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For the purpose of describing maximal arithmetic groups one tecnique would
be to study the local correspondent problem and then try to put the local results
together. The general theory of Hijikata and Beuhat-Tits handles the local case.
However in order to globalize one needs to know precise information about the orders and
lattice involved. This is an expository note with the objective of providing the
information we need to give complete proofs to the resulis announced [5]. Our
goals are to explicitely determine, up to inner automorphisms ,all maximal open

compact subgroups of the Projective Symplectic Group, PS (k) , in the case

Py
where k is a locally compact discrete valuation field whose residue class
field has characteristic different from 2. Let 5/) (k)  denote the Symplectic
n
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Group  over the algebraic ¢losure k of k and let S, (0) denote

n
s \ulv;_'roup consisting of all matrices which have entries in the ring ol integers 0
of k. Gur prnl)ll'm is then to determine up to inner uulnm()rphism all sul)grmlps
ol s, (k) uhich are commensurable 1o 5‘/) (0) and are maximal with this

n n
property. l.ct I's be a lattice in k“?” |1‘.l\ing s (-lvnu'nlilr)
divisors equal 10 0 and =S cqual to the maximal ideal n of
0, and let us denote by \”‘s) its stabilizer in S/) (k) . Iiiswell
n

known that the normalizer A\J(,\(l‘S ) of \(I. ) in 5/) (i<) i

S
n

s=10;d (2/2]), [n/2] being the biggest integer not greater than n/2

sly e e ey

S] (k) of the
"

vield us maximal groups. We shall prove that the normalizers in

intersections \g - \(IAS) N A ”'71-9) are also maximal for

s = u/2):1,...,n. Hence we gel nil maximal groups which are not

conjugate under inner automorphisms of 5'/7 (k) ; we prove that any other mavi-
n

mal group is conjugate 1o one of these.

I. Generalities.  First we shall introduce our notation and then ,for the sake of

com |)|(‘l(‘||('~;s we shall restate some of the g('ll('ral results on m‘d\im‘dlil_v r('p('atin{.'

several proofs.

\\i” ll(' a ‘()(‘H”\ ('Ullll)il(‘l (liH('I‘(‘l(‘ \illllilli()ll Ii(‘l(l

Throughout this paper k
0 its ring ol integers, p: = 7) its prime ideal where g is any ge-
nerator of P, and U the group of units of 0. l.ct k be the
i b s B . y . : i of all n by
algebraic closure ol k ; and let M, (S) denote the ring ol < 3

S of ;< . We shall say that a

” matrices with entries in a subring



subgroup A of a semisimple linear group G« Mn(k) , defined over k
is arithmetic, if it is commensurable 1o Go' GNM M”(O) ,ieey, AM GO

has finite index in both A and GO X We say that an arithmetic group
Y is maximal (resp. maximal in G, G M, (k) if it is not a proper
Nul,\gr()up of any other arithmetic group (r(‘sp('('li\('l_\ , contained in Gk ). From
now on G- Sp (;() will be the Symplectie Group,i.c.., G is the group

n
of all matrices g in Mzn(;() such that thg =J where

J= - g )’ E being the n by n identity matrix. Let

G' = Gpn (i() be the similitude group of J , e, G’ is the set of
all 2n by 2n matrices g such that thg =pulgd
for some w(g) €;< z The Projective Symplectic Group I’S'P”(;() or simply
PSp , is 1o be defined as the quotient s, (k) by its center. We shall

n
consider the following representation of PSpn(l;) as a linear group. If we
map ,in a natural way: ,the greap ) p"(}() into the group I of all inner
automorphisms of Aiz’](;() i then its image is centerless, and isomorplic to
PSpn(;(). We know that il we choose a basis for MZH( ic) then the group
l has a linear representation in My(k), N=dn?, Hence we
obtain a linear representation of PS», which is easily seen to be defined
over k, and also we have a k-rational mapping from S/)n(;()
onto PS/)n(;(). This mapping clearly sends the normalizer in G of
S/)n(o) onto PS[)n(O) : If A is an arithmetic group contained in
Gk , then A is open compact in Gk hence by reasons of dimen-
11§33 , A is linearly dense in the sense that the k-algebra

sions.,

ACA, k) g(-n('rulvd by A in MZn(k) coincides with MZ)I(k)



because in our case the k-algebra generated by Spn(k) is MZn(k)'

