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A NOTE ON THE ARITHMETIC OF THE ORTHOGONAL GROUP

by

Ne/o D. ALLAN

The purpose of this paper is to discuss the max imal ity as a discrete group of the

group GZ of all rational integral' matrices of the Real Special Orthogonal Group

G = so (H) for all unimodular integrral symmetric n by n matrices H with signa-

ture (p+r, »: t > 1.

We prove that N(GZ) = GZ ' where N(GZ) denotes the normalizer of GZ

in G and that there is at most one maximal discrete subgroup of G which

contains Gz. Moreover GZ is always maximal, with exception of the case

where r is an odd multiple of four and H is odd. It is well known that if 1 is

a maximal discrete subgroup of G then N(l) = 1 ,. the above exceptions give a

negative answer to the question of whether the conditions N(l) = 1 is enough

to characterize maxim a li ty,

Essentially we present complete proofs for the results anounced in l31 also we

use, and the material overlaps with, chapter III of [41 .

1. Preliminaries. We shall denote by R the field of all real numbers, by Q

the field of all rational numbers and by Z the ring of all rational integers. If
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a e Q, ord( a) wi II denote the order of 2 in a. For any subring S of R , Mn(S)

will denote the ring of all n by n matrices with entries in S, and GLn(S), the

group of units of Mn(S). The determ inant of a matrix g will be denoted by det(g);

the n by n identity matrix will be denote by En' or simply E whenever there is

no danger of confusion, and e .. ,l<i,j<n,
lJ - -

denotes the matrix with in (i,j)-

enlry,zero otherwise. '« is the transpose matrix of the matrix g. Let if be an

integral' un imodular symmetric matrix of signature (p+r, P), n = 2p+r, i.e., H (Mn(Z),

'n = H, and det(H) = ± 1. We say that two matrices H and H' are integrally

equiv ale ut, H '" H', if there exists an integral unimodular matrix U such that

H' = tUHU• Let V be aI n-dimensional vector space over Rand ! foj I ,

j= 1, •.. r n , be a fixed basis for V .. we shall identify, as usual, a vector x(V

with a column matrix; the bilinear form associated to H shall be written as

I(x,y) = tx/ly, and we set I(x) = I(x,x) for all x (V. \lie call (V./) a quadratic

space. Let L be th e lattice of all points in V whose coordinates are integers.

If H"" H' r then we Cal regard U as a change of basis of Land /l and H'

as the matrices associated to the same form I in different basis. We say that H

is even if for all x ( L , I(x) is even; o therw ise we say that H is odd. Let A

and 8 be respectively r by rand s by s matrices, then we shall denote by

A.,L 8 the r+ s by r+ s matrix

(OA 8°). We write J (a) J(O) J and J =p

We recall the following two results from [11.

LEMMA 1. Given m> ° there exists a unimodular symmetric integral m by

m matrix V such that Em'" V and V=Jq.lA mod Z , where A=f(l) 'or

54



else E l ' according to whether m is even (m - 2:: q I or odd (q:: m - 1). Moreover

if m is e ue n an d if uie urrite v== (vij) , then we can find such V with

VII:: m and V = V' .J. J(1) modulo- z" where a == ord ( m )m- m-

LEMMA 2. (Meyer) Let H be an unimodular symmetric integral matrix with

signature (p+ r , P), p;' 0 •

(a) If H is even, then either r> 0 and H", Jp.J..~r' where ~r

tiue definite, even and r is a multiple of 8, or r = 0 and H", Jp

is po s i-

(b) If H is odd and rl-O, then H""Jp.l.VI where VI satisfies lemma

1.

(c) If H is odd and r v O, then H""Jp_1~J(1).

