Revista Colombiana de Matemáticas Volúmen VII, 1973, págs. 53-66

A NOTE ON THE ARITHMETIC OF THE ORTHOGONAL GROUP

by

Nelo D. ALLAN

The purpose of this paper is to discuss the maximality as a discrete group of the group G_Z of all rational integral matrices of the Real Special Orthogonal Group G = SO(H) for all unimodular integral symmetric n by n matrices H with signature (p+r, p), p > 1.

We prove that $N(G_Z) = G_Z$, where $N(G_Z)$ denotes the normalizer of G_Z in G and that there is at most one maximal discrete subgroup of G which contains G_Z . Moreover G_Z is always maximal, with exception of the case where r is an odd multiple of four and H is odd. It is well known that if Γ is a maximal discrete subgroup of G then $N(\Gamma) = \Gamma$; the above exceptions give a negative answer to the question of whether the conditions $N(\Gamma) = \Gamma$ is enough to characterize maximality.

Essentially we present complete proofs for the results anounced in [3]; also we use, and the material overlaps with, chapter III of [4].

1. Preliminaries. We shall denote by R the field of all real numbers, by Q the field of all rational numbers and by Z the ring of all rational integers. If

 $a \in Q$, ord(a) will denote the order of 2 in a. For any subring S of R, $M_n(S)$ will denote the ring of all *n* by *n* matrices with entries in *S*, and $GL_n(S)$, the group of units of $M_n(S)$. The determinant of a matrix g will be denoted by det(g); the *n* by *n* identity matrix will be denote by E_n , or simply *E* whenever there is no danger of confusion, and e_{ij} , $1 \le i$, $j \le n$, denotes the matrix with 1 in (i, j)entry.zero otherwise. t_g is the transpose matrix of the matrix g. Let H be an integral unimodular symmetric matrix of signature $(p+\tau, p)$, $n = 2p + \tau$, i.e., $H \in M_{*}(Z)$, ${}^{t}H = H$, and $det(H) = \pm 1$. We say that two matrices H and H' are integrally equivalent, $H \approx H'$, if there exists an integral unimodular matrix U such that $H' = {}^{t}UHU$. Let V be an *n*-dimensional vector space over R and $\{\varepsilon_{i}\}$, $j = 1, \ldots, n$, be a fixed basis for V; we shall identify, as usual, a vector $x_{\epsilon} V$ with a column matrix; the bilinear form associated to H shall be written as $f(x,y) = {}^{t}xHy$, and we set f(x) = f(x,x) for all $x \in V$. We call (V,f) a quadratic space. Let L be the lattice of all points in V whose coordinates are integers. If $H \approx H'$, then we can regard U as a change of basis of L and H and H' as the matrices associated to the same form f in different basis. We say that H is even if for all $x \in L$, f(x) is even; otherwise we say that H is odd. Let A and B be respectively r by r and s by s matrices, then we shall denote by $A \perp B$ the r+s by r+s matrix

$$\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \text{. We write } J(a) = \begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix} \text{, } J(0) = J \text{ and } J_p = \begin{pmatrix} 0 & E_p \\ E_p & 0 \end{pmatrix}$$

We recall the following two results from [1].

LEMMA 1. Given m > 0 there exists a unimodular symmetric integral m by m matrix V such that $E_m \approx V$ and $V \equiv J_q \perp A \mod 2$, where A = J(1) or else E_1 , according to whether *m* is even (m - 2 = q) or odd (q = m - 1). Moreover if *m* is even and if we write $V = (v_{ij})$, then we can find such *V* with $v_{m-1,m-1} = m$ and $V \equiv V \cdot \perp J(1)$ modulo 2^a where a = ord(m)

LEMMA 2. (Meyer) Let H be an unimodular symmetric integral matrix with signature (p+r, p), $p \neq 0$.

(a) If H is even, then either r > 0 and $H \approx J_p \perp \phi_r$, where ϕ_r is positive definite, even and r is a multiple of 8, or r = 0 and $H \approx J_p$

(b) If H is odd and $r \neq 0$, then $H \approx J_p \perp V_1$ where V_1 satisfies lemma 1.

(c) If H is odd and r=0, then $H \approx J_{p-1} \perp J(1)$.