We shall denote by N(A) (resp(-(-ti\'cly by Nk( A)) the normalizer

of A in Spn(L) (respectively in Spn(k) ). It is easy 1o see that
Nk(.\) is also open compact and therefore arithmetic. Let us denote by A(L\,O)
the  0-order generated by A in M, (k). Let us fix once for all a com-
plete set of representatives of U/UZ say { B4 yeee 81§ which
is finite because the residue class field of k has characteristic different

from two. For the sake of completeness we shall prove the following lemma :

Lemmal. 1) If A is an arithmetic group such that AC Spn(.'()
and if gEeN(A), g#Gyr , then g=g/Va, where €0,

g r‘.Mzn(k) , d.e., g PGpn(k) and ulg’) = a.
2) If A is an arithmetic group Spn(;() and

A=AM Spn(k) , then A'CN(A). In pariicular if N is maximal,
then Nk (A) = A and N(A)/A is abelian.

Proof. If g EN(A),  then g normalizes A(A, k) = My, (k) ’

hence g'lel.jg F,Mzn(k) for all j=1,...,2n and as
g°1=--’.tg-l we gel that gingmEk for all ivjssem=1, e0s, 2m,
hence g?l.ak and if g“ #£0, then 8ij~ )\l-].g” , o= g121€k ;
)\l-ij , and consequently = /\2 a with a0, AEk. Hence
assertion 1. Next if g €N, then g ENA) where A, is
is the kernel of representation of A’ as group of permutations of A/ A.
Clearly A in arithmetic. Hence g=¢g/ Vo and

g'l Ng-= (g')'IA (g’')C S/)”(k) A=A, From the assertion 1, it follows that
every element of N(A) /A has order at most two , therefore
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this group is an abelian group of order at most gind where t s
2

the order of U/U . Henceas  [NA):AI=[NA):N(M N (A) A

we have that N(A) is arithmetic. If A’ is maximal, then

NCN(A), AN =N(A), hence N (A) = N(A) M Sp, (k) =A.

q. e. d.
For the sake of simplicity we shall denote by gy the element of N(A)
which can be written as g’/ . Clearly given o if it exisis such
geEN(A), then it is unique , modulo A, and a is uniquely determined

modulo  0/0%.  We shall denote by ~ U(A)  the setofall g, eN(A)

such that o can be chosen in U. Hence UCA)/ A is injected
in u/ U2 and N(A) / U(A) is a group of order at most 2; it has order 2
precisely when therc exists an element g, ENA) for some generator 7
of p. Clearly uw) is generated by A and gy where
a runs in a subset of { €4y vion G b

Lemma 2. Let A and Ay be two arithmetic groups contained

in Spn(k) such that N (A) = A and N (Ap)=A;. If  N(A)
and N(A ) are conjugate in Spn“:) i then A is conjugate

to A] in Gpﬂ(k)‘

Proof. Let g'lN (A)g=N(Ap. Weset A, =gh g'1 M A and

A,= Ay M Ay, Hence A and A, are arithmetic and g'l_\ogCAl

o
because inner automorphisms preserve indices of subgroups. As Ao and
Aq are linearly dense we get that g'an(k)g =M,(k), hence



A =g INA) g ™ Sp, (k) = N(APMSp, (k) = Ap.

Finally as g eN(Sp,(k)), then g=g/V@, ¢ eGp, (k) and
plg’) = a.
q. e. d.
It is clear that there exists a one to one correspondence between the set of all
maximal arithmetic groups in Sp,  and the set of all maximal arithmetic
groups in PSp, . Sp,(k) acts on V= k" and if L is a
lattice in V, then we can always find a basis of L in such a way
that L=0e;+ ...+ 0en+A1e”+1+ oot Ajey,  (see [7],p.35) where
ord. AI <enn g ord, An' Ord, A =a meaning that A :p“ ’ and if we

14 p p

set  fx,y) ='xJy,  then fejre, ) =1=-fle, ;re;) and

nij
/(el- . e]-) =0 otherwise . We call this basis a canonical basis for L %
we sel n(L):AI and call {Ai/AI, p="1 R the elemen -
tary divisors of L s it is well known that these ideals are invariants of L.
Let L be an order in Mn(k) 5 we sel Le=J*%J , and we say
that L is o=-invariant if L9-L. Clearly if L is a lattice and
EndL = {geM/(k) | gL CL1}, then End L =(End L) (End L)7 s
o-invariant, and any o-invariant order L is contained in some End L.
Let L be an order and let (L)ij’ or simply Lij i be the ideal
generated by all (i, j) - entries of all gel. Welet ‘[Az' : A]-] =

= (Ai /A]-) 0. We say that L is a direct summand if L is

the direct sum as 0-module of Lif e this is true if e;;eL
for all i=l,...,2n.
Lemma 3. (Hijikata) . We set L=A(AML), 0) ,
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then L is a direct summand , L= End L and for all i,j=1,...,m