2. The enveloping algebra of GZ' Let O(V) be the group of automorph isms of

(V, f) ,G be the group of all rotations in O(V) r i.e., G = O+(V) , and GO be

the connected component of G. Let GZ be the group of units of L in G. i , e ,,

the group of afl g e G such that gL = L,. with respect to the basis I ei I ,

G=SO(H) = I s« GLn(R) jtgHg = H, det tg} = II,GZ=G n MiZ) and GQ =

= G n Mn (Q). We have O(V)Z) GZ' If H", H' ,then G is isomorphic to

G' = SO(H') under an is omo rph ism which sends GZ onto G~ and GQ onto

G'Q' Hence the max ima l iry or not of GZ is preserved. It follows from lemma 2

that we may assume H = J ql. v, m = 2q + s where q is respectively p,p or p-I

and V is respectively cPr (or 0) VI' or [t l ) , according to whether we are in

the case (a) • (b) , or (c). If r is any subgroup of O(V)Q' then we shall denote

by A( I". Z) the Z-algebra generated by the element of I" in Mn (Q). Although

if follows from the general the ory that A([', Z) is an order, if I' is discrete, in

uur case the direct calculation will automatically prove this fact. Another trivial

remark is that if H = K.L H' then O(K), SO(K) , and O(K)o can be embedded
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respectively, in O(H) , SO(H) and O(H)o, the mapping being g ....g.J..E where

E is the identity of O(H'),. also O(K) can be embedded in SO(H) , but now

the mapping is g ....g.J..h where h (O(H') and det tg) = de t ib) , The same is

valid for the corresponding groups of integral matrices. In particular this applies

to our case with K = J q' Moreover we have an imbedding of A(O(K)Z' Z) into

A(SO(H)Z' Z) which preserves addition and multiplication, namely g ....g,LO ,

where 0 is the n - m by nom zero matrix. and K is m by m ,

LEMMA 3, Let °K = SO(J q) ,n = 2q, Then the order L = A(KZ,Zj is genera-

ted by g-En, g (KZ' and coincides with Mn(Z),

Proof, First of all D = 19 (O(Jq) I g= g(A,D) = (A 0), A(GLqfR) I is

clearly isom o rph ic to GLqlR!' I" T" "',011q! I g: gI8:" (~ :j"8 a -8 I
and tT=ltglg(TI. Clearly D,T, and T are connected. Hence DZ,TZ'

an d tT
Z are subgroups of KZ' Now if we take A = E + eij' i i i, and

B = e. - e " m i i, we get th atJm mJ
t(g(D,A)-E) (g(B)-E) = ei+qm(L,

(g(A, D)-E) (g(B) - E) = eiq+m( L, and

Hence after interchanging indices and taking

products we get that eii lies in this order for all i= 1, ... , n , Now

e iig (A , D) e jj = e W L

Similarly ei j+ q( L.

andsodoes "i-s t-« Also ei+qmemj=ei+qj(L

Therefore eij( L for all i.] = 1, ... , n,

and

q.c.d,

in such way that all and a22 are

d -1 h . . Fan H = ( 'ij) , t,J = 1, 2, 3. rom

we get immediately :

q by q

'ens = H

in 9 blocks, g = (aij), i,j = 1,2,3,

matrices; we let H = (hij) ,

if and only if g(H-1)(tg)=W1,

We shall decompose the matrices

LEMMA 4. g( O(H) if and only if either
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ta .b k ak' = h ..mt m J IJ

or

3 h t h'1 aim' mk ajk = ij
k,m=l

We shall consider special elements in G,. we shal l denote by S,/R,T)=S'iR',T)

(respective Iy S tCf~,T)=S' 1(R',T)) the matrix g where ajj = E for all i .

a32=R, a12=T,a13=·tRV=R' and a21=a31=0 (respectively,a31=R,

a21 =. T, a23 = R', a12 = a13 = a32 = 0). They are the so cafled Siegel-Eichler

double transvect ions, By S(R,T) we shall denote either Su or Sf.' If we

repl ace g by S(R, T) in lemma 4 we get immediately:

LEMMA5. S(R,T)= S'(R',T)(O(H) if and only if either tRVR=T+tT, or

'R'V'l tR, = T + 'r .
The foflowinglemma yield trivial solutions of these equations.