2. The enveloping algebra of G_Z . Let O(V) be the group of automorphisms of (V, f), G be the group of all rotations in O(V), i.e., $G = O^+(V)$, and G^O be the connected component of G. Let G_Z be the group of units of L in G, i.e., the group of all $g \in G$ such that gL = L; with respect to the basis $\{e_i\}$, $G = SO(H) = \{g \in GL_n(R) \mid {}^tgHg = H, det(g) = 1\}$, $G_Z = G \cap M_n(Z)$ and $G_Q = G \cap M_n(Q)$. We have $O(V)_Z \supset G^O_Z$. If $H \approx H'$, then G is isomorphic to G'_Q . Hence the maximality or not of G_Z is preserved. It follows from lemma 2 that we may assume $H = J_q \perp V$, m = 2q + s where q is respectively p, p or p-1 and V is respectively ϕ_T (or $O) V_1$, or J(1), according to whether we are in the case (a), (b), or (c). If Γ is any subgroup of $O(V)_Q$, then we shall denote by $A(\Gamma, Z)$ the Z-algebra generated by the element of Γ in $M_n(Q)$. Although if follows from the general theory that $A(\Gamma, Z)$ is an order, if Γ is discrete, in our case the direct calculation will automatically prove this fact. Another trivial remark is that if $H = K \perp H'$ then O(K), SO(K), and $O(K)^O$

respectively, in O(H), SO(H) and $O(H)^{O}$, the mapping being $g \rightarrow g \perp E$ where E is the identity of O(H'); also O(K) can be embedded in SO(H), but now the mapping is $g \rightarrow g \perp b$ where $b \in O(H')$ and det(g) = det(b). The same is valid for the corresponding groups of integral matrices. In particular this applies to our case with $K = J_q$. Moreover we have an imbedding of $A(O(K)_Z, Z)$ into $A(SO(H)_Z, Z)$ which preserves addition and multiplication, namely $g \rightarrow g \perp 0$, where 0 is the *n*-*m* by *n*-*m* zero matrix, and *K* is *m* by *m*.

LEMMA 3. Let $K = SO(J_q)^o$, n = 2q. Then the order $L = A(K_Z, Z)$ is generated by $g \cdot E_n$, $g \in K_Z$, and coincides with $M_n(Z)$.

Proof. First of all $D = \{g \in O(J_q) \mid g = g(A,D) = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$, $A \in GL_q(R) \}$ is clearly isomorphic to $GL_q(R)$; let $T = \{g \in O(J_q) \mid g = g(B) = \begin{pmatrix} E & B \\ 0 & E \end{pmatrix}$, ${}^tB = -B \}$ and ${}^tT = \{ {}^tg \mid g \in T \}$. Clearly D, T, and tT are connected. Hence D_Z, T_Z , and tT_Z are subgroups of K_Z . Now if we take $A = E + e_{ij}$, $i \neq j$, and $B = e_{jm} \cdot e_{mj}$, $m \neq j$, we get that $(g(A, D) \cdot E) (g(B) \cdot E) = e_{iq+m} \in L$, and $(g(D, A) \cdot E) ({}^tg(B) \cdot E) = e_{i+q} m \in L$. Hence after interchanging indices and taking products we get that e_{ii} lies in this order for all $i = 1, \ldots, n$. Now $e_{ii}g(A, D) e_{jj} = e_{ij} \in L$ and so does $e_{j+q} i+q$. Also $e_{i+q} m e_{mj} = e_{i+q} j \in L$ and similarly $e_{ij+q} \in L$. Therefore $e_{ij} \in L$ for all $i, j = 1, \ldots, n$.

We shall decompose the matrices $g \in M_n(R)$ in 9 blocks, $g = (a_{ij})$, i, j = 1, 2, 3, in such way that a_{11} and a_{22} are q by q matrices; we let $H = (b_{ij})$, and $H^{-1} = (b^*_{ij})$, i, j = 1, 2, 3. From ${}^tgHg = H$ if and only if $g(H^{-1})({}^tg) = H^{-1}$, we get immediately :

LEMMA 4. $g \in O(H)$ if and only if either

$$\sum_{\substack{k,m=1}}^{3} {}^{t}a_{mi}b_{mk}a_{kj} = b_{ij}$$

$$\sum_{\substack{k,m=1}}^{3} a_{im} b^{*}_{mk} t^{*}_{ajk} = b^{*}_{ij} .$$

We shall consider special elements in G; we shall denote by $S_u(R,T) = S_u(R^*,T)$ (respectively $S_l(R,T) = S_l(R^*,T)$) the matrix g where $a_{jj} = E$ for all j, $a_{32}=R$, $a_{12}=T$, $a_{13}=-{}^tRV=R^*$ and $a_{21}=a_{31}=0$ (respectively $a_{31}=R$, $a_{21}=-T$, $a_{23}=R^*$, $a_{12}=a_{13}=a_{32}=0$). They are the so called Siegel-Eichler double transvections. By S(R,T) we shall denote either S_u or S_l . If we replace g by S(R,T) in lemma 4 we get immediately:

LEMMA 5. $S(R,T) = S'(R',T) \in O(H)$ if and only if either ${}^tRVR = T + {}^tT$, or $-R'V^{-1} {}^tR' = T + {}^tT$.

The following lemma yield trivial solutions of these equations.

LEMMA 6. $S(R,T) \in G_Z^0$ in the following cases :

1. $R = 2e_{ij}$ and $T = 2v_{ij}e_{ij}$.

I then then same is

OF

2. If $2 | v_{ii}$, $R = e_{ij}$ and $T = (1/2)v_{ii}e_{jj}$ where i = 1, ..., q and j = 1, ..., s; where $V = (v_{ij})$.

COROLLARY. S'(R',T) $\in G_Z^o$ in the following cases :

1. $R' = 2e_{ij}$, $T = 2w_{ij}e_{ii}$

2. If $2 | w_{jj}$, $R' = e_{ij}$ and $T = (1/2) w_{jj} e_{ii}$ where i = 1, ..., q, where j = 1, ..., s and $V^{-1} = (w_{ij})$.

LE MM A 7. Assume that $2|v_{ii}|$ precisely when i = 1, ..., s-1. Let R and

T be integral matrices such that ${}^{t}RVR = T + {}^{t}T + aV$. If a = 0, then the entries in the last row of R are all divisible by 2. If a = 1, then then same is true with the exception of the last entry of the last row of R which is not divisible by 2.

Proof. Let L' be the set of all $x \in Z^S$ such that ${}^txVx = 0 \mod 2$; L' is a Z-module and modulo 2 we have ${}^txVx = x_S^2 v_{SS}$, where x_S is the last coordinate of x; hence $2 | x_S$ for all $x \in L'$. In the case where a = 0, if y denotes any column of R, then ${}^tRVR = T + {}^tT$ implies that ${}^tyVy = 0$ modulo 2, i.e., $y \in L'$ and hence our assertion. The same argument applies to any column of R, in the case where a = 1, with the exception of the last one; for this last column ${}^tRVR = T + {}^tT + V$ implies ${}^tyVy \equiv v_{SS} \equiv 1 \mod 2$, hence the correspondent y_S is such that $y_S^2 \equiv y_S^2 v_{SS} \equiv 1 \mod 2$. Therefore y_S is odd.

COROLLARY 1. Assume that $2|w_{ii}$ precisely when $i \neq m$. Let R'and T be integral matrices such that $R'(V^{-1})({}^{t}R') = T + {}^{t}T + aV^{-1}$. Then the same statement bolds if we replace last row of R by m-th column of R'.

COROLLARY 2. Assume that $2 | v_{ii}, w_{jj}|$ precisely when $i \neq s$, and $j \neq m$. Then all $g \in O(H)_Z$ have, with the exception of the diagonal entries, all the entries in the last row and (2s + m)-th column, divisible by 2.

Proof. It suffices to observe that

$${}^{t}a_{3i}Va_{3i} = (-{}^{t}a_{1i}a_{2i}) + {}^{t}(-{}^{t}a_{1i}a_{2i}) + \delta_{i3}V$$

and a similar equation holds for a_{i3} , where $\delta_{i3} = 1$ or 0 according to whether i=3 or not.

q.e.d.

We are now ready to calculate the enveloping algebra L of G_Z . We recall that n = 2q + s = 2p + r.

LEMMA8. If H es even (case (a)), then $L = M_n(Z)$. In the case where H is odd we have: If r is odd, then L is generated by e_{jj} , $2e_{in}$ for all i, j = 1, ..., n, and $i, j \neq n$. If r is even (cases (b), and (c) with s = 2), then L contains the order L* generated by all e_{ij} , $2e_{in-1}$, $2e_{nj}$, $2e_{nn-1}$ and $e_{nn} + e_{n-1 n-1}$, i, j = 1, ..., n, $i \neq n$ and $j \neq n-1$, and is contained in the order L** generated by L* and e_{mn} .