=L =LA =L, & =1A;: Al

=iy ntj n+i inyj' nyjj i

Moreover End L is maximal o -invariant if and only if the elementary
divisors of L are square free.
Proof. Ii follows from [4], thecorem 1,and also [6], theorem 5.4. For
the sake of completeness we shall compute this order. Clearly LC Enda L .
E H .1
We first observe that if g(H) = ( ), H=ae,.,acA , then
0 E 17 ]
g(H) eA(L) and ae,, ].EL : similarly to(H) eA(L), aen+]-]-€'- ’
if H= ae].’- , a EA]- . for all j=lLeeo,n; hence for these indices
s = -1 3 .o .:11"-!21
Ln+jj = A]. ; Ljn+j Aj and consequently e;;cL for all i n
and j=1,...,n. Hence both L and End L  are direct summands.

Now if g(A,D):(:: lo)) = A:E+aeij' i# j 'pA=E, then

g EA(L) if and only if gL =L, orequivalently Al0e;+...+0e )C0e;+
+eeot Oy and D(A1e1+...+ Anen)CA1e1+...+ Anen, and this is

valid if and only if a€o0 and aA,C Aj , i.e., a e[A]. :A;1. Con-

sequently Lij =[ A]. - Ai] . Since bolh_ L and End L are
o-invariant we gel that Ln+jn+i - Lij ’ Ln+s'j 7 Ln+ji and inyj  jnd
Now as L is a direct summand order the other assertions follows from
LijL;'n+j - Li.’H-j and Ln+in+jLn+jj = Ln+ij‘

q. e. d.

2. Necessary conditions. Our objectives now are to study necessary conditions for
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the maximality of the normalizer N(A) of a subgroup A of Spn(k)-

We want to find conditions under which a group A =N(A) n S,Dn(k) " non

maximal in Sp,(k):, have its normalizer maximal. We start studying the beha-
vior of the group U(A) with respect to the maximal groups in Spn(k)
which contains A

Lemma 4. Let ACsp(k) be such that Ne(A)=A. Let L*

be the union of all AN,0) by ,  forall b=y gy, g4 N(A). Then

4 " -1 g *
L* is a o=invariant 0-order. Moreover if ael, then boceL "

Proof. Clearly §S= UA(A, 0) by » ael is an order, because
bfxb'[j:)‘ by €S . Next L*= S v Sbﬂ and to prove that L* is an
; e 2 * 2 2 F
order, it suffices to show that b€ L* , but b, =mg, enACS. rom
thdJ = ﬁJ’gOJ = - V‘Fg'of and 0 = gL,ZX‘EA ; we can write
g.o{ = 6'1}’@/ \/Ot— hence Oﬂg&l = 0-1}’06 pnije,, UL#* is o-invariant.

Finally as Otb&li G'Iba and as ael we gel that b&IEL* ;

q. e. d
Let now K be the field generated by k and all \/;7 for

all i=1,...,¢t.



Lemma 5. Let A C Spn(k) be such that N(A)C Spn(k), i.g.,

N(A)=U(A). Then there exists a lattice L 'such that N(A)
is contained in N(A(L)).

Proof.  The order E £ of lemma 4 is contained in End L for
sone lattice L with elementary divisors square free. Consequently
ACA(L) and from the fact that for all g-€EN(A), (bg)'l(-I End L and

¢l (End L) g, = (b '(End L) b = End L,  wegetthat g normalizes

End L and Gy . hence g.€N(A(L) ) and N(A) C N(A(L)) .

Lemma 6. Let A be an arithmetic group in Sp,(k) such that

A is not maximal in Spn(k), Np(A)=A, and N(A) is ma-

ximal. Then there exists lattices L and D with same square free
elementary divisors such that A=A(L’) A(L”). Moreover there exists
heGp,(k) such that L” = hL’ and h €End_(L’) with

wb) =7 and  hHa, P/, all lying in End_(L’) for
some convenient generator m of D

Proof. By lemma 2, if N(A) = U(A), then N(A) is not ma-
ximal. Hence N(A) # U(A), i.e., there exists a g, for a conve-

niently chosen generator w of P, &g,EN (A) let L':Enda(L)
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be a maximal o-invariant order containing L* of lemma 4. By lemma 3, the

elementary divisors of L’ are square free. Now if gelUN), then by
the same arguments as in the end of lemma 5, g EN(A(L) ). Let now
L =h L ; hence L" = End (L) = b”(L')b;_rl and A(I-"):/J”A(L')b-"l:

= gﬂA(L')g;l y If we set A =A(L) y A(L?), then ACL*N Spn(k) =

A(L?) and as gneN(A) , ANCACL*): hence ACA’. If
¢€UN), then he normalizes L’ and modulo L’ commu-
tes with g, / consequently g:EN(A(L”)) or

UCA)CN(ACL’)) N N(A(L”) ) CN(AN’) ; also as giEA and the inner

automorphism of M, (k) induced by (gn)'l transforms A(L?)
onto A(CL”) we get that g,€ N(A’). Therefore N(A)CN(A”)
and by the maximality of N(A), N(A) = N(A”) . Finally

A’ C G AN(A) = A, e, N =A. It is clear that if we set b = b

then ulh) =m and as hel* as well as bz/":gi and
ab L= bg;rz we get that all these lie in Endo(L') .

q. e. d.
Let now [£6p, (k) , from A=AL’) N A(BL’) we get that

/ Af'l EA(L) ODNAMB L) where b= fh f'l. It is easy to see that

w(P)=n  andthat b, (B)2/a, a(b) eEnd (fL'). Since  N(A)
is maximal if and only if N(f Af'l) is maximal , we may replace A by
/A/‘I and we may assume that L #L_, s=0,1,...,n, where
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Lg is the lattice which in a canonical basis has A1 =, .= AS =0 and

A =33 :An:p‘ We set LS=EndU(LS) and let I"(Ly

s+1

denote the Gp, units of Lo

Lemma 7. Let b SLS N Gk be such that wlh) =m, and
¥y g bz/n ELS . Then modulo the operations of Ly the lattice
bLs can be written : hLg = 3 biei 7 where bi =p
if 1< i<p, or n+tl<i<n+s, or nis+q+l < i< 2n bi:O
if p+1<isn, and bi=p2 otherwise, i. e., n+s+1<i< nis+q,
where p+q=mn-s.

Proof. First of all from ahl , belg it follows that h'lnLS ,
BL . CL; hence pPL,CAL . CL. We claim that we can find a basis for
v which is a canonical basis for L yielding a basis for hL as

an 0-module. We shall construct this basis by induction. Let us assume that our

assertion is true for dimensions smaller than 2n. Let (e, i=1,...,2n

be a canonical basis for Lg. If for all xEhLy, x=xjer+..tX) €2,
both x  EP and xn+1€pA1, then letting U=<ej,e, 1>

be the orthogonal complement of the span of e and e, 1’ we have

hL, =DPer+ pAlem1+ (hL, n V). It suffices to apply induction to AL N U

and we are done. If there exists x €bL such that Xy /p, then we

£ s 4
may assume %=l and by taking e = x and U=<el,e, 1>
we get that f(e'l,em_l):I and LSZOe'I +A1 en+1+(Ls N U).

41



If x€hLg, x=x1e’1 sarbient 4 we write y=x-x1e'l=xn+1en+1+xo,

x,€U.  Since fy,e)) =-x, 1, nlhLy) =nb)n(Ly)=pA;, it
follows from el EhLg and PA; e,,1EhL that

hL = 0e7 + PA, e, 1+ (hLg A U). Now we apply the induction hypothesis
to L,OU and we are done. In the case where for all x €bL ,
x€p, but there exists x such that xn+1pr1 , we set
®nil = x and apply similar argument. Also similar argument completes the
induction in the case where n =1, Therefore we can find a canonical basis
for L such that in this basis hL ¢ =Ble1 +oeet an €, It is

not difficult to see that we may always replace L by gl , g€G6p, (k)

in such way that A;=0, ie, s>0. Since pL,CAL,CL, we
have p A]-C B]-C A]- 3 hence B]' is either p or p2 if
n+s<j<2n and Bj is either 0 or P, if
I1<j<n+s. Now if L =pe;+0e, ;+L, for some 1<i<s
then we can replace b by eh, gel'(L) such that
ghL =0 e+ e, it L’, i.e., g is the operation which interchan-
ges e; and e, j+iS<s. Hence we may assume that
O’deiZ ordenH., 1<j<s. Similarly if Bi=p and Bn+i=p
s.<EE M, then we may replace b modulo A(LS) in such
thaa  B,=o and B,,;=p?.  Usingthe factthat n(hL)=pA,
we see that we cannot have Bi = Bn+i =0 for some i, 1<ign ;
hence we have that Bn+i =p if , 1<i<s. Remains the case
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where B,=p and Bn+i: p2. Now we observe that we can permute
le;, €y pil by tej, e”+]-§ by means of operations of A(Lg) ,
provided that either 1<i, j<s or s<i,j<m. Next we put
together, by interchanging pairs if necessary, all basis elements {m e i

i s, if there exists any in such way that B]- =P, p5S and we
denote by ? their number; we have necessarily Bn+]-= p, isp .

