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ON KAN’S  CONDITION
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Introduction : In the category A°Ens , of the simplicial sets, there exists
a ““Unit interval” : the simplicial set Al1], with extremities el

el A0S AlL) (i=0, 1) ([1],[2]).

On the other hand, since in A° Ens  the products are representable and
A[0] s afinal object, these exists in A°Ens @ completely natural notion of
homotopy : two arrows forf1:X > Y are “‘simply homotopic’’ if there
is an arron F which makes the following diagram commutative.
Al0]x X
| “
(o]
Bi'w IX \
4 F
Al1]x X - Y
; 3
el Iy /
| g
A[C] xX



However, and contrarily to what happens in the Topologycal case, the relation of
“s‘. l . l " . . .

Simple homotopy™ , is not, in general, an equivalence relation on the set
Hom (X,Y), unless Y satisfies extra conditions (for example, Kan’s exten-

sion condition (Cf. [1] ) ).

I'herefore, Kan’s condition is a sufficient condition on Y , in order for the re -
lation of simple hcmotopy to be an equivalence relation on Hom(X,Y), for
every X.

The purpose of this paper is to show that Kan’s condition is not necessary .

In order to exhibit a counter-example in which the simple homotopy is not an equi-
valence relation and Kan's condition is not necessary, recall that all categories
are in some way included in the category of simplicial sets (s 1). This identifica-
tion establishes a one-10-one corresponderce between natural transformations and
simple homotopies. Furthermore, in order for a category C  to be a groupoid
a necessary and sufficient condition is that the simplicial set D ( (:) to

which C is identified fulfills Kan’s condition ([ 3] and 1. 2).

Since it is evident that the relation : (4) «there exists a natural transformation

between the functors F and G from A o B », is not in ge-
neral symetric, an example of a category B with this defect provides a sim -
plicial set D (B)  which “is not good for homotopy’.  That is why we can

restrict ourselves to look for simplicial sets wh ich do not hold Kan's condition

P . . 6 *
(for example categories which are not groupoids) but which *"are good for homoto-

py’'. The example that we use is the category M with only one object
x, and only one arrow r+x » x, different from the identity on X'y
which satisfies the relation r or=r., This is because :

(8}



1) ('('rluinl_\ M is not a grnupni(l

2) M satislies the following property : il in a diagram with  / and ¢
arbitrary
/
;
: %

;

&
the vertical arrows are both equal to 7, then the diagram commuts.
Therefore, given F,G:A - M any lunctors, there always exists a natural
transformation between then A:F > G, Ay =71 F(Y) =x, G(Y) = x.

This implics that on Funet (A, M) the relation (b)) is an equiva lence relation .

Theorem 2 alauds us to conclude that D(M) is g(m(l for homotopy.

Theorem 2. Let A  be a category. If for each category C the relation

(h) on the set Funct (C, A) is an equivalence relation, then for every simpli-

cial set X, the relation of simple homotopy on the set Hom (X,D(A)) s

also an equivalence relation.

An essencial fact on the proofl of theorem 2 is the existence ol a lunctor

G:A°Ens » Cat, left adjoint of the functor D, for which we will show

Theorem 1. The functor G commutes with finite products.



§ 1. THE FUNCTGR »
Let us recall some of the properties of the functor

D.’gé! - AOEns

wich can be found in [1],[3], [4].

First D is a fully faithful functor, which means that the application

D:Funct(é,g) > Hom(D(é),D(g))

induced by D, is an isomorphism .
Let A be the category whose objects are the integer 0,1, ...,7, and
in which there is one ,and only one arrow from 7 into j if i<j

The second characteristic of D is that it establishes a one-t0-one correspon-
dence between the categories ] and the simplicial sets of the type

Alx] (n>0):

D(J )= Al=].
n

Even more : to an increasing function W:ln] » [m] ([2]=t0,1,...,n}),
there is associated, in an obvious manner, a functor W :J - ]m and a
n
simplicial function W :Aln] - Alm], for which D(W’) = W
holds.
Another property which will be usefull is the correspondence which D es-

tablishes between natural transformation and simple homotopies.



