A NOTE ON THE ARITHMETIC OF THE ORTHOGONAL GROUP

by

Nelo D. ALLAN

The purpose of this paper is to discuss the maximality as a discrete group of the group G_Z of all rational integral matrices of the Real Special Orthogonal Group $G = SO(H)$ for all unimodular integral symmetric n by n matrices H with signature $(p+r, p)$, $p > 1$.

We prove that $N(G_Z) = G_Z$, where $N(G_Z)$ denotes the normalizer of G_Z in G and that there is at most one maximal discrete subgroup of G which contains G_Z. Moreover G_Z is always maximal, with exception of the case where r is an odd multiple of four and H is odd. It is well known that if Γ is a maximal discrete subgroup of G then $N(\Gamma) = \Gamma$; the above exceptions give a negative answer to the question of whether the conditions $N(\Gamma) = \Gamma$ is enough to characterize maximality.

Essentially we present complete proofs for the results announced in [3]; also we use, and the material overlaps with, chapter III of [4].

1. Preliminaries. We shall denote by R the field of all real numbers, by Q the field of all rational numbers and by Z the ring of all rational integers. If
\(a \in \mathbb{Q}\), \(\text{ord}(a)\) will denote the order of 2 in \(a\). For any subring \(S\) of \(R\), \(M_n(S)\) will denote the ring of all \(n\) by \(n\) matrices with entries in \(S\), and \(GL_n(S)\), the group of units of \(M_n(S)\). The determinant of a matrix \(g\) will be denoted by \(\det(g)\); the \(n\) by \(n\) identity matrix will be denote by \(E_n\) or simply \(E\) whenever there is no danger of confusion, and \(e_{ij}; 1 \leq i, j \leq n\), denotes the matrix with 1 in \((i,j)\)-entry, zero otherwise. \(^t g\) is the transpose matrix of the matrix \(g\). Let \(H\) be an integral unimodular symmetric matrix of signature \((p+r, p)\), \(n = 2p+r\), i.e., \(H \in M_n(\mathbb{Z})\), \(^tH = H\), and \(\det(H) = \pm 1\). We say that two matrices \(H\) and \(H'\) are integrally equivalent, \(H \cong H'\), if there exists an integral unimodular matrix \(U\) such that \(H' = ^tUHU\). Let \(V\) be an \(n\)-dimensional vector space over \(R\) and \(\{ \varepsilon_j \}_j\), \(j = 1, \ldots, n\), be a fixed basis for \(V\); we shall identify, as usual, a vector \(x \in V\) with a column matrix; the bilinear form associated to \(H\) shall be written as \(f(x, y) = \langle xH y \rangle\), and we set \(f(x) = f(x, x)\) for all \(x \in V\). We call \((V, f)\) a quadratic space. Let \(L\) be the lattice of all points in \(V\) whose coordinates are integers. If \(H \cong H'\), then we can regard \(U\) as a change of basis of \(L\) and \(H\) and \(H'\) as the matrices associated to the same form \(f\) in different basis. We say that \(H\) is even if for all \(x \in L\), \(f(x)\) is even; otherwise we say that \(H\) is odd. Let \(A\) and \(B\) be respectively \(r\) by \(r\) and \(s\) by \(s\) matrices, then we shall denote by

\[
\begin{pmatrix}
A & 0 \\
0 & B
\end{pmatrix}
\]

We write \(J(a) = \begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix}\), \(J(0) = J\) and \(J_p = \begin{pmatrix} 0 & E_p \\ E_p & 0 \end{pmatrix}\).

We recall the following two results from [1].

Lemma 1. Given \(m > 0\) there exists an unimodular symmetric integral \(m\) by \(m\) matrix \(V\) such that \(E_m = V\) and \(V \equiv J_q A \mod 2\), where \(A = J(1)\) or
else E_1, according to whether m is even ($m - 2 \leq q$) or odd ($q = m - 1$). Moreover
if m is even and if we write $V = (v_i, j)$, then we can find such V with
$v_m, m - 1 = m$ and $V \equiv V' \perp J(1)$ modulo 2^d where $a = \text{ord} (m)$

LEMMA 2. (Meyer) Let H be an unimodular symmetric integral matrix with
signature $(p + r, p)$, $p \neq 0$.