Proof. From the embedding of $A(O(J_q)_Z, Z)$ into $A(G_Z, Z)$ we get by lemma 3, that $e_{ij} \in L$ for all i, j = 1, ..., q. By lemma 5 and its corollary, S(R,T), $S'(R',T) \in G_Z$ if $R = e_{ij}$ or $R' = e_{mk}$ provided $2 | v_{ii}, 2 | w_{kk}$, m, j = 1, ..., q. Our objective now is, by considering the corresponding S_I and S_{μ} to see that e_{2q+ij} and $e_{m} 2q+k$ all lie in L for j, m = 1, ..., 2qand cor sequently by taking products we see that $e_{2q+i2q+k} \in L$ for these values of i and k. We let $g_{\mu}^* \in L$, $\mu = 1, 2, 3$, be such that $a_{\mu\mu} = E$ and $\cdot a_{ij} = 0$ otherwise; clearly $g_{\mu}^* \in L$, $\mu = 1, 2$ and $g_3^* = E \cdot g_1^* \cdot g_2^* \in L$ and this implies that $g^*(S(R, T) \cdot E) = e_{2q+ij}$, and $(S'(R', T) \cdot E) g^* = e_{m} 2q+k$ both lie in L, as desired. Now we shall study case by case.

In the case where V is even, V^{-1} is also even $e_{ij} \in L$ for all i, j = 1, ..., n, i.e., $L = M_n(Z)$. In the case where r is odd, then lemma 1 says that we can choose $V \equiv J_k \perp E_1$ modulo 2 hence the same is true for V^{-1} . Consequently v_{ii}, w_{ii} are multiple of 2 precisely when $i \neq m$. Thus $e_{ij} \in L$ for all i, j = 1, ..., m - 1, and hence $e_{nn} = E - \sum_{i \neq m} e_{ii} \in L$. Now by lemma 6, $2e_{in}$ and $2e_{nj}$ lie in L; the corollary 2 of lemma 7 with s = r = m

implies that the entries of the last row and column, which are non diagonal, of all matrices in L are divisible by 2, and our assertion is verified in this case. In the case that r is even by using lemma 6 and products we arrive to $2e_{ni}$, $2e_{in-1}$ and $4e_{nn-1}$ all lie in L for all $j, i \neq n, n-1$, and a similar argument as above shows that they are generators of L with the possible exception of $4e_{nn-1}$. As $e_{ii} \in L$ for all $i \neq n, n-1$, we get that $e_{nn} + e_{n-1, n-1}$ lies in L. It remains to prove that $2e_{n,n-1} \in L$. If r=0 this follows from the fact that $\begin{bmatrix} 0 \\ -1 \end{bmatrix} \in O(J(1))_{Z^*} \text{ Let now } V = {}^t UU ; g \in O(E_r) \text{ if and only if } U^{-1}gU_{\epsilon}O({}^t UU).$ If g is either a permutation matrix or a diagonal matrix having ± 1 as diagonal entries, then for all $x \in Z^r$, txg differs from tx either by few changes of sign or by a permutation of two coordinates of x. Now if t_x is the s-th row of U^{-1} and y is the (s-1)-th column of U, the $(U^{-1}gU)_{s\,s-1} = {}^t xgy$. As y is primitive we may assume that its first entry, y_1 is odd, and since x is also primitive we can find g such that the first element of txg is not divisible by 2. Hence we may assume that its first entry x_1 is odd. If txy is not divisible by 4 we are done; otherwise we consider $g' = diagonal \{-1, 1, ..., 1\}$ and we get that ${}^{t}xg'y = {}^{t}xy \cdot 2x_{1}y_{1}$ is not divisible by 4. Completing $U^{-1}gg'U$ to an element of $SO(H)_Z$ we get and element g in G_Z such that q.e.d. ord $(g_{n-1n}) = 2$.

COROLLARY 1. $L^* \subset A(O(H))_Z \subset L^{**}$. The generators of $A(G_Z^o, Z)$ and L^* are the same with possible exception of $2e_{n n-1}$, and $e_{nn} + e_{n-1n-1}$.

Proof. Our assertions follows from the fact all the elements used in the above proof lie in G^o with the exception of the one in the last paragraph.

Remark. We do not know whether *e_{nn}* lies in *L* or not.

