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A NOTE ON THE ARITHMETIC OF THE ORTHOGONAL GROUP
by

Nelo D. ALL AN

The purpose of this paper is to discuss the maximality as a discrete group of the
group G, of all rational integral matrices of the Real Special Orthogonal Group
G = SO (H) for all unimodular integral symmetric » by » matrices H with signa-
ture (p+r,p), p> 1.

We prove that N(G,) = G, , where N(Gy) denotes the normalizer of G,
in G and that there is at most one maximal discrete subgroup of G which
contains G, . Moreover G, is always maximal, with exception of the case
where 7 is an odd multiple of four and H is odd. It is well known that il 1" is
a maximal discrete subgroup of G then N(I') =1" ; the above exceptions give a
negative answer to the question of whether the conditions N(I") =" is enough

to characterize maximality.

Essentially we present complete proofs for the results anounced in [3]: alsowe

use, and the material overlaps with, chapter III of [4].

1. Preliminaries. We shall denote by R the field of all real numbers, by @

the field of all rational numbers and by Z the ring of all rational integers. If
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a¢ Q, ord(a) will denote the order of 2 in a For any subring § of R, M, (S5)
will denote the ring of all » by » matrices with entries in §, and GL,(S), the
group of units of M_(S) . The determinant of a mawrix g will be denoted by det(g);
the » by » identity matrix will be denote by E,, or simply E whenever there is
no danger of confusion, and ey 1< i, j<n, denotes the matrix with I in (4,j)-
entry, zero otherwise. ‘g is the transpose matrix of the matrix g Let H be an
integral unimodular symmetric matrix of signature (p+7, p), n=2p+7, i.e., HeM,(Z),
"H=H, and det(H)=+1. We say that two matrices H and H’ are integrally
equivalent, H ~ H’, if there exists an integral unimodular matrix U such that
H = 'UHU. L.et V be an n-dimensional vector space over R and { z‘-,jf y
j=1,...,n, be afixed basis for V ; we shall identify, as usual, a vector x¢V
with a column matrix: the bilinear form associated to H shall be written as

f(x,y) = "xHy, and we set f(x) = f(x,x) forall x¢V. Weecall (V,f) aquadratic
space. Let L be the lattice of all points in  V whose coordinates are integers.
If H= H’, then we can regard U as a change of basis of L and H and H’

as the matrices associated to the same form [ in different basis. We say that H
is even if for all x¢ L, f(x) iseven; otherwise we say that H is odd. Let A

and B be respectively r by r and s by s matrices,thenwe shall denote by

Al B the r+s by r+s marix

A 0

W-' o1 o) = I and [0 Ep
o al® e write J(a) = ; al” J() =] an ]p‘

We recall the following two results from [1].

LEMMA 1. Given m> (0 there exists a unimodular symmetric integral m by

m matrix 'V such that E ~ V and V= ]q,LA mod 2 , where A=f(1) or
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else E, according to whether m is even (m-2=gq) orodd (g=m-1). Moreover
if m iseven andifwe write V= (Uiy') , then we can find such V with

VI m 1= ™ and V =V'1 J(1) modulo 2% where a=ord (m)

LEMMA 2. (Meyer) Let H be an unimodular symmetric integral matrix with
signature (p+r,p), p£~O.
(a) If H is even, then either r> (0 and Hz]p;d)r, where qsr is posi-

tive definite, even and r is a multiple of 8, or r=0 and H= ]P

(b) If H is odd and r # 0, then H=~ 'LVI where VI satis fies lemma

Tp

(¢c) If H isodd and r=0, then Hz]p_l LJa).