(a) If H is even, then either $r > 0$ and $H \approx J_p \perp \phi_r$, where ϕ_r is posi-
tive definite, even and r is a multiple of 8, or $r = 0$ and $H \approx J_p$

(b) If H is odd and $r \neq 0$, then $H = J_p \perp V_1$ where V_1 satisfies lemma
1.

(c) If H is odd and $r = 0$, then $H = J_{p - 1} \perp J(1)$.

2. The enveloping algebra of G_Z. Let $O(V)$ be the group of automorphisms of
(V, f), G be the group of all rotations in $O(V)$, i.e., $G = O^+(V)$, and G^0 be
the connected component of G. Let G_Z be the group of units of L in G, i.e.,
the group of all $g \in G$ such that $gL = L$; with respect to the basis $\{e_i\}$,
$G = SO(H) = \{g \in GL_n(R) \mid gHg^t = H, \det(g) = 1\}$, $G_Z = G \cap M_n(Z)$ and $G_Q =
G \cap M_n(Q)$. We have $O(V)_Z \supset G^0_Z$. If $H \approx H'$, then G is isomorphic to
$G' = SO(H')$ under an isomorphism which sends G_Z onto G'_Z and G_Q onto
G'_Q. Hence the maximality or not of G_Z is preserved. It follows from lemma 2
that we may assume $H = J_q \perp V$, $m = 2q + s$ where q is respectively p, p or $p - 1$
and V is respectively ϕ_r (or 0) V_1, or $J(1)$, according to whether we are in
the case (a), (b), or (c). If Γ is any subgroup of $O(V)_Q$, then we shall denote
by $A(\Gamma, Z)$ the Z-algebra generated by the element of Γ in $M_n(Q)$. Although
if follows from the general theory that $A(\Gamma, Z)$ is an order, if Γ is discrete, in
our case the direct calculation will automatically prove this fact. Another trivial
remark is that if $H = K \perp H'$ then $O(K), SO(K)$, and $O(K)^0$ can be embedded
respectively, in $O(H)$, $SO(H)$ and $O(H)^\circ$, the mapping being $g \mapsto g \perp E$ where E is the identity of $O(H')$; also $O(K)$ can be embedded in $SO(H)$, but now the mapping is $g \mapsto g \perp h$ where $b \in O(H')$ and $\det(g) = \det(b)$. The same is valid for the corresponding groups of integral matrices. In particular this applies to our case with $K = J_q$. Moreover we have an embedding of $A(O(K)Z, Z)$ into $A(SO(H)Z, Z)$ which preserves addition and multiplication, namely $g \mapsto g \perp 0$, where 0 is the $n \times m$ by $n \times m$ zero matrix, and K is m by m.

LEMMA 3. Let $K = SO(J_q)^\circ$, $n = 2q$. Then the order $L = A(KZ, Z)$ is generated by $g \cdot E_n$, $g \in KZ$, and coincides with $M_n(Z)$.

Proof. First of all $D = \{g \in O(J_q) | g = g(A,D) = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}, A \in GL_q(R) \}$ is clearly isomorphic to $GL_q(R)$; let $T = \{g \in O(J_q) | g = g(B) = \begin{pmatrix} E & B \\ 0 & E \end{pmatrix}, tB = -B \}$ and $tT = \{tg | g \in T \}$. Clearly D, T, and tT are connected. Hence DZ, TZ, and tTZ are subgroups of KZ. Now if we take $A = E + e_{ij}$, $i \neq j$, and $B = e_{jm} - e_{mj}$, $m \neq j$, we get that $(g(A, D) - E) (g(B) - E) = e_{iq} + m \epsilon L$, and $(g(D, A) - E) (t'g(B) - E) = e_{i+q} m \epsilon L$. Hence after interchanging indices and taking products we get that $e_{ii} \epsilon L$ lies in this order for all $i = 1, \ldots, n$. Now $e_{ii} g(A, D) e_{jj} = e_{ij} \epsilon L$ and so does $e_{i+q} e_{i-q} \epsilon L$ and similarly $e_{i+j+q} \epsilon L$. Therefore $e_{ij} \epsilon L$ for all $i, j = 1, \ldots, n$, q.e.d.