We do the same with the indices ji>s such that there exists a generator
o i and we call q their number and necessarily B]- =0.

Also B]. =0, Bn+].=p , p<j<s. Now let us compute the elementary
divisors of hL . We change basis by replacing e; by me;

and Wk by 1 €pii® whenever Bi =p. After interchan-

ging pairs of vectors:, if necessary, we have a canonical basis where the ideals

Ai are either P, p2 , or p3 ) according to whether, say,
i<u, u+rl< i< t, and ty+1<i<n, and the elementary divisors
are o, p, Pz. As the elementary divisors of L and hL
are the same, we must have t=n, u=s. Also the indices i such
that the corresponding A]- = p2 are precisely the ones i<i<p
and s+1<i< s+q. Therefore p+q=mnes.

q. e. d.
3. Non maximality . We shall now study the orders in M, (k) which are
generated by the stabilizers of the lattices L, and hL ¢ of lemma
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7 ; we shall look at the intersection A(LS) N A(}JLS) and prove that
whenever 0< p<s, ns, S is contained in a bigger order S’ which
intersect Sp,(k) in a group r such that N(T) contains

NA(LS) (N A(hLy)) properly .

Let L be an order in Mn(k) s If (L )i]' = A we shall

7
set
A AT
:
N A -
We observe that if M is another order :, (M)ij = Bi]' A then

(LA M)ij a Aij N Bi]' . If they are direct summand, then we have the equali-

ty. Now with the block notation, we have

S ne=s S nes
Lo TR i PORTY s W gl
0 p 0 0 ™ } s
-1
0 0 0 P n-s
)
0 p 0 0 Vs
p p p 0 § Mg



From now on we fix hel, ne 2, (k) satisfiying the conditions of

lemma 6 and fix a canonical basis for L in such that bL is
written as above. Now we subdivide each matrix gel, in 64 blocks
g= (gij) y i, j=1,004, 8, in such way that 84 is either p by

P sep by s=p, or q by q according to whether
i=1,4,5,8, or i=2,6, or i=3,7. Let e(p) be

the matrix (gl-]-) where

. . it = ol
513“845'Ep' g26—[:s=p' 837 ™\ Ep

=gy =-nE =-nE =-7E
881 = 854 ~ "TEp » 862 T TEspr 873 7T g

and 47 =0 otherwise, i. e.,

q 14 14 s=p q 4
A~ ~ ~a M A = ] M
0 0 0 0 0 E

0 0 v O 0 Bog ni 0 10 1 s
vl
E 0
0 0 0 o0 0 0 nE, K
0 0 0 0 E, 0 0 0 1 2
glp)=
0 0 0 -E, 0 0 0 0 3 op
. 0 .
0 mEg, 0 0 0 0 0 Y ose
0 0 B, 0 0 0 0o 0 Y g
nE 0 0 0 0 0 0 o) } P
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Clearly  g(p) eL M Gp,,  gp)?=-rE, , ulg(p))=n, and

gp)L =hL . We set A(p) = AL )\ Alg(p)Ly).

Lemma 8. If p#0, s,n-s, then N(A(p) ) is not ma-

ximal in G.

Proof. We set N A(Lp) N Algp) Lp) ;  hence
A= (L, (\elp) Lpg(p)'l) G- As A =(L M\ End (g(p)Ly)) G
to prove that ADOA®R), properly it suffices to prove that

LP N End (g (p) L contains Ly N End (g(p)Lg) properly. If we

p)
observe that End (gL) = g End (L) g'1 and apply this to our cases we

see that, after writting these orders in matrix blocks corresponding to the 64 blocks

that we subdivide LS P a direct calculation yields the generator of

L.n End_(g(p)Lg) as follows :
a) o« e;i forall (7,7) in the blocks (I,J) where either
I:7, ]:1:51618; I:112’4’5' ]:3

126,8,]:1.2,4,5;'1:1:51122'4

(I,J)=1(2,4) or (8,6)

b) ﬂ-lei]- for all (i, j) inthe blocks (I,]J)=(6,3), 782 ),

(7,3),(7, 4) and 8, 2)

d) e otherwise

Now Lp 0 End_(g(p) L‘p) is the order generated by the above order and
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e for all (7,7 in the blocks (6,3) and (7. 2). Wrilting e

block notation, we have

} ~
1S
_Q
S
j
b
_Q
b~

> PP P02 0 0y §»