LEMMA 6. S(R,T) (GZ in the following cases

1. . R = 2 e .. and T = 2v .. e .. •IJ It JJ

2. If 2\ vii' R = eij and T = (l/2)vii "ii where i= 1, ... ,q and

j= 1, ... .e , where V=(v ..) •IJ

COROLLARY. S'(R',T) (GZ in the following cases

1. R' = 2e .. , T = 2w .. e ..IJ JJ It

2. If 2 I "ii: R' = eij and T = (l/2) Wjj eii where i= 1,... .t .

h d V'lwere j = 1, ... , s an . = (Wij) •

LEMMA 7. Assume that 21vii precisely when i= 1, ... , s-l. Let Rani

57



T be integral matrices s ucb that tRVR == T + 'r + aV. If a==O, then the

entries in the last row of R are all divisible by 2. If a = I, then then same is

true with the exception of the last entry of the last row of R which is not diui si-

ble by 2 .

Proof. Let L' bethesetofall xEZS such that txVx=O modulo 2;

L' is a Z-module and modulo 2 we have txVx = x2 v where x J'S the lasts ss : s

coordinate of x ; hence 21 x s for all x E L', In the case where a = 0, if

Y denotes any column of R, then tRVR = T + 'r implies that tyVy = 0 mo-

dulo 2, i.e., YE L' and hence our assertion. The same argument applies to any

column of R, in the case where a= 1. with the exception of the last one; 1'01'

this last column tRVR = T + 'r + V implies tyVy", "es '" I modulo 2, hence

the correspondent ys is sue h that y~ '" y; v ss '" I modulo 2. Therefore ys

is odd. q.e.d.

and

COROLLARY]. Assume that 21w ..
II

T be integral matrices such that R' (VI) ( tW) = T + 'r+ a VI. Then

precisely when i i m. Let R'

the same statement holds if we replace last row of R by moth column of R'.

COROLLARY2. Assumethat 2!vii,Wjj preciselywhen iis, and jim.

Then all g E O(H)Z have, with the exception of the diagonal entries, all the

entries in the l as t roui and tLs +m)-th column, divisible by 2.

Proof. It suffices to observe that

and a similar equation holds for al'3' where "'1'3= I 0 d' h hu or accor IDg to w et er

i= 3 01' not.
q.e.d.
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We are now ready to calculate the enveloping algebra L of GZ' We recall

that n = 2q + s = 2 P+ r ,

LEMMA 8. If H es even (case (a)), then L = Mn(Z). In the case where H

is odd we have: If r is odd, then L is generated by e .. , 2e. for allJJ tn

i,j = 1, ... , n , and i,j ¥ n, If r is even (cases (b), and (c) with s = 2), then

L contains the order L* generated by all eij,2eif/-l,2enj,2enn_l and

enn+ en-1 n-I ' i,j = 1, ... , n , i ¥ nand j ¥ n-l, and is contained in the

order L·· generated by L* and enn•

Proof. From the embedding of A(O(J q) Z,Z) into A(GZ' Z) we get by

le mmaS, that eijf L for all i, j = 1, ... , q. By lemma 5 and its corollary,

5(R,T),5'(R',T)fGZ if R=eij or R'=emk provided 2!vii,2!wkk'

m, j = 1 , ... ,q. Our objective now is, by considering the corresponding 51

and 511 to see that and em z q» k all lie in L for i.m = 1, ... , 2q

and cor sequently by taking products we see that e2q+ i 2q+ kf L for these

values of and k. We let g* = (a ..), u. = 1, 2, 3, be such that a E
u ~ /l/l

otherwise;c1early g~fL, /l=1,2 and gj=E-gj-g2fL and

g* (5(R, T) - E) = e2q+ij' and (5' (R', T) - E) g* =em2q+k

and . a .. = 0%J

this implies that

both lie in L, as desired. Now we shall study case by case.