We shall decompose the matrices $g \in M_n(R)$ in 9 blocks, $g = (a_{ij})$, $i, j = 1, 2, 3$, in such way that a_{11} and a_{22} are q by q matrices; we let $H = (b_{ij})$, and $H^{-1} = (b'_{ij})$, $i, j = 1, 2, 3$. From $t'gHg = H$ if and only if $g(H^{-1})(t'g) = H^{-1}$, we get immediately:

LEMMA 4. $g \in O(H)$ if and only if either

56
We shall consider special elements in \(G \); we shall denote by \(S_u(R,T) = S_u(R',T) \) (respectively \(S_f(R,T) = S'_f(R',T) \)) the matrix \(g \) where \(a_{jj} = E \) for all \(j \),
\[
\begin{align*}
 a_{32} &= R, & a_{12} &= T, & a_{13} &= tRV = R' \\
 a_{21} &= -T, & a_{23} &= R', & a_{12} &= a_{13} = a_{32} = 0.
\end{align*}
\]
They are the so-called Siegel-Eichler double transvections. By \(S(R,T) \) we shall denote either \(S_u \) or \(S'_f \). If we replace \(g \) by \(S(R,T) \) in lemma 4 we get immediately:

Lemma 5. \(S(R,T) = S'(R',T) \in O(\mathbb{H}) \) if and only if either \(tRVR = T + tT \), or \(R'V^{-1} tR' = T + tT \).

The following lemma yield trivial solutions of these equations.

Lemma 6. \(S(R,T) \in G^o_Z \) in the following cases:

1. \(R = 2e_{ij} \) and \(T = 2v_{ij} e_{jj} \).

2. If \(2 \mid v_{ii} \), \(R = e_{ij} \) and \(T = (1/2)v_{ii} e_{jj} \) where \(i = 1, \ldots, q \) and \(j = 1, \ldots, s \); where \(V = (v_{ij}) \).

Corollary. \(S'(R',T) \in G^o_Z \) in the following cases:

1. \(R' = 2e_{ij}, \ T = 2w_{jj} e_{ii} \).

2. If \(2 \mid w_{jj}, \ R' = e_{ij} \) and \(T = (1/2)w_{jj} e_{ii} \) where \(i = 1, \ldots, q \), where \(j = 1, \ldots, s \) and \(V^{-1} = (w_{ij}) \).

Lemma 7. Assume that \(2 \mid v_{ii} \) precisely when \(i = 1, \ldots, s-1 \). Let \(R \) and
Let \(R \) be integral matrices such that \(t^{\top}RV = T + t^{\top} + aV \). If \(a = 0 \), then the entries in the last row of \(R \) are all divisible by 2. If \(a = 1 \), then the same is true with the exception of the last entry of the last row of \(R \) which is not divisible by 2.

Proof. Let \(L' \) be the set of all \(x \in \mathbb{Z}^S \) such that \(t^{\top}Vx = 0 \) modulo 2; \(L' \) is a \(\mathbb{Z} \)-module and modulo 2 we have \(t^{\top}Vx = x^2_s v_{ss} \), where \(x_s \) is the last coordinate of \(x \); hence \(2 \mid x_s \) for all \(x \in L' \). In the case where \(a = 0 \), if \(y \) denotes any column of \(R \), then \(t^{\top}RV = T + t^{\top} \) implies that \(t^{\top}Vy = 0 \) modulo 2, i.e., \(y \in L' \) and hence our assertion. The same argument applies to any column of \(R \), in the case where \(a = 1 \), with the exception of the last one; for this last column \(t^{\top}RV = T + t^{\top} + V \) implies \(t^{\top}Vy = v_{ss} = 1 \) modulo 2, hence the correspondent \(y_s \) is such that \(y^2_s = y_s^2 v_{ss} = 1 \) modulo 2. Therefore \(y_s \) is odd. q.e.d.