Before we enunciate this correspondence, recall that for any natural transformation

r:v=>v, between two functors v,V:A 5B, there corresponds a
functor, called homotopy of Cat

Iy

A = ]O X é
I“’ is defined as follows

I"(0,X) = U(x)

l"’ (1,X)=VX), X an object of

kind (o, p:00,X) » (0,Y). T'(o, )= v(p.

I or an arrow of the

Similarly 1 ,f) = V(). For an arrow of the kind (3, ):(0,X) > (1,Y),

C'G,p=V(hol : UX) - V(Y) = Lo Uih: U(X) > U(Y) 5 V(Y).
pol )



Inversely for any homotopy F cllis: ¥, between functors there corresponds
a natural transformation v => V,I;( ;P UX) » V(X) given by

I' (o, Iy) = FX 2 establishing an isomorphism between the set  Trans(U, V)

of natural transformations from U into VvV, and the set Homot(U,V)
of homotopies from U into V, in Cat.
Since D commutes with the products (because of the existence of a left ad -

joint functor) an is fully faithfull, it establishes a one-to-one correspondence bet-

ween the natural transformation from U into V (U,V:A > B), and
the simple homotopies from D (U) into D (V) in ACEns: toa

natural transformation :U » V  there corresponds the homotopy I’

in Cat between U and 1%

which induces the homotopy I in A° Ens

(1)
D(J,x A - D (B)

2
D(]l) x D(A)

Q€

A[1] x D(A)



§ 2. THE FUNCTOR ¢

2.1, The purpose of this paragraph is to show that the functor

G ¢ AoEnvs - _@

the left adjoint functor of D (which is constructed for example in [1])

commutes with finite products.

2.2, Let us establish, first of all, some notations which will be usefull in § 3.
The adjoint isomorphism @ : Func (G(X),A) - Hom(X,D(A)) provi-
des a simplicial function L’Ix ;X 5 DG(X) (Taking A=G(X))
given by lﬂX: CP(IG(X)) ) and a function 64 (GD,(A)) - A

. . _ o gl
(taking X = D(i)) given by GA () (10(4))
Conversely the function ® (Resp. its inverse) is obtained from U
(Resp. from 6) as follows : if @€ Func(G(X), A) (Resp .
Be Hom(X,D(A))), (@) = D(Wo dlx (Resp. @'1([3): OA 0oG(B)).
2.3.1. The functor G is characterized by the following two properties :
I w:Aln] 5> Al m) and if W] > is the
n m
associated functor (5§ 1), then G(W) =W,
2) G commuts with right hand limits.

This is so hecause if these two conditions holds then we proceed as

follows [1].



Ay

2.3.2. Let X be a simplicial set. Let /x be the category
whose objects are the arrows f:Aln] > X, and in which
the morphisms from f:Aln] 5 X into g:A[m] 5 X
are the simplicial functions WeAlnl > Alm] such that
goW = f
We denote s '\/.\A » A% Ens for the functor ““source’
which associated with Al 5 X the simplicial set
\ln] and with W:f > g it associates the simplicial
function W Aln] > Alm].

Now we can recall

Lemma 1. Fcr each simplicial set X, lim Sx is represen-

table. That is 10 say, it is defined in A° Ens and furthermore,

lim s = X. If G commutes with right hand limits, then

G(X) = [ljlll (G,O sx).

Lemma 2. For cach simplicial set Y, let

C.. . ’\/)' > A°Ens
y - Syed skl

denote the constant functor of value Y. Then ([1])

Y x X= lim (CY x s ).

X
9 q s < / v G . . .
2.3.3. Let l‘\, }/, X L4 be the functor which associates 1o
cach f:An] > X the category J and 1o cach

n



W:f > g the funcior W ] ootof) Then we have :

G(X) = G (/1'1{1 s‘) ( Lemma 1)

= lim (G o SY) (G commutes with right hand limits)

= lim I)\ (Froperty 1,2.3.1)

2.3.4. We can say more about G : The adjointing morphism

04:G(D(A)) > A is an isomorphism.

2.3.5. Now we can prove theorem 1.

First part : G(Aln] xAlm]) = G(A[n]xG( Alm])

In fact : G(A[n] xA[m])

G(D(] )xD(]m)) (s 1)
"

vt

G(D(]”,y\] )) (s1)

m

C BV | (2.3.4.)

n m

Second part 1 G(A[n] « X) 2 G(A[#]) < G(X).

