pe .+L', i.e.,s , n+, g is the operation which interchan-

ges e·, and Hence we may assume thai

ord: B,.> ordp B . ,V:= n+, 1<j ~ s , Similarly if and B =pn+i

then we may replace h modulo in such

that B.== 0, and B := p2n+i • Using the fact that n(hLs)==pA1

we see that we cannot have B - B - 0i - n+i- for some i, 1 ~ i ~ n ;

hence we have that B == pn+i if , Remains the case
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where and B - p2n+i- • Now we observe that we can permute

by by means of operations of

provided that either or s<i,i~n. Next we put

together, by interchanging pairs if necessary, all basis elements

i ~ s, if there exists any in such way that and we

denote by p their number; we have necessarily B =pn+i ' i,£ P •

We do the same with the indices i> s such that there exists a generator

and we call q their number and necessarily

Also B. = 0,
J

B =pn+i '
Now let us compute the elementary

divisors of We change basis by replacing by TTe·r

and by whenever After int erchan-

ging pairs of vectors; , if necessary, we have a canonical basis where the ideals

A.
t

are either p , according to whether, say.

and and the elementary divisors

are 20, p, p . As the elementary divisors of and

are the same, we must have t > n , u=s. Also the ind ices such

that the corresponding are precisely the ones

and Therefore p+q = nos.

q, e. d.

3. Non maximal ity • We shall now study the orders in which are

generated by the stabilizers of the lattices and of lemma
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7; we shall look at the intersection and prove that

whenever o ~ p < s, n-s, 5 is contained in a bigger order 5' which

intersect in a group such that N(r; contains

properly.

Let L be an order in If (L) .. == A ..
tJ tJ

we shall

set

L

A In

A nl

We observe that jf M is another order ;., (M) .. :: B .. ,
tJ tJ then

(L (\ M) .. c A .. " B ..•n J tJ
If they are direct summand, then we have the equal i-

ty, Now with the block notation, we have

s nos s nos

~ r-""'l ~ r--"l
0 p 0 o ~ } s

0 0 0 p-l } nos

Ls 10 p 0 0 s

p p p 0 5 nos
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From now on we fix satisfiying the conditions of

lcmma 6 and fix a can on ical bas is for in such that is

written as above. Now we subd iv idc each rna trix in 64 blocks

e r ie .. ), i,j=l, •.• ,8,
XJ

in such way that goo
Xl is eithcr P by

p, 5 - P by sop, or q by q according to whether

i= 1,4,5,8, or i ::;2,6, or i = 3,7 • Let g(p) bc

thc matrix s e .. )xJ where

g. - s - ~E , g62::; - ~Es_p' g73 ::; "TT2Eq81 - 54 - "" p "

and gij = 0 otherw ise, i, c.,

p sop q p p sop q p

~ {'-"-\ .~ .1"'-\ f""-, f"'"'\ ("'"""'\ r-'""I

'0 0 0 0 0 0 0 Ep \ p

0 0 0 0 0 E sop 0 0 1 sop

0 0 0 0 0 0 -IE 0 1 qTT "q

0 0 0 0 Ep 0 0 0 1 p
g( p)::;

10 0 0 -TTE P 0 0 0 0 p

0 -TTE 0 0 0 0 0 0 ~ sop
sop

0 0 -TTE 0 0 0 0 0 1 q
q

-TTE 0 0 0 0 0 0 0 1 p
p
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Clearly and

We set

Lemma 8. If r v ». s.n-s. then N(M p)) is not rna-

ximal in G.

to prove that properly it suffices to prove that

con taine properly. If we

observe that and apply this to our cases we

see that" after wr itt ing these, orders in matrix blocks corresponding to the 64 blocks

that we subdivide a direct calculation yields the generator of

as follows:

a) for all i i , i ) in the blocks (I, J) where either

I = 7, J = 1, 5. 6, 8; I = 1, 2, 4, 5. J = 3

I = 6, 8, J = 1, 2, 4, 5; I = 1, 5, J = 2, 4

( I , J ) = (2, 4 ) or ( 8, 6)

b) ·1 e"
7T zJ for all (i,j) in the blocks (I.j}=(6,3), (7,2),

(7,3), (7,4) and (8, 2)

d) e ..
zJ

otherwise

Now is the order generated by the above order and
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for all (i • j) in the blocks (6.3) and (7.2). Wrilling in