COROLLARY 1. Assume that \(2 \mid w_{ij} \) precisely when \(i \neq m \). Let \(R' \) and \(T \) be integral matrices such that \(R' (V^{-1}) (t^{\top}R') = T + t^{\top} + aV^{-1} \). Then the same statement holds if we replace last row of \(R \) by \(m \)-th column of \(R' \).

COROLLARY 2. Assume that \(2 \mid v_{ii}, w_{jj} \) precisely when \(i \neq s \), and \(j \neq m \). Then all \(g \in O(H)_{\mathbb{Z}} \) have, with the exception of the diagonal entries, all the entries in the last row and \((2s + m)\)-th column, divisible by 2.

Proof. It suffices to observe that

\[
(t^3_i V a_{3i}) = (-t^3_{1i} a_{2i}) + (-t^3_{1i} a_{2i}) + \delta_{i3} V
\]

and a similar equation holds for \(a_{i3} \), where \(\delta_{i3} = 1 \) or 0 according to whether \(i = 3 \) or not. q.e.d.
We are now ready to calculate the enveloping algebra L of G_Z. We recall that $n = 2q + s = 2p + r$.

Lemma 8. If H is even (case (a)), then $L = M_n(Z)$. In the case where H is odd we have: If r is odd, then L is generated by $e_{ij}, 2e_{in}$ for all $i, j = 1, \ldots, n$, and $i, j \neq n$. If r is even (cases (b), and (c) with $s = 2$), then L contains the order L^* generated by all $e_{ij}, 2e_{in-1}, 2e_{nj}, 2e_{n-1}$ and $e_{nn} + e_{n-1}n-1, i, j = 1, \ldots, n, i \neq n$ and $j \neq n-1$, and is contained in the order L^{**} generated by L^* and e_{nn}.

Proof. From the embedding of $A(O(J_q)Z/Z)$ into $A(G_Z, Z)$ we get by lemma 3, that $e_{ij} \in L$ for all $i, j = 1, \ldots, q$. By lemma 5 and its corollary, $S(R, T), S'(R', T) \in G_Z$ if $R = e_{ij}$ or $R' = e_{mk}$ provided $2 | v_{ii}, 2 | w_{kk}$, $m, j = 1, \ldots, q$. Our objective now is, by considering the corresponding S_1 and S_μ to see that $e_{2q+i}j$ and e_{m2q+k} all lie in L for $j, m = 1, \ldots, 2q$ and consequently by taking products we see that $e_{2q+i}2q+k \in L$ for these values of i and k. We let $g^* = (a_{ij}), \mu = 1, 2, 3$, be such that $a_{ij} = E$ and $a_{ij} = 0$ otherwise; clearly $g^* \in L$, $\mu = 1, 2$ and $g^*_3 = E - g^*_1 \cdot g^*_2 \in L$ and this implies that $g^* (S(R, T) - E) = e_{2q+i}j$, and $(S'(R', T) - E) g^* = e_m 2q+k$ both lie in L, as desired. Now we shall study case by case.

In the case where V is even, V^1 is also even $e_{ij} \in L$ for all $i, j = 1, \ldots, n$, i.e., $L = M_n(Z)$. In the case where r is odd, then lemma 1 says that we can choose $V = J_k \perp E_1$ modulo 2 hence the same is true for V^1. Consequently v_{ii}, w_{ii} are multiple of 2 precisely when $i \neq m$. Thus $e_{ij} \in L$ for all $i, j = 1, \ldots, m-1$, and hence $e_{nm} = E \cdot \sum_{i \neq m} e_{ij} \in L$. Now by lemma 6, $2e_{in}$ and $2e_{nj}$ lie in L; the corollary 2 of lemma 7 with $s = r = m$.