2. The enveloping algebra of G, . Let O(V) be the group of automorphisms of
(V,f), G be the group of all rotations in O(V) , i.e., G =0"(V), and G° be
the connected component of G. Let G, be the group of units of L in G, i.e.,
the group of all g ¢ G suchthat gL = L ; with respect to the basis { e; [
G=SO(H) =1{geGL,R) |"gHg = H, det(g) = 11,6,=G N M,(2) and G =
=GN Mn (Q) . We have oV)y> GOZ . If H=H, th(?n G is isomorphic to
G = SO(H') under an isomorphism which sends G, onto G'Z and GQ onto
G'Q . Hence the maximality or not of G5 is preserved. It follows from lemma 2
that we may assume H = ]ql. V, m=2q+ s where q is respectively p,p or p-1
and V is respectively b, (or 0) Vi, or J(1), according to whether we are in
the case (a) , (b) , or (¢). If " is any subgroup of O(V)Q , then we shall denote
by A(T', Z) the Z-algebra generated by the element of I" in M, (Q). Although
if follows from the general theory that A", Z) is anorder, if 1" is discrete, in
our case the direct calculation will automatically prove this fact. Another trivial

remark isthatif H=KL H then O(K), SO(K), and O(K)® can be embedded
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O(H) , SO(H) and O(H)°, the mapping being g-gLE where

respectively, in
E is the identity of O(H') ; also O(K) can be embedded in SO(H), but now
the mapping is g -»glp where bhe OH') and det(g) = det(h). The same is
valid for the corresponding groups of integral matrices. In particular this applies
to our case with K= ]q - Moreover we have an imbedding of A(O(K),,Z) into
A(SO(H),,Z) which preserves addition and multiplication, namely g ¢gl0 ,
where 0 isthe n-m by n-m zero matrix, and K is m by m.

ILEMMA 3. Let K= souq)O , n=2q. Thenthe ader L=A(K,Z) isgenera-
ted by gE,,ge Ky, and coincides with M, (Z).

0
D
clearly isomorphic to GLq(R) ; let T= {g(O(]q)l g=g(B) =

Proof. Firstof all D={g¢ O(]q) | g= g(A,D) = : A(GLq(R) } is

,'B=-B}

and T =1 tg{ggTi . Clearly D, T, and T are connected. Hence D, Ty,

and ITZ are subgroups of K, . Now if we take A= E+ei]- ,i#j, and

B=ejm-emj, m# j, we get that (g(A,D)-E)(g(B)-E)=eiq+m5L, and

(e(D,A)-E) ('eB)-E) = ¢igmeL - Hence after interchanging indices and taking
products we get that e;; lies in this order for all i=1,...,n. Now

e ¢eL and

()iig(A,D)ej]:eij(L and so does €irg irg Also irg m®mj= Cirgj

similarly e i+q€ L. Therefore ejie L forall 4j=1,...,n p
q.e.d.

We shall decompose the matrices g e M, (R) in 9 blocks, g= (ai]-), i,j=1,2,3,
in such way that @, and a@,, are ¢ by ¢ matrices; we let H= (bij) )
and HI= (b3, ij = 1,2, 3. From teHg=H if and only if gH1)('g)=H"1,

we get immediately :

LEMMA 4. ge¢ O(H) if and only if either
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We shall consider special elements in G ; we shall denote by $,R,T)=8" (R",T)

(respectively §;(R,T)=$’)(R’,T)) the matrix g where a.=E forall j,

17
t i
“32=R: a12=T,a13=- RV =R’ and d21=£131=0 (respectively a3l=R ;
ay;=-T, ay3=R", aj,=a,3=a3,=0). They are the so called Siegel-Eichler

double transvections. By S(R,T) we shall denote either S, or Sp. Hwe
replace g by S(R,T) inlemma4 we get immediately :

LEMMAS . S(R,T) = S"(R",T) ¢ O(H) if and only if either 'RVR=T+'T, or
-RvIigoT1ytT,

The following lemma yield trivial solutions of these eqaations.