0 0 p p o 0 0 0 } s-p
0 0 0o o0 o0 0 pl prl P
0 0 p 0 0 0 p’l pl )

L0\ o)L g(p)!) =

and

} >
<
<

I~

}
~

}

}

P 0 p p 0 0 p 0 }S'p
o 0o o o o phoptopt] oy
L p o o0 0 1yl
L,n (g(P)Lpg(p)'1)= PP ¥
0 P P p 0 0 0 0 |2
P P P 4 p 0 0 0 }s-p
2 2




: _ Y | T ,
Hence if g=¢gH), H=n"( +e]~i), s<Ejf< s+q, then g eA’,

eij
g }[A(p) . Now for all eell  wehave g = diagonal {nE,nlE |
lies in N(A)A\N(A@)), n=+vE, because & lies in all direct
summand orders ; as b2/, b eEL. N g(p)Lsg(p)'l it follows that &,

normalizes Lp (\g(p)l.pg(p)'ln G =A, i.e., N(A(p)) is a proper

subgroup of N(A’) .

Corollary. If s#0,n, then N(A(0) ) is not maximal.

Proof. It suffices in the above proof omit the blocks in the rows and columns
1,4,5 and 8 in all orders.
q. e. d.
Befort going on we would like to point out that in the case where  p=s, n-s ,
the two orders above coincide. A simple verification shows that if n-s<s ,

then End (g(n-s)Lg) = End (L, o) hence.

Lemma 9. (Hijikata). A(L) and A(L,.J) are conjugated in

G, and consequently their normalizer are also conjugate .

4. Maximal groups. We shall discuss now the remaining case,i. e., the case where
hL_ =L ;  we shall prove that we get maximal groups in this case. We change

S n=s

motation and denote Aln-s) = AL )N AL, ) by Ag i our objec-
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tive is to calculate all lattices left invariant by Ag and consequently all

maximal subgroups of Sp,(k) which containis Ag s it turns out that
they are A(Ls) and A(Ln-s) y We first observe that lemma 9 implies
that there is no loss of generality in assuming that n-s < s.

Theorem 1. The normalizer of A = A(L_) A AL, ),
s=[n/2]+1,...,2n, is maximal in Spn(id in the sense that no
other subgroup of  Sp, ( k) contains it properly as a subgroup of finite index.
Proof. If n-s =s, then as ALy = AL, ) is maximal in
G, , N(A(LQ))=N(A,)  ismaximal. Hence we may assume that  p=n-s<s.
Since gl A(L)g AL, ), itsufficestoprove that A s con-
tained in precisely two maximal group in Sp,(k),  namely A(Lg)  and
A( Lp) ,  because if A’ is maximal and A’DN(A,), then
A=N"N\ G contains A and by theorem L, it is either maximal in
Gk or the intersection of two maximal groups, i. e., either A=A(Ly), or

A= A(Lp) , or A=A )N A(Lp) = A Since by lemma 1,

A"=N(A),  andas g eA, and g eNA(L), N(A(L,))

we have A=A, and A* = N(Ag) . Let us prove now that By

is contained in precisely two maximal groups in Sp,(k). First of al Ag
being contained in both A(L) and A(Lp) implies that

L' = A, 0) is contained in L,NL,=5s. We shall subdivide
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every matrix gel and every matrix of L N Lp in 36 blocks in

s
such way that if g= (gi]') Lj=1,...,6, then 8i; is ? by
? for i=1, 3, 4 and 6, and it is s-p by s-p if
i=2,35. L's N Lp is generated by :