In fact  G(A[n] x X) 2 G(lim c x S )

- Al#n] X
> lim (Go (¢ xs ))
- \[#] X
But analysing the functor Go(c xs ) it can be seen
7 Al#] X
with the helps of the first part, that it is isomorphic 1o the funcior
c; x Go s . Then
n X

9



10

G(Aln] xX) = lim (Go(c X SX ))

Third part :

In fact :

(R}

>

[k}

J

n

J

n

= 1

n

lim (c]nx Gos_ )

Al#7]

X

x lim (Gos )
X

< G(lip s, )

x G(X)

T G(Aln]) x G(X).

G(X xY)

G(XxY)

G(X)x G(Y)
G(X lim SY)

G( lim (cxx SY)) (lemma 2)

lth' G(cx X SY)

lim (Go ¢, x Gos_ ) (Consecuence
” A of second part)

lim ( Gos )
im CG(’X 68,

G(X) x lim Go s

Y

G(X) x G(l_l;m SY)

G(X) x G(Y)



§ 3. PROOF GF THEOREM 2

3.1. Lemma. Let X be a simplicial set and A be a category. Then the

adjoinling isomorphism © : Funct (G (X), /i) % Hom (X, D(é ))

assingns the homotopy relation in  Hom (X, D (1;\) ) to the relation (b)

in  Funct (G(X), A), that is to say there exist a natural transformation

[' U =>V  between two functor UV:G(X) - A if and only
there exists a simple homotopy from oU) o 9(V).
Proof. Let U,v:6(X) - A be functors such that there exists a
natural transformation [': U=>V. According with § I there exists
a homotopy | ]1 x G(X) > A such that the following diagram
commutes :
G (X)
g0 x
¥
] r
1 X G(X) 3 é
EI + /
Vv
G(X)
Applying D to this diagram we get the follow ing commutative one

11



D(G (X))

D(U)
pel)

pa’)
D(j]xG(X)) 5 D (A)
prel)t /
D(V)
D(G(X))
on equivalently (s 1)
D(G(X) )
o, D(U)
D)
Al1] « D(G(X) ) - D(A)
el 1
D(V)
D(G (X))
l.et U= 91 ) : X 5 DG(X) be the adjointing isomorphism
"X G(X) '
(52,°272Y, Since P(U) D(U o lﬁx and (V) = D(V) o l/JX,

then the diagram.



P S D G(X)

D(U)
" g%, \

1 »
Al1] X D(r)
Alllx X ———— All]lxDG(X) %

D(A)

7
¢ EIT Av)

X & &@—_—— DG(X)

establishes a homotopy from ®U) 1o (V).

F  be a homotopy from QU) to ov)

X
Q(U)
€0 4
Al1] xX > b(cA)
>7
oV)
eIT
X

Applying G we obtain :

Conversely : Let

13



G (X)

G(p(U) )
G(:9). ‘

G(F)
Gl x X) 3 G (D(A))
7
Gel)
G(D(V))
G(X)
Let 04 be the adjointing isomorphism (5 2, 2.2).  The diagram above

induces, by composition. the following one :

G(X)

G(79) .

G(F) A >

G(ALT] « X G(D(A)) —> A

=7

~

Because of the commutativity of v, proved in 52, Thm. I, this dia -

gram takes the form



G(X)

£0 ¢ .
D
1)
]1 X G(X) - A
i 7
g 1
Vv
G(X)
Where W=, 0 G(F) composed with the canonic isomorphism

GIA[1] xX) = ]1 % G(X).

I'o this homotopy corresponds according with §1, a natural transformation

I from U into V.

Note: We have realy proved more than asked in our lemma. We have proved
that the function f[:Trans(U,V) > Hom(0(U),0(V)) which assigns
to each natural transformation [ from U to 1% the homotopy

D(I')o ”A[l ] ¥ L//X) ’ is an isonmrphism.

Proof of Theorem 2.

Assume that for each category C the relation (b)) in Funct(C, A)
is an equivalence relation. Let X be any simplicial set. From the

isomorphism Hom (X,D(é)) 2 Funct (G (X), _4 ) and the lemma befo-

re, it can be concluded that, since in  Funct (G(X), A), (b) s an equi-

valence relation, so is the simple homotopy relation in Hom(X,D(A)).

15
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