LEMMA 6. S(R,T) ¢ GOZ in the following cases :

1.,‘R=2ei]. and T=2”iiejj

2. If 2]11,-’-,R=ei]- and T=(1/2)vl-l-e]-]. where i=1,...,q and

j=1,...,5,; where V=(Uij)'

COROL LARY . S'(R’,T) ¢ GOZ in the following cases :
1. R'=29i]‘; T=2w,.

ii ¢ii

2. If 2| wjis R’ = eji and T=(1/2)w]-’- e;; where i=1,...,q,

where j=1,...,s and V'1=(wi]-).

LEMMA 7. Assume that Zlvﬁ precisely when i=1,..., s-1. Let R and
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T beintegral matrices such that 'RYR=T+'T+av. If a=0, then the
entries in the lastrow of R are all divisible by 2. If a=1, then then same is
true with the exception of the last entry of the last row of R which is not divisi-
ble by 2.

Proof. Let L' be the setof all x¢Z°5 such that “xVx=0 modulo 2:
L' isa Z-module and modulo 2 we have ‘xVx= xzs Ve s where xg is the last
coordinate of x ; hence 2] Xg forall x¢L’. Inthe case where a=¢0, if
y denotes any column of R, then IRVR =T +'T implies that tyVy=0 mo-
dulo 2, i.e., y¢ L’ and hence our assertion. The same argument applies to any
column of R, in the case where a=1, with the exception of the last one; for
this last column RVR=T + T + v implies tywy = ves =1 modulo 2, hence

the correspondent y. is such that y"; = ys2 v¢g =1 modulo 2. Therefore 1y

is odd. q.e.d.

COROLLARY 1. Assume that 2 |wii precisely when i #m . Let R’
and T be integral matrices such that R'(V'I) ( tR') =T+'T+avl, Then

the same statement holds if we replace last row of R by m-th column of R’.

COROLLARY 2. Assumethat 2|v;;, wi; precisely when i+# s, and j#m.
Then all g ¢ O(H), have,with the exception of the diagonal entries, all the

entries in the last row and (2s +m)-th column, divisible by 2 .
Proof. It suffices to observe that
fagiVazi= - lappay) + - lagpay) v 5,
and a similar equation holds for a3 where 3,3 =1 or 0 accordingto whether

i=3 ornot
q.e.d.
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We are now ready to calculate the enveloping algebra L of Gz . Werecall

that n=2g+s=2p+r.

LEMMAS8 . If H es even (case (a)), then L=M,(Z). Inthe case where H

is odd we have : If r is odd, then L is generated by eiir 2¢4 for all

i,j=1,...,n, and i,j ¥ n. If r is even (cases (b), and (c) with s=2), then
L contains the order L* generated by all ei]-,Zel- s ? Zen].,zen il and
Cont Fpg n-1'i'j=1""'”' i¥n and j+# n-1, and is contained in the

order L** generated by L* and e, .

Proof. From the embedding of A(O(]q) 72Z) into A(Gy Z) we get by
lemma 3, that ejie L forall i,j=1,..., ¢ Bylemmaj and its corollary ,
S(R,T), S'(R"T) ¢ G, if R= ej; or R'=e, , provided 2|v;:, 2[wy;,
mj=1,..., ¢ Our objective now is, by considering the corresponding §;
and S, to see that €g+i and em 2q+k all liein L for jm=1,...,2¢q
and cor sequently by taking products we see that rg+i2qrhel for these
values of 7 and k. We let g"l‘L = (az'j)’ w=1, 2,3, be such that = E
and - =0 otherwise; clearly g;lg L, pu=1,2 anﬁd gy=E-gy-ghHel and

this implies that  g*(S(R, T) - E) = €rq+ij’ and (S (R’,T) - E) g* =e,2q+k

both lie in L, as desired. Now we shall study case by case.