a) e;; for all (i,7) in the blocks (I,J) where either
1=5 7]=1,2,3,4:]=3 1=1,2,4
=6, ]=1,2,3,4,5 or J=2, I=1,4
b) 7le;  forall (i,j) inthe block (3,6)
c) e otherwise i. e., ‘in block notation :
4 s-p 14 4 s=p 4
o~ ~ _,— o~ —~ ~
20 P p 0 0 OW i »
[0 0 p 0 0 0 § sep
.l
0 0 0 0 0 P i op
sM5p 0 p p 0 0 0 b p
P p p p 0 0 § sep
\P p p p p 0 J d p
Let us prove first that Sij = Lij for all i,j=1,..., 2n It is
clear that SNnS,k)=A; ; hence Lij G Sij . We consider first
the elements of Ag of the form gH), H= aeji a ES,-,H,' ’
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hence ae;, £ and Wi = Ot Similar argument applied to
tg(H) , H=5b e b Esn+ii implies that Ln+ii = Sn+ii' Thus
eiiEL if iel #2,5, because for those g e D i D
Hence \) is a direct summand order. Now we considet clements  g(A, D)
where A=E ey, i#j, ij=L...,m, aESi].. If iiI:Z,
then ez’z’EL and e;;8(A,D) = e;; + aeji. hence aei].¢L
and Lij = Sij . Similar argument holds for (i,j), j %I = 2, The
o-invariance of both L and \) implies that they also coincide in
the positions (n+i, n+j) and Lz’j e;; C L for those values of
(i,7). Next from g(A,D)-E = 61.].: 80 Yl n+1'EL’ i#j a=1,
(i,7) in (2,2), we gel ()ij ()ji = eyt e, m].%L ,  i.e., Lii = Sz'z'
for all i=1,...,2n. Now by considering ¢(H), H - heij*"eji' "
h ESI- n+j = S] pi b (respe( tively tg(H) , Wb ESnH.]. = Sn+i z') , (i, j)E(2,2),
we see that be; % be]- wh (respectively be}l—{ri,j » be, . : ;)
all lie in L, if either i%l = 2 or jfl =2, or both. Hence
L and \) coincide in the positions (i, n+ j), and (nvi,j)
whene ver itél =2 or j %l: 2 ; or both. Now if we observe that
ol i ein+i6ji’ e, T ey ”-,01-]- both lie in L. for all
(i, j)e(2,2), we get that Lz’j:Sij for all (i, 7)-€CI5 Ty %%
1,]=2,5, and therefore Lij = Sij for all iL,1= L., 2n
L=S§ ,

We wonld like to point out that this fact just proved does not mean that
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because we do not know whether or not e.cL for all iel=2,5.

11
If we consider the order generated by L and anyone of these e s
we obtain a direct summand order, because e; = ez’iez’j r ST ojieii
lies in this order and hence the same happens for e for all j in
I'=2 and similarly for all jel=>5s. Moreover this order has to be S,
because two direct summand orders M and N coincide if and only if
Mij = Nij forall (7,j). Thelack of knowledge that L=5 in -

troduces some tecnical difficulties because we need that our orders be direct sum -

mand. We shall prove next that if M is a maximal order containing L,
then M also contains S. It L=S§ we are done.,as well as
in the case where eiiEM for some iel=2,5 because
en+jn+]':6ij9ji'eii' Clearly Mi]-D Lz’j' for all (i,7)

We shall assume that e, EM for all i€l =25, If we omit from

L the blocks (1,]) such that 1=2,5, or J=2,5, or
both, we obtain a direct summand order in M4p(k) which is Lp ’
kence it is maximal. Therefore M and S coincide for (7,j) (1, ]),
LLj=1,3,4,6, i.e., Mij = Lij for all such (i ). Let
(i,7) (2, 1) (respectively (3,2), (1,5)) and let g8M,g=(gi]-)
gijEMij y ince ejir eL, (j,1)¢e2,1),0(5,6)) we get that
€8 = &ij 1] (respectively ;88 = &jj ejs) s therefore

0=L M cM, =0 (respectively 0=L,;cM;cM, = 0) and
consequently Mz’j= OZLI.]- for all (i,7j) €(2,1),(3,2),(1,35).
By the  o-invariance, Mz’j: Lij for all (i, j)e(4,5),(5,6),
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(2,4). If there exists gEM such that T 1 for some

(i,7) in (1,2) (respectively in (5,1)), as e and

et ey s (j,1)e(2,5), both lie in L (respectively e;;+esg€ L,
(i,s)€(5,2)), we get that e gl e d-e”) = e]-]-+ &ir et (respecti-
vely (e;; + ess)ge]-i= ez'z'+gsjesz')‘ But gitQMit: o, ethL
(respectively, Bsj®si el) consequently e;i€ M (respectively
e].].f-:M) ,  which is a contradiction. ~ Therefore Mij =p= Lz’j for all

(i,j) lying either in (5, 1) orin (I o2) the same argument applies to the
positions (2.3) with the following slight modification : we consider