59
implies that the entries of the last row and column, which are non diagonal, of all matrices in \(L \) are divisible by 2, and our assertion is verified in this case. In the case that \(r \) is even by using lemma 6 and products we arrive to \(2e_{nj}, 2e_{in-1} \) and \(4e_{nn-1} \) all lie in \(L \) for all \(j, i \neq n, n-1 \), and a similar argument as above shows that they are generators of \(L \) with the possible exception of \(4e_{nn-1} \).

As \(e_{ii} \in L \) for all \(i \neq n, n-1 \), we get that \(e_{mn} + e_{n-1n-1} \) lies in \(L \). It remains to prove that \(2e_{nn-1} \in L \). If \(r = 0 \) this follows from the fact that

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -2 & 1 \\ 1 & 0 \end{pmatrix} \in O(1(1)) Z.
\]

Let now \(V = T^2 U U; g \in O(E) \) if and only if \(U^{-1} g U \in O(T^2 U U) \).

If \(g \) is either a permutation matrix or a diagonal matrix having \(\pm 1 \) as diagonal entries, then for all \(x \in Z \), \(t^x g \) differs from \(t^x \) either by few changes of sign or by a permutation of two coordinates of \(x \). Now if \(t^x \) is the \(s \)-th row of \(U^{-1} \) and \(y \) is the \((s-1)\)-th column of \(U \), the \((U^{-1} g U)_{ss-1} = t^x g y \). As \(y \) is primitive we may assume that its first entry, \(y_1 \) is odd, and since \(x \) is also primitive we can find \(g \) such that the first element of \(t^x g \) is not divisible by 2. Hence we may assume that its first entry \(x_1 \) is odd. If \(t^x y \) is not divisible by 4 we are done; otherwise we consider \(g' = \text{diagonal} \{ 1, 1, \ldots, 1 \} \) and we get that \(t^x g' y = t^x y - 2x_1 y_1 \) is not divisible by 4. Completing \(U^{-1} g U \) to an element of \(SO(H)_Z \) we get an element \(g \) in \(G_Z \) such that \(\text{ord} (g_{nn-1}) = 2 \).

q.e.d.

COROLLARY 1. \(L^* \subset A(O(H)) Z \subset L^{**} \). The generators of \(A(G^0 Z, Z) \) and \(L^* \) are the same with possible exception of \(2e_{nn-1} \) and \(e_{nm} + e_{n-1n-1} \).

Proof. Our assertions follows from the fact all the elements used in the above proof lie in \(G^0 Y \) with the exception of the one in the last paragraph.

Remark. We do not know whether \(e_{nn} \) lies in \(L \) or not.
COROLLARY 2. If H is even, or if H is odd and r is odd, then
$$L = A(O(H)Z, Z) = A(G^0 Z, Z).$$

Proof. For all the elements used in the proof of lemma, in this case belong $G^0 Z$.

COROLLARY 3. If $p = 1$ and r is even, then $A(G^0 Z, Z) \subset A(O(H)Z, Z) \subset L'$.

Proof. The reason our calculation does not go through in this case is that we were not able to prove that $e_{11}, e_{22} \in L$. Of course if we add these element to L, all the argument remains valid.

3. Main result. Let G denote any of the three groups $O(H), G$ or G^0.

We are now in the position of computing all maximal discrete groups containing G_Z. Let $\Gamma \subset G_Q$ be a discrete group containing G_Z; the enveloping algebra $L(\Gamma) = A(\Gamma, Z)$ of Γ contains L and is such that $(H^{-1})(t^L(\Gamma)) H = L(\Gamma)$, because $g^{-1} = (H^{-1})(t^g) H$. Consequently our problem is the calculation of all orders L^* in $M_n(Q)$ which contains L and are maximal among the orders having the property $(H^{-1})(t^L)^* H = L^*$. In the case (a) $L = M_n(Z)$, hence maximal. We shall discuss cases (b) and (c).