In the case where V is even, vl isalso even ejie L for all
ij=1,...,n ie, L=M/(Z). In the case where 7 is odd, then lemma 1
says that we can choose V=], LE; modulo2 hence the same is true for
v, Consequently Vi Wi oare multiple of 2 precisely when i # m. Thus

el-]-gL forall 4,j=1,..., m-1 , and hence e, = E;-gmeii"“ . Now by

lemma 6, 2e;, and Zen]- lie in L, the corollary 2 of lemma 7 with s=r=m
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implies that the entries of the last row and column, which are non diagonal, of all
matrices in L are divisible by 2, and owr assertion is verified in this case. In
the case that 7 is even by using lemma 6 and products we arrive to Zen]-, 2e;,.4

and 4e alllie in L forall ji# n, n-1, and a similar argument as above

nn-1
shows that they are generators of L with the possible exception of 4e, ,
As e;ie L forall i#n, n-1, wegettha e ¥ € 1 vl liesin L. It

remains to prove that 2e e L. If r=0 this follows from the fact that

(; 10) €0(J(1))y Letnow V='UU;gc0E,) ifandenlyif Ulgucolvv).
If g is either a permutation matrix or a diagonal matrix having + 1 as diagonal
entries, then for all x ¢ Z7, ’xg differs from ’x either by few changes of sign

or by a permutation of two coordinates of x. Now if 'y is the s-throw of U1
and v is the (s-1)-th column of U, the (U'IgU)Ss_1= 'xgy. As y is
primitive we may assume that its first entry, y; is odd, and since «x is also
primitive we can find g such that the first element of ’xg is not divisible by
2. Hence we may assume that its first entry x; s odd. If txy is not divisi-
ble by 4 we are done; otherwise we consider g’ = diagonal { -1,1,...,1} and
we get that lxg'y = txy-le y; is not divisible by 4. Completing vilggu
to an element of SO(H), we get and element g in G, such that

od (g, ;)=2. q.e.d.

COROLLARY 1. L*CA(O (H)),CL**. The generators of A(Gy, Z)

and L* are the same with possible exception of 2e, e and Con ¥ P fusi®

Proof. OQur assertions follows from the fact all the e[ements used in the above

proof lie in  G° with the exception of the one in the last paragraph.

Remark . We do not know whether €nn lies in L or not.
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COROLLARY 2. If H is even, orif H is odd and r 1is odd, then

L= A(O(H)z, Z) = A(Goz, Z) .

Proof. For all the elements used in the proof of lemma, in this case belong

o
G 7z
COROLLARY 3. If p=1 and r is even, then- AG%,,Z)C A(O(H) 7, Z)CL’.

Proof. The reason our calculation does not go through in this case is that we
were not able to prove that e,,, e,,¢ L. Of course if we add these element to

L all the argument remains valid.

3. Main result. Let G denote any of the three groups O(H), G or G°.
We are now in the position of computing all maximal discrete groups containing
52 . Let Tc E-Q be a discrete group containing EZ ; the enveloping algebra
L(T')=A(', Z) of I' contains L and is suchthat (H1)(’L(I")) H=1T),
because g'l =(H" )(tg)H. Cons equently our problem is the caleulation of all
orders L* in M, (Q) which contains L and are maximal among the orders
having the property (H'))(‘L*)H=L". In the case (a) L=M,(Z), hence

maximal. We shall discuss cases (b) and (c) .

LEMMA9 . If r is odd, then L’ =M,(Z). If r is even, and if L’ > L, then

L’ contains L** and it is either M_(Z) or the order generated by L and

Proof. We start observing that if for some 7,7, &k, e;;, €iir €k € L*, and

if L'=(Az-]-), then A el-]-CL', and AijAjkCAik' Also e €L,

i
implies that A;;=Z, because L’ is a finitely generated Z-module. Con-

sequently Aij=Aji=Z provided that ejir €ji liein L’. Therefore in the

case (b) , 7 odd, Aij = Z forall 4,j#=», and in the case (c),
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r even , Aij=Z for all 7,7 # n-1, n. We shall treat first the case

where 7 iseven. From Zenje L', j=% n-1 we get that ejig(zenj)=23inejj‘L'
forall j#mn,n-1, and 7 # n-1; hence 24, CZ if i# n-1. Similarly