COROLLARY 2. If H is even, or if H is odd and r is odd, then $L = A(O(H)_Z, Z) = A(G^O_Z, Z) .$

Proof. For all the elements used in the proof of lemma, in this case belong $G^o_{\ Z}$.

COROLLARY 3. If p=1 and r is even, then $A(G_Z^0, Z) \subset A(O(H)_Z, Z) \subset L^{\prime}$.

Proof. The reason our calculation does not go through in this case is that we were not able to prove that e_{11} , $e_{22\epsilon}L$. Of course if we add these element to L all the argument remains valid.

3. Main result. Let \overline{G} denote any of the three groups O(H), G or G^{O} . We are now in the position of computing all maximal discrete groups containing \overline{G}_{Z} . Let $\Gamma \subset \overline{G}_{Q}$ be a discrete group containing \overline{G}_{Z} ; the enveloping algebra $L(\Gamma) = A(\Gamma, Z)$ of Γ contains L and is such that $(H^{-1})({}^{t}L(\Gamma)) H = L(\Gamma)$, because $g^{-1} = (H^{-1})({}^{t}g)H$. Consequently our problem is the calculation of all orders L^{*} in $M_{n}(Q)$ which contains L and are maximal among the orders having the property $(H^{-1})({}^{t}L^{*}) H = L^{*}$. In the case (a) $L = M_{n}(Z)$, hence maximal. We shall discuss cases (b) and (c).

LEMMA9. If r is odd, then $L^* = M_n(Z)$. If r is even, and if $L^* \supset L$, then L' contains L^{**} and it is either $M_n(Z)$ or the order generated by L and $2^{-1}e_{n-1n}$.

Proof. We start observing that if for some i, j, k, $e_{ii}, e_{jj}, e_{kk} \in L^{*}$, and if $L^{*} = (A_{ij})$, then $A_{ij} e_{ij} \subset L^{*}$, and $A_{ij} A_{jk} \subset A_{ik}$. Also $e_{ii} \in L^{*}$, implies that $A_{ii} = Z$, because L^{*} is a finitely generated Z-module. Consequently $A_{ij} = A_{ji} = Z$ provided that e_{ij}, e_{ji} lie in L^{*} . Therefore in the case (b), r odd, $A_{ij} = Z$ for all $i, j \neq n$, and in the case (c),

 $A_{ii} = Z$ for all $i, j \neq n-1$, n. We shall treat first the case r even . where r is even. From $2e_{ni} \in L^{\prime}$, $j \neq n-1$ we get that $e_{ii}g(2e_{ni}) = 2g_{in}e_{ii} \in L^{\prime}$ for all $j \neq n, n-1$, and $i \neq n-1$; hence $2A_{in} \subset Z$ if $i \neq n-1$. Similarly $2A_{n-1} \in \mathbb{Z}, j \neq n$ and in this case a similar argument shows that $4A_{n-1} \in \mathbb{Z}$. If for some $g \in L'$, $g_{nn} = a/2$, a odd, we get $e_{n-1,n}g 2e_{nn-1} = ae_{n-1,n-1} \in L'$, or ae_{nn} , $ae_{n-1,n-1} \in L^{*}$ and $(a^{3}/2)e_{nn} \in L^{*}$ which is absurd. Hence $A_{nn} = Z$, and similarly $A_{n-1,n-1} = Z$. Let $g \in L^{\prime}$, $g_{n-1,n} = a/4$, a odd, then $2e_{nn-1}g(e_{n-1,n-1}+e_{nn}) = 2g_{n-1,n-1}e_{n,n-1}+(a/2)e_{nn}$ or $(a/2)e_{nn}\epsilon L'$ which is absurd. Now from $(e_{nn} + e_{n-1, n-1}) ge_{in} = g_{ni}e_{nn} + g_{n-1i}e_{n-1, n}, i \neq n$, we get that A_{ni} , and similarly $A_{i,n-1}$, $i \neq n-1$, are integral. If for some $g \in L'$, $g_{n-1} = a/2$, a odd, $i \neq n$, then $(e_{n-1} - 1 + e_{nn}) ge_{ii} = g' = (a/2) e_{n-1} + e_{nn}$ $+g_{n,i}e_{n,i}\epsilon L'$, $j \neq n-1$, and we may assume that $g_{n,i}=1$. Now g'=1 $H^{-1}((a/2)e_{i,n-1} + e_{jn}) H \subset L^{\prime}$ and by observing that $H = J_p \perp J_q \perp J(1) \mod 2$, we may choose j even and greater that 2q, hence the (i-1, i)-th entry, $b_{i-1,i}$, of *H* is odd. Hence $(e_{i-1,i}) g''(e_{n-1,n-1} + e_{nn}) = (b/2)e_{i-1,n} + ce_{i-1,n-1}$ $+ de_{i-1,n}$, with b odd, lies in L'. Now if we multiply this element by $(a/2)e_{i-1, i-1} + e_{n-1-1}$ on the right, we get in L' an element $(ab/4)e_{n-1,n} + \cdots$ which is impossible. Hence A_{in} is integral for all $i \neq n-1$, and similarly $A_{n-1,j}$ is integral for all $j \neq n$. We have only one possibility left for non integral ideal which is $A_{n-1 n}$. It is easy to see that $(1/2)e_{n-1 n}$ and L generate an order which contains $e_{n-1,n-1}$ and e_{nn} . q.e.d.