In the case where V is even, V-I is also even eijf L for all

i.] = 1, ... , n, i.e., L = Mn(Z). In the case where r is odd, then lemma 1

says that we can choose V = J k.L E 1 modulo 2 hence the same is true for

VI, Consequently Vii' wii are multiple of 2 precisely when i ¥ m, Thus

eijf L for alf

lemma 6, 2ein

i.j » 1, .. " m-L , and hence e n= E- L eiif L . Now by
nn if m

and 2e . lie in L.. the corollary 2 of lemma 7 with s = r = mnJ
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implies that the enlries of the last row and column, which are non diagonal, of all

rnatr ice s in L are d ivi si'b l e hy 2, and our assertion is verified in t h is case. In

the case th a t r is even by using lemma 6 and products we arrive t.o 2enj,2ein_1

and 4enn_1 all lie in L for all j,ii n, n-l , and a similar argument as above

shows that they are generalors of L with the possible exception of 4enn-1

As eii( L for all i i n, n-I , we gellhal

remainsto prove jhat

( 1 0) (0 (j ti, )z:
-2 -1
If g

If r = 0 t h is follows from the fact. that

Let. now if and only if

is eit.her a permut.at.ion matrix or a diagonal matrix having ± 1 as diagonal

e ntr le s, the n for all x c z', txg differs from tx eit.her by few changes of sign

b ion of d f Now ('f tx )'S the s-th 1'0'" of ir!or ya perm uta t ion 0 two COOl' inates 0 x, .. ..

and y Is the (s-Ij-th column of V, the (U-1gU)ss'1=txgy. As y is

prim it.ive we may assum e that its firsl entry, y 1 is odd, and since x is al so

primit.ive we can find g such that the first. element. of txg is not divisible by

2. Hence we may assume that its first. entry Xl is odd. If txy is not divisi-

ble by 4 we are done; otherwi se we consider s' = diagonal! -1,1. ... ,1 I and

we gel that is not. divisible by 4. Complet.ing V-I gg'V

t.o an el eme nt of SO(H)Z we get and elemenl g in GZ such that

q.e.d,

COROLLARY 1 L* C A (0 (H) )Z C L* *. The generators of A(GZ' Z)

and L* are the same with possible exception of 2en n-1' and enn + en-1 n-L:

Proof. Our assertions follows from the Iact all the el em ent s used in the above

proof lie in GO with the exception of the one in the last paragraph.

Remark. We do not know whether enn lies in L or not.
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COROLLARY 2. If H is even, or if H is odd and r is odd, then

Proof. For all the elements used in the proof of lemma, in this case belong

COROLLARY 3. If p v L and r is even, then' A(GoZ,Z)cA(O(H)Z'Z)CL'.

Proof. The reason our calculation does not go through in this case is that we

were not able to prove that ell' e22( L. Of course if we add these element to

L all the argumm t remains valid.

3. Main result. Let G denote any of the three groups O(H) , G or GO.

We art; now in the position of computing all maximal discrete groups containing

Gz. Let t'c GQ be a discrete group containing GZ" the enveloping algebra

L(i) = A (i, Z) of I' contains L and is such that (Wl){ tL(i )) H =1- (l),

because g'l = (H,I)(tg)H. Consequently our problem is the calculation of all

orders L * in Mn(Q) which contains L and are maximal among the orders

having the property (H-l){tL*)H=L*, In the case (a) L=Mn(Z), hence

maximal. We shall discuss cases (b) and (c) .

LEMM A 9, If r is odd, then L' = Mn(Z), If r is even, and if L') L, then

L' contains L** and it is either Mn(Z) or the order generated by Land

,I
2 en-In'

Proof, We start observing that if for some i, i, k, eii' ejj' ekk e L', and

if L' = (A ..) ,
1/

then A .. e ,·c L' ,1/ 1/
and A .. A 'kC A 'k'