LEMMA 9. If r is odd, then $L'= M_n(Z)$. If r is even, and if $L' \subset L$, then L' contains L^{**} and it is either $M_n(Z)$ or the order generated by L and $2^{l-1} e_{n-1} n$.

Proof. We start observing that if for some $i, j, k, e_{ij}, e_{ji}, e_{kk} \in L'$, and if $L' = (A_{ij})$, then $A_{ij} e_{ij} \subset L'$, and $A_{ij} A_{jk} \subset A_{ik}$. Also $e_{ii} \in L'$, implies that $A_{ii} = Z$, because L' is a finitely generated Z-module. Consequently $A_{ij} = A_{ji} = Z$ provided that e_{ij}, e_{ji} lie in L'. Therefore in the case (b), r odd, $A_{ij} = Z$ for all $i, j \neq n$, and in the case (c),

61
even $A_{ij} = Z$ for all $i,j \neq n-1,n$. We shall treat first the case
where r is even. From $2e_{nj} \in L'$, $j \neq n-1$ we get that $e_{ji}g(2e_{nj}) = 2g_{in}e_{jj}L'$
for all $j \neq n,n-1$, and $i \neq n-1$; hence $2A_{in} \subseteq Z$ if $i \neq n-1$. Similarly
$2A_{n-1} \subseteq Z$, $j \neq n$ and in this case a similar argument shows that $4A_{n-1} \subseteq Z$.

If for some $g \in L'$, $g_{nn} = a/2$, a odd, we get $e_{n-1}n_1^2 = a_{n-1}n_{1}^2 \in L'$,
or $a_{nn}a_{n-1}n_{1}^2 \in L'$ and $(a^{3}/2)e_{nn} \in L'$ which is absurd. Hence $A_{nn} = Z$,
and similarly $A_{n-1}n_{1} = Z$. Let $g \in L'$, $g_{n-1}n = a/4$, a odd, then
$2e_{n-1}n_{1}g(e_{n-1}n_{1} + e_{nn}) = 2g_{n-1}n_{1}e_{n-1}n_{1} + (a/2)e_{nn} \in L'$
which is absurd. Now from $(e_{nn} + e_{n-1}n_{1})g_{en} = g_{nn}e_{nn} + e_{n-1}n_{1}e_{n-1}n_{1}$
we get that A_{ni}, and similarly $A_{ni}i'$, $i \neq n-1$, are integral. If for some $g \in L'$,
$g_{n-1}i = a/2$, a odd, $i \neq n$, then $(e_{n-1}n_{1} + e_{nn})g_{ei} = g' = (a/2)e_{n-1}j_{+}
+ g_{n-1}e_{nj} \in L'$, $j \neq n-1$, and we may assume that $g_{ni} = 1$. Now $g' =
H'((1/2)e_{n-1} + e_{jn}) H \subseteq L'$ and by observing that $H = \bigcap p \bigcup q \bigcup (1)$
modulo 2, we may choose j even and greater that $2q$, hence the $(i-1,i)$-th entry,
$b_{i-1}i'$ of H is odd. Hence $e_{i-1,i}g''(e_{n-1}n_{1} + e_{nn}) = (b/2)e_{i-1,n_{1}} + c_{i-1,n_{1}}$
+ $d_{i-1,n_{1}}$ with b odd, lies in L'. Now if we multiply this element by
$(a/2)e_{i-1,i_{1}} + e_{n-1}i_{1}$ on the right, we get in L' an element $(ab/4)e_{n-1,n_{1}}$,
which is impossible. Hence A_{in} is integral for all $i \neq n-1$, and similarly
$A_{n-1}j$ is integral for all $j \neq n$. We have only one possibility left for non
integral ideal which is $A_{n-1}n$. It is easy to see that $(1/2)e_{n-1}n$ and L
generate an order which contains $e_{n-1}n_{1}$ and e_{nn}.