block notation, we have

p sop q p p sop q p-
0 p p p 0 0 0 0 J p

0 0 p p 0 0 0 0 Isop

0 0 0 0 0 0 p"l p-l Iq

0 0 p 0 0 0 p.l p.l IP
Ls{\ (g(p)Lsg(prl) =

0 p p p 0 0 0 0 Ip

p P p2 P P 0 0 0 Isop

P p2 p2 p2 P P 0 P Iq

p P p2 P P P 0 0 IP

and

p sop q p p sop q p

0 p p p 0 0 0 0 !P

0 0 P P 0 0 p-l 0 Isop

0 0 0 0 0 p-l p-l p.l lq

0 0 p 0 0 0 p.l p-l lp
Lp n (g(p) Lpg(prl) =

0 p p p 0 0 0 0 IP

P P P P P 0 0 0 Isop

p P p2 p2 P P 0 P lq

p P p2 P p P 0 0 IP

47



Hence if

g IMP).

g = g(H) I H = 7T-
1(eij+ eji) I s < i.i ; s+q,

Now for all E E U we have gE = diagonal

then g E~',

IT/E,T/-1E I

lies in N( ~) () N( ~ (p) ) I T/ = .../E I because

summand orders; as h2/ 7T I h E L s it g(p) Lsg(pr1

normalizes Lp(\g(p)Lpg(pr1(\ Gk= ~' I i.e,;

subgroup of N(~') •

T/gE lies in all direct

it follows that

N(Mp) ) is a proper

q. e. d.

Corollary. If s ::j. 0, n , then N(MO) ) is not maximal.

Proof. It suffices in the above proof omit the blocks in the rows and columns

I, 4, 5 and 8 in all orders.

q, e. d.

Befor~ going on we would like to point out that in the case where

the two orders above coincide. A simple verification shows that if

p = s, nos ,

n-s<s I

then hence.

Lemma 9. (Hij ikata), MLs) and are conjugated in

G, and consequently their normalizer are also conjugate.

4. Maximal groups. We shall discuss now the remain ing case:, i, e, , the case where

hLs = Ln_s; we shall prove that we get maximal groups in this case. We change

rotation and denote by ~s ; our objec-
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tive is to calculate all lattices left invariant by L1s and consequently all

maximal subgroups of which con ta in is L1s .. it turns out that

they are and We first observe that lemma 9 implies

that there is no loss of generality in assuming that n-s < s,

Theorem 1. The normalizer of

s = [ n / 2] + 1, •• , 2n , is maximal in in the sense that no

other subgroup of contains it properly as a subgroup of fin ite index.

Proof. If n-s s, then as is maximal in

is maximal. Hence we may assume that p=n-s<s.

Since it suffices to prove that is con-

rained in precisely two maximal group in namely and

because if is maximal and then

contains and by theorem 1., it is either maximal in

Gk or the intersection of two maximal groups,

L1=MLp)' or L1=L1(Ls)nMLp)=L1s'

i, e .. either or

Since by lemma 1,

L1' = N(L1), and as and

we have and Let u s prove now that

is contained in precisely two maximal groups in SPn(k). First of al L1s

being contained in both MLs) and MLp) implies that

L' = A(L1s' 0) is contained in -. () Lp = S. We shall subdivide
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everym atr ix gEL and every matrix of in 36 blocks in

such way that if g = (gij) i,j'" 1, ••• , 6, then is p by

p for i = 1, 3, 4 and 6, and it is sop by sop if

i =2, 5. is generated by :

a) rre ..
~J for all c, jJ in the blocks (I, J) where either

1 = 5, I = 1, 2, 3, 4 : l = 3, 1 = 1, 2, 4

1 = 6, I = 1, 2, 3, 4, 5 or /=2,1=1,4

b) for all (i , [ ) in the block (3,6)

c) e ..~J otherwise ii. e., in block notation:

p sop p p sop p
,...... ,""""" ~ rr-; ,........, ,-...

·0 p p 0 0 0 p

, 0 0 p 0 0 0 sop

0 0 0 0 0 p-1 P

S=LsnLp 0 p p 0 0 0 p

p p p p 0 0 sop

p p p p p 0 p

Let us prove first that S .. = L ..
~J ~J for all i , j = 1, ••• , Zn, It is

clear that hence L ..c S ...
~J ~J

We consider first

the e Ierne nt s of of the form g(H) , H=ae .. r~J
a ES. .tn+ t
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hence a e . .eLtni.: and

b e S ..
n-i tt.

if iE/f2,5,

Hence s is a direct summand order. Now we conside'r elements g( A, D)

where A = E + e·· , if j,
X]

then and

and L .. = 5 ...
X] X]

Similar argument holds for

0- inva r ianc e of both L

the positions ( n + i , rl+ [)