1/ / 1
Also

implies that Aii= Z, because L' is a finitely generated Z-module. Con-

seq ue ntly A .. =A .. =Z
1/ /1

provided that lie in L', Therefore in the

case (b), r odd. A .. = Z
1/ for all i, j =I n , and in the case (c),
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r even A··=Z for all i,j i n-], n, We shall treat first the caselJ

where r iseven. From

for all j i n, n-l , and

2en/'~, L', j=!:: n-L we get that

i i n-l ; hence 2AinC Z if

ejig(2enj) = 2gin ejjfL'

ii n-]. Similarly

2An_1 jC Z, j i n and in th is case a sim ilar argumen t sh ows that 4An.] nC Z

If for some s.« L' , gnn= a12, a odd, we get enol ng 2enn_] = aen_l n-I" L' ,

or aenn, aen_1n_](L' and (a312)ennfL' which is absurd. Hence Ann= Z,

an d s imi laely An_]n_]=Z, Let gfL',gn_]n=a/4, a odd, then

2enn-]g(en_]n_]+enn)=2gn_In_]enn_]+(aI2)enn or (aI2)ennfL' which

is absurd. Now from (enn+ enol no]) gein=gnienn+ gn-Iien-]n' ipn, we get

that Ani' an d s im ilarly Ai n-L' i p n-L, are integral. If for sam e g (L' ,

gn-] i = a12, a odd, i p n , then (en_] n-] + enn) geij = s' = (aI2) enol r
+ gn ienjf L' , j p n-t , and we may assume that gni= 1. Now s' =

1/-]((a/2)e. I + e· ) 1/ C L' and by observing that 1/ = JpLJq.lJ(J) modulo 2 ,[.n- In

we may choose j even and greater that Zq , hence the (i-], it-tb entry ,

hi_] i' of 1/ is odd. Hence (ei-1,i) g"(en_] n-]+ enn) = (bI2)ei_],1l+cei_],n_]

+ dei_] n' with b odd, lies ill L'. Now if we multiply this element by

(a/2)ei_], i-]+ en i-; on the right, we get in L' an dement (abI4)en_1,n+""

which is impossible. Herce A.zn is integrnl for all i i n-], and similarly

An_] j is inte/1al for all j i n. We have only one possibility left for nOll

integral ideal w'hich is An_] n' It is easy to see that (l12)en_] nand L

generate an order which contains en_i-no] and enn
q.e.d.

From this we immediately get:

THEOREM ], Let G be either SO (1/) or O(H). In the cases (a) and

(b) ,GZ is maximal in GQ. In case (c) there exists at most one maximal group

in GQ containing GZ' namely r = L' n G.
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THEOREM 2. Let G be either SO(H) or O(H). 1/ H is an integral

unimodular symmetric matrix 0/ signature (p+ r, p) with either r= 0, H odd

and »> 2, or p>], then N(GZ) = GZ'

Proof. By lemma 2 it suffices to discuss our three cases name Iy, H even,

H odd and m odd, and H odd and m even. If g normal ize s GZ' then it

penn utes the maximal orders con tain ing A(CZ' Z). If H is even, or m = r

is odd, Mn(Z) is the only maximal order containing th e above order hence g

normalizes Mn(Z). By [2] , p.105 every matrix in N(G Z) h-;s all its entries algebraic

integral and as th e only un its in Q are ±] and its cI ass number is one , we get

that GZ is self normalizer. Let us study now the case where m is even and

H odd. In this case there are three posibilities for g normalizing GZ' name-

Iyeither g normalizes Mn(Z) , or g normalizes L' or permutes them. The

first case is trivial. Let us assume first that g is rational. As the group

generated by g and GZ is arithmetic the only possibility for g e N(GZ)

is g(L'; in this case if we write g=(gij),g-]=(g'ij)' then gn-]n and

g' n-L n are non integral, and as g normalizes L we get that

«' (2en e- i! g)n-] n = 2gn_] n g' n-l n( Z which is absurd. Let g(N(GZ)'

g = s' Va, by [2], P: 122, and let k = Q (Va) and 0 the ring of its integers.