From this we immediately get:

THEOREM 1. Let G be either $SO(H)$ or $O(H)$. In the cases (a) and
(b), G_{Z} is maximal in G_{Q}. In case (c) there exists at most one maximal group
in G_{Q} containing G_{Z}, namely $\Gamma = L_{1} \cap T$.

62
THEOREM 2. Let G be either $SO(H)$ or $O(H)$. If H is an integral unimodular symmetric matrix of signature $(p + r, p)$ with either $r = 0$, H odd and $p > 2$, or $p > 1$, then $N(\overline{G_Z}) = \overline{G_Z}$.

Proof. By lemma 2 it suffices to discuss our three cases namely, H even, H odd and m odd, and H odd and m even. If g normalizes $\overline{G_Z}$, then it permutes the maximal orders containing $A(\overline{G_Z}, Z)$. If H is even, or $m = r$ is odd, $M_n(Z)$ is the only maximal order containing the above order hence g normalizes $M_n(Z)$. By [2], p.105 every matrix in $N(\overline{G_Z})$ has all its entries algebraic integral and as the only units in Q are ± 1 and its class number is one, we get that $\overline{G_Z}$ is self normalizer. Let us study now the case where m is even and H odd. In this case there are three possibilities for g normalizing $\overline{G_Z}$, namely either g normalizes $M_n(Z)$, or g normalizes L' or permutes them. The first case is trivial. Let us assume first that g is rational. As the group generated by g and $\overline{G_Z}$ is arithmetic the only possibility for $g \in N(\overline{G_Z})$ is $g \epsilon L'$; in this case if we write $g = (g_{ij})$, $g^{-1} = (g'_{ij})$, then $g_{n-1 \cdot n}$ and $g'^{n-1 \cdot n}$ are non integral, and as g normalizes L we get that $(g^{-1} \cdot 2 \cdot g_{n \cdot n-1}) \cdot g_{n-1 \cdot n} = 2 g_{n-1 \cdot n} \cdot g'^{n-1 \cdot n} \epsilon Z$, which is absurd. Let $g \in N(\overline{G_Z})$, $g = g' \sqrt{a}$, by [2], p. 122, and let $k = Q(\sqrt{a})$ and O the ring of its integers. Let L'' be the order generated by g and L in $M_n(k)$. Then L'' is either $M_n(O)$, or the extension of L' to $M_n(k)$, or a different order. In the two first cases the above arguments apply with Z replaced by O. We write $L'' = (A''_{ij})$ and observe that $4A''_{ij}$ is always integral, hence the only possibility for a new order arises precisely when $a = 2$. In this case the only possible entries of g which are not in O are the ones lying either in the $(n-1)$-th row, or in the n-th column. Proceeding like in the proof of lemma 8 we can show that $2A''_{n-1 \cdot j}$
and $2A''_{in}$ are all integral provided that $i \neq n-1$ and $j \neq n$. Hence in the matrix g' the only possible non integral entries lie in the $(n-1)$-th row and in the n-th column, and if we multiply this column and this row by 2 we get an integral matrix. Hence $\text{ord} \ (\det(g')) \geq -2$; on the other hand $1 = \det(g) = 2^\lambda \det(g')$ where $n = 2^\lambda$, and this implies that $\lambda \leq 2$ which is absurd. q.e.d.

THEOREM 3. Let G be either $SO(H)$ or $O(H)$. Let H be an unimodular integrally symmetric matrix of signature $(p+r, p)$ with either $r = 0$, H odd and $p > 2$, or otherwise $p > 1$. If r is not an odd multiple of 4, then G_Z is maximal in G_R.