From this we immediately get :

THEOREM 1. Let \overline{G} be either SO(H) or O(H). In the cases (a) and (b), \overline{G}_Z is maximal in \overline{G}_Q . In case (c) there exists at most one maximal group in \overline{G}_Q containing \overline{G}_Z , namely $\Gamma = L^{\bullet} \cap \overline{G}$. THEOREM 2. Let \overline{G} be either SO(H) or O(H). If H is an integral unimodular symmetric matrix of signature (p+r, p) with either r=0, H odd and p>2, or p>1, then $N(\overline{G}_Z) = \overline{G}_Z$.

Proof. By lemma 2 it suffices to discuss our three cases namely, H even, H odd and m odd, and H odd and m even. If g normalizes \overline{G}_Z , then it permutes the maximal orders containing $A(\overline{G}_{Z}, Z)$. If H is even, or m = ris odd, $M_n(Z)$ is the only maximal order containing the above order hence g normalizes $M_n(Z)$. By [2], p.105 every matrix in $N(G_Z)$ has all its entries algebraic integral and as the only units in Q are ± 1 and its class number is one, we get that \overline{G}_Z is self normalizer. Let us study now the case where *m* is even and H odd. In this case there are three posibilities for g normalizing $\overline{G}_{Z'}$, namely either g normalizes $M_{n}(Z)$, or g normalizes L' or permutes them. The first case is trivial. Let us assume first that g is rational. As the group generated by g and \overline{G}_Z is arithmetic the only possibility for $g \in N(\overline{G}_Z)$ is $g \in L'$; in this case if we write $g = (g_{ij})$, $g^{-1} = (g'_{ij})$, then $g_{n-1,n}$ and $g'_{n-1 n}$ are non integral, and as g normalizes L we get that $(g^{-1}(2e_{n-1})g)_{n-1} = 2g_{n-1}g'_{n-1}e^{\epsilon}Z$ which is absurd. Let $g_{\epsilon}N(\overline{G}_{Z})$, $g = g' \sqrt{a}$, by [2], p. 122, and let $k = Q(\sqrt{a})$ and 0 the ring of its integers. Let L'' be the order generated by g and L in $M_n(k)$. Then L'' is either $M_n(0)$, or the extension of L' to $M_n(k)$, or a different order. In the two first cases the above arguments apply with Z replaced by O. We write $L'' = (A''_{ij})$ and observe that $4A''_{ii}$ is always integral, hence the only possibility for a new order arises precisely when a = 2. In this case the only possible entries of g which are not in O are the ones lying either in the (*n*-1)-tb row, or in the *n*-tb column. Proceeding like in the proof of lemma 8 we can show that $2A''_{n-1}$

and $2A^{\prime\prime}_{in}$ are all integral provided that $i \neq n-1$ and $j \neq n$. Hence in the matrix g' the only possible non integral entries lie in the (n-1)-th row and in the *n*-th column, and if we multiply this column and this row by 2 we get an integral matrix. Hence ord $(det(g')) \geq -2$; on the other hand $1 = det(g) = 2^{\lambda} det(g')$ where $n = 2\lambda$, and this implies that $\lambda \leq 2$ which is absurd.

q. e. d. THEOREM 3. Let \overline{G} be either SO(H) or O(H).Let H be an unimodular integral symmetric matrix of signature (p+r, p) with either r=0, H odd and p > 2, or otherwise p > 1. If r is not an odd multiple of 4, then \overline{G}_Z is maximal in \overline{G}_R .