2An_1 4C Z,j#mn and in this case a similar argument shows that 4An_1 Az,

If for some gelL’, &,p=9/2, a odd, we get €n-1 n8 2.1 =dae, | p.q€ L,

or ae a =Z,

jel’ and (a3/2)enn5 L' which is absurd. Hence A,

nn’ en-] n-

and similarly A =Z. Let geL’, Enfn™ a/4, aodd, then

n-1 n-1
2¢, 1801 n1tCun) = 28y 1 no1€n nopt (@/2) €, or (a/2)e, ¢L' which
is absurd. Now from (Cont €p15-1) Blin= 8ni®nm*t Eu1iCn-1n® FF M g WE gL

that A and similarly A; n-p» P An-1, are integral. If for some geL’ ,

ni’
8p.1 i a/2, aodd, 7#n, then (€p.1 p-1+ e..) gei]-=g’ = (a/2) €. ]-+
+ 8y j€pje L*,j#n1, and we may assume that g .=1. Now g'=
H'I((a/Z)e]-’n_I + e]-”) HcC L’ andby observing that H =]P‘L]q'l](1) modulo 2 ,
we may choose j even and greater that 2¢, hence the (i-1,§)-th entry

b of H is odd. Hence (g1, 2 € (et mut™ Cnd = (b/z)ei-l,n+cei-1,n-1

i-11’
+ dei-] n with b odd, lies in L’. Now if we multiply this element by
(a/Z)ei_Il i-1% €y j-1 on the right, we get in L’ an element (ab/4)en-1,n+' eey
which is impossible. Hence A, s integral forall i # »n-1, and similarly
Ay j is integral for all j # n. We have only one possibility left for non
integral ideal which is Apln It is easy 1o see that (1/2)e,.; , and L
generate an order which contains PR and e, .

q.e.d.

From this we immediately get :

THEOREM 1. Let G be either SO(H) or O(H). In the cases (a) and
% , G.Z is maximal in EQ . In case (c) there exists at most one maximal group

rad

in G-Q containing EZ’ namely I"=L"' N G.

62



THEOREM 2. Let G be either SO(H) or O(H). If H is an integral
unimodular symmetric matrix of signature (p+r, p) with either r=0, H odd

and p>2, or p>1, then N(a.z)=a-z

Proof. By lemma 2 it suffices to discuss our three cases namely, H even,
H oddand m odd, and H oddand m even. If g normalizes G, , then it
permutes the maximal orders contain ing A(.G-Z, Z). f H iseven,or m=r
is odd, M,(Z) is the only maximal order containing the above order hence ¢
normalizes M, (Z) .By[2], p.105 every matrix in N(G ) has all its entries algebraic
integral and as the only units in Q are +1 and its class number is one, we get
that E'Z is self normalizer . Let us study now the case where = is even and
H odd. In this case there are three posibilities for g normalizing E-Z' name-
ly either g normalizes M, (Z), or g normalizes L’ or permutes them. The
first case is trivial. Let us assume first that g is rational. As the group
generated by g and G—Z is arithmetic the only possibility for g ¢ N(a-z)
is geL’; in this case if we write g= (gl-]-) . g'l = (g'z-j) , then Bnil n and
&p.1 n arenon integral, and as g nommalizes L we get that
(¢! (2€ uindi8liay 9™ 281 & -1 010 % which is absurd. Let gEN(G—Z) ,
g=g ya, by [2],p. 122, and let k=Q(/a) and O the ring of its integers.
Let L’ be the order generated by g and L in M, (k) . Then L’ is either
Mn{O) , orthe extension of L.’ to M, (k), ora different order. In the two first
cases the above arguments apply with Z replaced by O. We write L =(A})
and observe that 4A';-]- is always integral, hence the only possibility for a new
order arises precisely when a@=2. In this case the only possible entries of g
which are not in O are the ones lying either in the (n-1)-th row, or in the n-th

column. Proceeding like in the proof of lemma 8§ we can show that 2A”n-1 i
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and 247, are all integral provided that i# n-1 and j# n Hence in the
matrix g’ the only possible non integral entries lie in the (#-1)-th row and in
the n-th column, and if we multiply this column and this row by 2 we get an in-
tegral matrix. Hence ord (det(g’)) > -2 ; on the other hand 1= det(g) =

2’\det(g’) where 7 =2) ) and this implies that )\ <2 which is absurd.
q. e. d.