Proof. In the case where H is even, or in the case where H is odd and r is odd, our result is included in theorems 1 and 2, because by [2], p. 105, if G_Z is maximal in G_Q, then $N(G_Z)$ is the unique maximal arithmetic group containing G_Z. If we prove that in the other case the group $\Gamma = L' \cap G$ of theorem 1 coincides with G_Z, then by the same reason, theorem 2 will imply our claims. Let H be odd and r even ≥ 0; by lemmas 1 and 2, replacing H if necessary by an integrally equivalent matrix $H = J q \perp V$ with $V = J(1)$ if $r = 0$, or V is definite and $V = B \perp J(1)$ modulo 2, B even, and if $V = (v_{ij})$, $i, j \neq 1, \ldots, m$, then $v_{m-1} m-1 = m$ or according to whether V is definite or not. Let $g \in \Gamma$, g not integral, and write in blocks $g = (a_{ij})$, $i, j = 1, 2, 3$. If y denote the last column of a_{33}, then $y \in Z$, $i \neq m-1$, and $y_{m-1} = g_{n-1} n = a/2$, with a odd. Now if we look at the equations of G, given in lemma 4, we get

\[t a_{23} a_{13} + t a_{13} a_{23} + t a_{33} V a_{33} = V, \]

and the entries (m, n) of both sides yield the following equation

\[(t a_{33} V a_{33})_{mn} = t y V y + b = v_{mn}. \]

even, or

\[a^2 (v_{m-1} m-1/4) + a y_m v_m m-1 + y^2 m v_{mm} + b = v_{mm}. \]
If m is not divisible by 4 we get a contradiction since the left hand side is not integral. In the other cases $8|m$ or $m=0$, we get $y_r + y_r^2 \equiv 1$ modulo 2, which is absurd. Let now $m=4$. We consider the following matrices:

\[
U = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
1 & 1 & -1 & 0 \\
1 & 0 & -1 & 0
\end{bmatrix}
\]

\[
V = \begin{bmatrix}
2 & -1 & -2 & -1 \\
-1 & 2 & 0 & 0 \\
-2 & 0 & 4 & 1 \\
-1 & 0 & 1 & 1
\end{bmatrix}
\]

\[
g^* = \frac{1}{2} \begin{bmatrix}
1 & 1 & 1 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1
\end{bmatrix}
\]

\[
U^{-1}g^*U = \begin{bmatrix}
-1 & 0 & 0 & 2 \\
-1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1/2 \\
-2 & 0 & -2 & 0
\end{bmatrix}
\]

It is clear that $^tUU = V$ and that U satisfies the requirement of the first part of lemma 1. Also $g^* \in SO(E_4)$ and hence $U^{-1}g^* \in SO(V)$, hence $g^{**} = diagonal \{ E_{2p}, g^* \} \in SO(H)$. It is easy to see that this matrix lies in $SO(H)^O \cap L'$. Therefore $L' \cap SO(H)^O \neq SO(H)^O_Z$, and G_Z is not maximal in G_Q.

Next if $m=4+8s$, then H is integrally equivalent to $J_{2p} \perp V'$.

$V' = \phi_{8s} \perp E_4$. We let $U' = diagonal \{ E_{8s}, U \}$ and we set $V' = ^tU'V'U' = \phi_{8s} \perp V'$; clearly $V' = J_{2q} \perp J(1)$ modulo 2 hence we can proceed as in lemma 9 to get that $A(SO(H)^O_Z, Z)$ in contained in L'; again we can complete $U^{-1}g^*U$ to an element of $SO(H)^O \cap L'$ to get the non maximality of $SO(H)^O_Z$. Hence we proved:
THEOREM 4. If \(r \) is an odd multiple of 4 and if \(p \geq 1 \), then \(G^Z \) is not maximal in \(G^Q \), for \(G = O(H) \), \(SO(H) \), or \(O(H)^0 \). Moreover if \(p \geq 2 \), then \(N(G^Z) = G^Z \) for \(G = O(H) \) or \(SO(H) \).

Finally we would like to point out that the question of the maximality or not of \(G^Z \) in \(G^Q \) remains open in the cases where \(p = 1 \), and in the case of \(SO(H)^0 \), \(H \) odd and \(r \) even.

BIBLIOGRAPHY

Department of Mathematics
University of Wisconsin
Parkside, Wisconsin, U. S. A.

(Recibido en noviembre de 1972)