(eii+ ett)ge]-i=gl-jeii+gt]- €0 (1'1)8(2)3)1 (tni)€(512)' If p gt]"

then (gjjii+ &1j 1)) it = 81+ &ijCir » and as e; EL

we gel that &1 e, EM or e, cM which is a contradiction. As an
immediate consequence of this argument we have that g e, eL if
(i,7) €(2,3) hence 84 EP or Mtj= P for all (t,7)e(5,3)
o - invariance implies that same is true for (5,4),((4,2), (0,2, and (6,5).
Next if Mi]-=p'1 . (i,j)€(2,6), we let gEM, such that

e 1/7 and consider (e;; + ess)g(”eji)’ (jo8)€(6,5) to get

eiiEL which is a contradiction. The position (3,5 will follow from the

o=-invariance. Next if for some (i,7) in (2,2 there exists g

such that 0% 1/, then we replace g by T €T €y

(j,8) €4253) , which is a contradiction. Same argument applies to the entries



in (5,5). If this happens to (i,7) €(2,5), we use ne]-z-g( ejiteji=
= e+ eji and from g;; €0 we gel e £ M. Finally if
8= 1 for some (i,7)€(5,2) we use (e;;+ e]-j) gej; = e;;+gjie;
and apply the same argument as before. This concludes the proof that Mij = Lij
for all (7,j) and therefore MCS which contradicts the fact that
M is maximal.

If M is a maximal o~ invariant order containing L, then
M= End (M), for some lattice M in v, hence LCEndg(M)
or eMC M for all g eL.  This suggests that our next step is the
calculation of all lattices in 1 left invariant by L. As e ;M
for all i=1,...2n, we must have that if x EM, x=2xl~ei ’
then x;e,€M.  We set M=Mje;o.. .eBMnen. By replacing
M by aM if necessary we may assume all Mi integral .
Next we observe that if Aei]. 4 A-Ieji CM, then Mi = M]- N hence
Mi:Mj‘ for all (i,j)ea,n, 1=1,..., 6 and (i,j) e, 4) .
We set M;=A, if iel=1,2,3 and MizB] if
i€] =4,5,6. If we choose the scalar a such that A3 =0, then as
ei].EM:, (i,7) €(3,2) and 2,1), we get that A3DA23A1
and nei].EM (i,7) €(1,3) implies that A1 P! pA3 " We get

from the o -invariance and from e (1/m) e]-iEM , (i,7)e(6,3),



that AI = BI B 82 ) B; = pA3 =P These conditions impli('s that we have

only the following possibilities

These possibilities give respectively the following lattices :

Lp » Lo, gpLg, g(p) Lp' Hence only A(Lp) and A(L)
contain AS .
q. e. d.
We would like to point out that there exists an order L* in
Mn(k) = where K = k(\/-;r—) such that L*N Mn(k) =L ;if
we denote by o* the ring of integers of K, this order is  End (L*)
where L*=M with A2 =A3 = o¥ and AI =Bl=r BZ=

=(\Jy7), B3 =p. Clearly L* N\ V= glp) Ly and

(1/VFH L*NV=L.

Theorem 2.  The number of conjugacy classes of maximal arithmetic groups
in Sp,, is n+l,  or equivalently, the number of conjugacy classes of

maximal open compact subgroups of PSpn is n+l,



Proof. It is well known that N(A (l‘s) ), 0<s< [12-’- ] are
m aximal, because A\(I.S) is maximal in Spn(k) c Th(‘y are now
pairwise conjugate ; for if NA(LS)) is conjugate to N(A(L,)) ,
then by lemma 2, A( l"s) is conjugate to A (I‘t) in G/)n(k) -
hence there exists heGp (k) such that L, leaves hL,

invariant. By similar argument to thé proof of the above theorem we must have

h=E, 1= s. Next N(A; ,0<s< [%] , are maximal and not con -
jugate to one NA(@’)), otherwise A(L) and Ag would
be conjugate : noreover they are not pairwise conjugate, for if N(Ay = g'lN(/\t)g
then B, = g'l,\tg hence either A(Ly and A(L) are
conjugate, or AL,) and A(Ln_s) are conjugate., or t=s .
If n=2m is even, then we have m+ 1 groups in the first group
and m groups in the second group : altogether 2mil =n+l., If
n=2m+l is odd we have m+ 1 groups in the first group and  m+l
in the second ; altogether ni+ 1.

q. e. d.

Closing this paper we remark that Shimura [7] proved that

Gpn (k) = \/-'( Lo) b1 (LO) where D is the set of diagonal matrices in
Gp,(k), e, Gp,, ,‘F (e, has the elementary divisor property. This
is no longer true for L% s #0, because if ep) can be diago -
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nalized |, say elp) = ghg’ v g, g (L), then

N(A (IAS) N .\(/7l<s, ) ) is maximal by theorem 11 on the otherhan we may
assume h = diagonal VE, nE and bl g(0) L and
N(A(0)) is not maximal by corolary of lemma 8 : this is a contradiction. The-
refore elp) cannot be (lialgunaﬂi/.(‘(l by the operations ol l'(l.s_) .
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