THEOREM 3. Let G be either SO(H) or O(H).Let H be an unimodular
integral symmetric matrix of signature (p+r, p) with either r=0, H odd and
P> 2, orotherwise p> 1. If r is not an odd multiple of 4, then G—Z is

maximal in GR .

Proof. In the case where H is even, or in the case where H is odd an r
is odd, our result is included in theorems 1 and 2, because by [2],p. 105, if a-z
is maximal in G—Q , then N(G—Z) is the unique maximal arithmetic group
containing EZ" If we prove that in the other case the group ' =L’ G of
theorem 1 coincides with EZ , then by the same reason, theorem 2 will imply our

claims. Let H beoddand r even >0, bylemmas 1 and2, replacing H

if necessary by an integrally equivalent matrix H = ]q.LV with Vv=J(1) if
r=0, or V is definite and V =B_L J(1) modulo 2, B even, and if
V= (vl-j) ,i,j#1, ..., m then Vping=Mm oOF according to whether V

is definite orwot. Let g¢I', g not integral, and write in blocks g= (al-]-) ,
i,7=1,2,3. If y denote the last column of a3, then YieZ,i#ml,
and Ym-1 = &y-1 n= 4/2, withaodd. Now if we look at the equations of G,
given in [emma 4, we get ta23 a3+ talj ay3 + td33 Vag3 =V, and the entries
, [ ’ . ,. ; t 1 9!
(m,n) of beth sides yield the follow ing equation ( a33 Va33)mm- yVy+b—umm,b
2

even, or a2(um_1 m-1/4)+aymvmm-1+y Y

m “mm mm °
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If m is notdivisible by 4 we get a contradiction since the left hand side is not

integral. In the other cases g|m or m=0, we get  y. + yrz =1 modulo 2,

which is absurd.  Let now m=4. We consider the following matrices

0 v 1 o0 [ 2 e )
0 1 -1 0 12 0 o0
U= 1 1 -1 0 . v = 200 41
1 0 -1 0 (-1 0 11
3 r a\
T T G a1 e e U2
NP B B B SR 28 g nogiand Gors
g=2— LU g U=
-1 -1 1 1 0 0 0 1/2
N A 2 0 2 0 J
7 -

Itis clear that ‘UU=V andthat U satisfies the requirement of the first part
of lemma 1. Also g* ¢SO (E4) and hence U'lg* e SO(V), hence
g** = diagonal | EZP’ g*1 e SOH) . It is easy to see that this matrix lies in

SOH)° N L' . Therefore L’ SO(H)% # SO(H)?Z , and EZ is not maximal in

GQ.
Next if m=4+8s, then H is integrally equivalent to ]2p.LV’ i

U} and we set V"=tU'V'U’=¢.85LV;

V= E . Welet U’=diagonal { E,_,
<ZS85-L 4 £ 8s

clearly V*= ]Zq_l_](l) modulo 2 hence we can proceed as in lemma 9 to get that
A(SO(H);, Z) in contained in L’; again we can complete U'Ig*U 1o an element

of SoHm)° NL 1o get the non maximality of SO(H)QZ . Hence we proved ;
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THEOREM 4. If r is an odd multiple of 4 andif p>1, then G—Z is not
maximal in -(:Q , for G=O(H), SOH), or O(H)?. Moreover if p>2, then

N(G,) =G, , for G=0H) or SOH).

Finally we would like to point out that the question of the maximality or not of

G, in —(‘:Q remains open in the cases where p=1 , and in the case of SOH)?,

H odd and 7 even .
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