L. . = 5. .
Xrl+X lrl+X • 3imilar argument applied to

impl ie s that L .. =5 ".nv u n-it: Thus

because for those i,

i,j=l, ... ,n, a e5 ...
X]

If

e .. g(A,D) = e··+ ae··,
t.t Xl X]

a e: e L
X]

hence

The

and s implies that they also coincide in

and L ..e .. c L
X] X]

for those val ue s of

i i i- a = 1 ,t i , j ), Next from g(A,D).E=e;].=e ..• e .. eL,
o X] rl+] rl+X

L .. =5 ..
U Xl(i,n (2, 2),in \....e ge t

for all i = I, • , 2rl •

h e5. . = 5. .,
X rl+] ] rl+ X

(r e spec tive Iy

e .. e .. =e .. +e .. e L
X]]X l! n +] rl+]

i.e.,

Now by considering g(H) , H = he .. + be:
X]' ]X

(respectivelywejsee that b e . ., he. . ,
X rl+] ] n-i t

all lie in L, if either if I = 2 or or both. Bence

L and s coincide in the positions ( i , n; j) , (n+i,j),

whenever i ~1= 2 or or both. Now if we oIJS('fV(> that

both Iie in L, f or a \Ie . ·=·e· ·e··, TTe ··=TTe ··e··tn s ] lrl+ X t t rl+X] n-v tt. X]

(i, [ ) t:(2,2), we get that

I , 1 = 2,5, and therefore

L .. = 5 ..
X] X]

i i , j ) et t , 1)for al\

L .. = 5 ..
X] X]

i, j = I, ••• , 211for all

We wonld like to point out that this fact just proved does nol mean that L = S
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because we do not know whether or not e ..EL
It

for all

If we consider the order generated by L and anyone of these e··It

we obtain a direct summand order, because e·· = e··e··lJ II lJ

lies in this order and hence the same happens for e··JJ

Moreover th is order has to be S,I = 2 and similarly for all j E1 = 5.

because two direct summand orders and N

M .. = N ..
lJ lJ

(i. j ), The lack of knowledge thatfor all

iE1=2,5.

e·· = e··e··Jl Jl It

for all j in

coincide if and only if

L=S in •

trod uce s some tecnical difficulties because we need that our orders be direct sum -

L,mand, We shall prove next that if M is a maximal order containing

then M S. L = Salso contains If

in the case where e··EM
It

for some i E1 = 2,5

en+jn+ j = eij eji • su •

We shall assume that

Clearly M .. =:> L..,
lJ lJ

e·.EM
It

for all iE/=2,5.

L the. blocks (I,]) such that I = 2,5, or

both, we obtain a direct summand order in

hence it is maximal. Therefore M

I,J = 1,3,.4,6, i,e., M" = L.. for all such
lJ lJ

( respectively (3,2), (1, 5) ) and let(i,j)E(2,l)

g .. EM ..
lJ lJ ince "ii ' eliEL, (j,t) E(2,1),(5,6))

we are done. ,as well as

because

for all ( i , j )

If we omit from

J=2,5, or

which is Lp

co inc ide for (i ,j) eu, J),

i i , j). Let

gEM, g = ( gij )

we get that

eli gejj = gij tj (respee:tively eii gejt = gij eit) , therefore

o = L..C M " c Mt. =0 ( re spect ively 0 -. L.. eM .. c M't = 0) andlJ lJ ... J lJ lJ _ _ 1

consequently M .. =o=L .. for all (i,j)E(2,II,(3, 2), (1,.J).
lJ lJ

By the a-invariance, M .. =L .. for all (i,j)E(4.5),(5.6).
lJ lJ
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(2,4) . If there exists such thatgEM

(i, i ) (respectively in (5,1)), asin (l , 2)

both lie in L

gij = 1 for some

e··JZ
and

(respectively

i i , s) E( 5 ,2) ) , we get that (respecti -

vely But

(respectively" consequentlygs . e . E L)J s t

e .. EM),
JJ

Thereforewhich is a contradiction.

e··EM
JJ

(respectively

for all

(i,j) lying either in (5,1) or in (1.2) ; the same argumen t appl ies to the

positions (2.3) with the following slight modification: we consider

If( e·· + ett) g e .. ::: g .. e .. + gt' et· ,t.t . Jl XJ Xl J x
(i,j)E(2,3), (t,i)E(5,2).