Proof. In the case where H is even, or in the case where H is odd an r is odd, our result is included in theorems 1 and 2, because by [2], p. 105, if \overline{G}_Z is maximal in \overline{G}_Q , then $N(\overline{G}_Z)$ is the unique maximal arithmetic group containing \overline{G}_Z . If we prove that in the other case the group $\Gamma = L' \cap \overline{G}$ of theorem 1 coincides with \overline{G}_Z , then by the same reason, theorem 2 will imply our claims. Let H be odd and r even ≥ 0 ; by lemmas 1 and 2, replacing H if necessary by an integrally equivalent matrix $H = J_q \perp V$ with V = J(1) if r = 0, or V is definite and $V \equiv B \perp J(1)$ modulo 2, B even, and if $V = (v_{ij})$, $i, j \neq 1, \ldots, m$, then $v_{m-1 n-1} = m$ or according to whether V is definite or not. Let $g \in \Gamma$, g not integral, and write in blocks $g = (a_{ij})$, i, j = 1, 2, 3. If y denote the last column of a_{33} , then $y_i \in Z$, $i \neq m-1$, and $y_{m-1} = g_{n-1} = a/2$, with a odd. Now if we look at the equations of \overline{G} , given in lemma 4, we get $ta_{23}a_{13} + ta_{13}a_{23} + ta_{33}Va_{33} = V$, and the entries (m,n) of both sides yield the following equation $(ta_{33} V a_{33})_{mm} = t_yVy + b = v_{mm}$, b even, or $a^2(v_{m-1}m-1/4) + ay_m v_m m-1 + y_m^2 v_{mm} + b = v_{mm}$.

If *m* is not divisible by 4 we get a contradiction since the left hand side is not integral. In the other cases 8|m or m=0, we get $y_r + y_r^2 \equiv 1 \mod 2$, which is absurd. Let now m=4. We consider the following matrices :

It is clear that ${}^{t}UU = V$ and that U satisfies the requirement of the first part of lemma 1. Also $g^* \in SO(E_4)$ and hence $U^{-1}g^* \in SO(V)$, hence $g^{**} = diagonal \{E_{2p}, g^*\} \in SO(H)$. It is easy to see that this matrix lies in $SO(H)^{O} \cap L'$. Therefore $L' \cap SO(H)_Q^{O} \neq SO(H)_Z^{O}$, and \overline{G}_Z is not maximal in \overline{G}_Q .

Next if m=4+8s, then *H* is integrally equivalent to $J_{2p} \perp V'$, $V' = \phi_{gs} \perp E_4$. We let $U' = diagonal \{ E_{gs}, U \}$ and we set $V^* = {}^t U' V' U' = \phi_{gs} \perp V$; clearly $V^* \equiv J_{2q} \perp J(1)$ modulo 2 hence we can proceed as in lemma 9 to get that $A(SO(H)_Z^o, Z)$ in contained in *L'*; again we can complete $U^{-1}g^*U$ to an element of $SO(H)^o \cap L'$ to get the non maximality of $SO(H)_Z^o$. Hence we proved : THEOREM 4. If r is an odd multiple of 4 and if $p \ge 1$, then \overline{G}_Z is not maximal in \overline{G}_Q , for $\overline{G} = O(H)$, SO(H), or $O(H)^O$. Moreover if $p \ge 2$, then $N(\overline{G}_Z) = \overline{G}_Z$, for $\overline{G} = O(H)$ or SO(H).

Finally we would like to point out that the question of the maximality or not of \overline{G}_Z in \overline{G}_Q remains open in the cases where p = 1, and in the case of $SO(H)^o$, H odd and r even.

BIBLIOGRAPHY

- N. ALLAN, A note on Symmetric Matrices, Rev. Colombiana Mat., 3 (1969), 45-50.
- 2. N. ALLAN, The problem of maximality of arithmetic groups, Proc. and Symp. in Pure and Applied Math., A. M. S., IX, (1966), 104–109.
- 3. N. ALLAN, A note on the arithmetic of the Orthogonal Group, Anais da Academia Brasileira de Ciencias, 38 (1966), 243-244.
- N. ALLAN, Maximality of Some Arithmetic Groups, Monografías Matemáticas, No. 9, Bogotá, 1970.

Department of Mathematics University of Wisconsin Parkside, Wisconsin, U.S.A.

(Recibido en noviembre de 1972)