Let L" be the order generated by g and L in Mn(k). Then L" is either

MJO) r or the extension of L' to Mn(k) , or a different order. In the two first

cases the above arguments apply with Z replaced by O. We write L" =(Aij)

and observe that 4A" ..IJ is always integral, hence the only pos stb il ity for a new

order arises precisely when a = 2. In this case the only possible entries of g

which are not in 0 are the ones lying either in the (n-l)- th row, or in the n-th

column. Proceeding like in the proof oflemma 8 we can show that 2A" .
n-] J
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and 2A" .zn are all int egra] provided that i In-I and j 'f n, Hence in the

matrix g' the only possible non integral entries lie in the (n-1)-th row and in

the n-th column, and if we multiply this column and this row by 2 we get an in-

tegral matrix. Hence ord (det(g')) ~ -2 .. on the other hand 1 = det(g) =

2)..,det(g') where n = 2).., , and this implies that ,\.::; 2 which is absurd.

q. e. d.
THEOREM 3. Let G be either SO(H) or O(H).Let H be an unimodular

integral symmetric matrix 01 sign atur e (p + r, p) with either r = 0, H odd and

p> 2, or otherwise p > 1. II r is not an odd multiple 01 4, then Gz is

maximal in GR'

Proo]. In the case where H is even, or in the case where H is odd an r

is odd, our result is included in theorems 1 and 2, because by [2], P: 105, if GZ

is maximal in GQ, then N(GZ) is the unique maximal arithmetic group

containing GZ' If we prove that in the other case the group r = L' n G of

theorem 1 coincides with GZ' then by the same reason, theorem 2 will imply our

claims. Let H be odd and r even ~ 0 .. by lemmas 1 and 2, replacing H

if necessary by an integrally equivafent matrix H=fq.LV with V=j(l) if

r = 0, or V is definite and V:; B.l [t l ) modulo 2, B even, and if

V=(Vij),i,jI1, ..• ,m, then "w-i »-s " " or according to whether V

is definite or not. Let g ([', g not integral, and write in blocks ()g = aij ,

i , j = 1,2,3. If y denote the last column of a33, then Yi (z , i I m-I r

and Ym-1 = gn-1 n= a/z , with a odd. Now if we look at the equations of G,

given in Ienm a 4, we get t t t
a23 a13 + a13 a23 + a33 Va33 = V, and the entries

the following equation (ta33 Va33)mm= tyVy+ b =vmm' b(m,n) of both sides yield
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If m is not d ivfsib le by 4 we get a contradiction since the left hand side is not

integral. In the other cases 81m or m =0, we get modulo 2 s

which is absurd. Let now m = 4. We consider the following matrices :

0 U 0 2 - 1 -2 - 1

]0 - 1 0 - 1 2 0 0

V = - 1 0 V -2 0 4 1

Jn . 1 0 - 1 n 1

1 1 - 1 0 0 2

* 1
. 1 - 1

-1 * - 1 0
g

2
V g V =

- 1 - 1 0 0 0 1/2

- 1 - 1 -2 0 -2 0

It is clear that 'uu = V and that V satisfies the requirement of the first part

of lemma 1. Also s: (SO(E4) and hence V-1g* (SO(V), hence

g* * = diagonal! E 2P' g*l ( SO(H). I t is easy to see that thi s matrix Iies in

SO(H)o n L'. Therefore L' n SO(H)Q ¥ SO(H)~, and GZ is not maximal in

GQ.

Next if m=4+S5, then H is integrally equivalent to J2p.1.v',

V'=f/J J.E. We let V'=diagonal!ES5,vl and we set V*=tlj'V'V'=f/J LV;
S5 4 S5

clearly v*", J2q.lJ(l) modulo 2 hence we can proceed as in lemma 9 to get that

A(SO(H)o, Z) in contained in L' .. again we can complete V-I gr U to an element
Z

of SO(H)o n L' to get the non maxima l ity of SO(H)Z. I-\ence we proved :
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THEOREM 4. II r is an odd multiple 01 4 and i] p 21, then Gz is not

maximal in CQ' lor C = O(H) , SO(H) • or O(H)o, Moreover i] p> 2. then

N(GZ) = GZ' lor G = 0(1/) or SO(H).

Finally we would like to point out that the question of the maximality or not of

Gz in GQ remains open in the cases whe re p= 1 • and in the case of SO(H)o,

H odd and r even.
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