then ( g .. e .. + gt' et·)XJ Xl J x

which is a contradiction. As an

Mtj::: P

(5,4), (4,2), (6,2),

we get that or

immediate consequence of this argument we have that

«.n E(2,3) hence or

o» in variance implies that same is true for

Next if M .1
.. == p ,xJ u, i ) E (2, 6) , we let

and as

g .. e·tELxJ t
if

for all ( t , i) E( 5,3).

and (6,5).

g EM r such that

g .. == 1/77xJ and consider (e .. + e l gi n « .. ), (j,s)E(6, 5)Xl S S JX
to get

e .. EL
Xl

which is a contradiction. The posi tion

a- invarrance, Next if for some (i,j) 10

such that g .. ::: 1/ tt ,
xJ

then we replace

which is a contradiction. Same argument applies to the entries(j,t)E(2,5),

(3,5) will follow from the

(2,2) there exists g

g by
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in (5,5) • (i,i)E(2,5),If th is happens to

=e"+77g··e ..JJ 11 Jl and from we get

g .. == 1
JJ

for some we use(i,i) E (5,2)

we use

e .. EM.
JJ

and apply the same argument as before. This concludes the proof that

for all ( i , [) and therefore McS which contradicts the fact that

M is maximal.

If M is a maximal a- invariant order containing

M == End (M),a for some lattice M in

or gMC M for all gEL. This suggests that our next step is the

calculation of all lattices III v left in varian t by

. V, hence

77e .. g( e . +e ...Jl 11 JJJ=

Finally if

M ..=L ..
1 J IJ

L , then

L.

L C End (M)a

As e .. E M
11

for all i=I, ••• 2n, we must have that if

then We set

M by
,
aM if necessary we may assume all

Next we observe tha t if
.1

Ae .. ,A e .. CM,IJ Jl .

M. = M.
1 J for all (i, i) E (J, I), 1= 1, ... , 6

We set M. == A.
1 1

iEl=I,2,3 andif

iEJ=4,5,6. If we choose the scalar ~ such that

eiiEM:, (i,i) E(3,2) and (2,1), we get that

and 77e .. EM (i,J') E(l,3). IJ
im pl ies tha t

M.
1

then M. = M.
1 J

By repl ac ing

integral.

hence

and (i,i)E(l,4)

Mi = BJ

A3 = 0 ,

A3=:;A2=:;A1

if

then as

We get

from the a- invariance and from 77 e ", (l /77) e .. EM, (i, j) E (6 , 3) ,IJ Jl ..



that These conditions implies that we have

only the following possibilities

3. A 1 := B 1 := B 2 := B3 = P , A 2 = A 3 := 0

These possibilities give respectively the following lattices:

Hence only and

contain /l,.s'

q~ e. d.

We would like to point out that there exists an order L* in

M (k) In where K = k( y-;') such that L * n M (k) = Ln if

we denote by 0* the ring of integers of K , th is order is

where LO := M with A -A -0*2 - 3 - and

= (y;), Clearly LO (\ V = g(p) Ls and

(l/vrr) Lon V:=Ls'

Theorem 2. The number of conjugacy classes of maximal arithmetic groups

in is or equivalently. the number of conjugacy classes of

max imal open com pact subgroups of PSp n is
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Proof. It is "ell known that OS;s<[~]
- = 2

are

maximal, because is maximal in They are now

pairwise conjugate; for if is conjugate to

then by lemma 2;, is conjugate to in

hence there exists h E GPr/ k ) such that

j nva r ian L, lJy similar argument to the proof of the above theorem we must have

t = s , Next are maximal and not con-

jugate 10 one N(/'). (L') ) , otherwise ML) and would

be conjugate noreove r they are not pairwise conjugate', for if

then hence either and are

conjugate, or and are conjugate, or

If n = 2m is even, then we have m+l groups in the first grou p

and m 'groups in the second group; altogethcr 2mt-l=n+1• If

n=2rn+l is odd we have m+l groups in the first grou[) and

in the second altogether n + 1 .

q. e. d.

Closing this paper we remark that Shimura proved that

G Pn (k) = /'( L0) 0 r (L0)

Gpn(k), i.e.,

where D is the set of diagonal matrices in

has the e le me ntary divisor property. This

is no longer true for because if g(p) can be d iago-
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g(p) c- ghg'. g . g"F I~ (Ls)' Ihell

is maximal I,y t hr-or e m I ; Oil the othv r han \\(' may

assume h=diagollal and alld

N(f'..(O)) is 1101 maximal hy c-oro lnry 01' lemma 8; t h is is a (·Olllradi('lioll. Thl'-

re io re g(p) r-un no t he diagunaliz('d hy the uperations 01'

* * * * * * * *
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