Revista Col ombiana de Matemtiticas $Volumen$ *VII* (1973), *págs.* 81:84

SYMMETRIC PERTURBATION OF A SELF-ADJOINT OPERATOR

by

D. K. RAO

SUMMARY

We give a proof, which is valid in both real and complex Hilbert spaces, of the following result: If A is self-adjoint, B is symmetric $D(B) \supset D(A)$, $||Bx|| < a ||x|| + ||Ax||$ for $x \in D(A)$, then A+bB is self-adjoint for $0 < b < \frac{1}{2}$.

Introduction. **In** a complex Hilbert Space, it is known that the operator *A+8* is self-adjoint, if *A* is self-adjoint and *B* symmetric with $D(B) \supset D(A)$ and $||Bx|| \le a ||x|| + b ||Ax||$ for all $x \in D(A)$, where $0 < b < 1$. We give a proof which is valid in both real and complex Hilbert Spaces. The proof of the result in a complex Hilbert Space is given in [1]. Notice that *A* and *B* are not necessarily bounded, $A=A^*$ and $B\subset B^*$.

LEMMA 1. *Let A be a closed operator in a Hilbert Space H and B an operator with* $D(B) \supset D(A)$ *and* $||Bx|| \le a$. $||x|| + ||Ax||$. Let *b and k be real numbers* $such$ *that* $0 < b < 1$ *and* $k > \frac{2ab}{1-b}$. Then for $\forall z \in D(A) \exists z^i \in D(A) \ni (Az, Ax) +$

$$
k^2(z, x) = ((A + bB) z', Ax) + k^2(z', x)
$$
 for all $x \in D(A)$.

Proof: Let $H_1 = D(A)$ with the inner product

$$
(x,y)_1 = (Ax, Ay) + k^2(x, y)
$$
.

 H_I is a Hilbert Space. Consider the linear functional f_I on H_I given by

$$
f_1(x) = - (Bz, Ax) b,
$$

$$
f_1(x) | \le b ||Ax|| ||Bz|| \le b ||Bz|| ||x||_1 < \frac{1+b}{2} ||x||_1 ||z||_1.
$$

By the representation theorem $\exists z_1 \in H_1$ such that $(z_1, x)_1 = f_1(x) = -b(Bz, Ax)$ and $||z_I||_I = ||f_I|| < \frac{I+b}{2}||z||_I$. Define the sequence $||z_n|| \subset H_I$ inductively by $z_o = z$

$$
(z_1, x)_1 = -b(Bz, Ax),
$$

$$
(z_{n+1}, x)_1 = -b(Bz_n, Ax),
$$

Then we have

$$
(z_o, x)_I = \sum_{s=o}^n \left[\; (\; (A + b B)\; z_s, \; Ax) + k^2(z_s, x) \; \right] + (z_{n+1}, x)_I \;\; .
$$

The inequality

$$
\sum_{s=1}^n ||z_s||_1 < (\sum_{1}^n (\frac{1+b}{2})^s) ||z_o||_1
$$

shows that $\sum Az_s$ and $\sum z_s$ are absolutely convergent. Let $\sum_{o}^{\infty} z_s = z^r$. The convergence of $\Sigma||Az_{s}||$ implies the convergence of $\Sigma||(A+bB)z_{s}||$. Since $A + bB$ is closed, $\sum (A + bB)z$, $\rightarrow (A + bB)z'$.

LEMMA 2. *Let S be closed and injective*, $D(T) \supset D(S)$ *and* $||Tx|| \le b ||Sx||$ *for all* $x \in D(S)$ *with* $0 < b < 1$. *Then* $R(S + T) = H$ *if* $R(S) = H$.

Proof. Let $z_0 \in H$, $Sx_0 = z_0$. Define the sequence $\{x_n\}$ by $Sx_{n+1} = -Tx_n$, $n = 0, 1, 2, \ldots$. Then $\sum_{k=0}^{m}||sx_k|| \leq ||x_o|| \sum_{k=0}^{m} b^k$ implies that $\sum_{n=0}^{m}||sx_k||$ converges. Hence $\sum Sx_k$ converges. Since $R(S) = H$, S^{-1} is bounded and $\sum x_k$ converges to say x. $\sum ||(S+T)x_k||$ is bounded. Since $S+T$ is closed se have $\sum (S + T)x_k \rightarrow (S + T)x$. Thus $(S + T) x = z_0$.

LEMMA 3. Let A be self-adjoint and $Bx \le a||x|| + ||Ax||$. Then $R[k^2 + A^2 + bBA] = H$ for $k > \frac{ab}{1 - 2b}$, $0 < b < \frac{1}{2}$.

Proof. For $0 < b < \frac{1}{2}$, we have

$$
|b||BAx|| \le (2 + \frac{d}{2k})b ||A^2x + k^2x ||
$$

$$
\le \beta ||A^2x + k^2x|| \text{ for some } \beta, \ 0 < \beta < 1.
$$

Since $R[k^2 + A^2] = H$, we have, using Lemma 2, $R[k^2 + A^2 + bBA] = H$.

THEOREM. Let A be self-adjoint, B symmetric, $D(B) \supset D(A)$, $||Bx|| < a||x|| +$ for $x \in D(A)$. Then $A + bB$ is self-adjoint for $0 < b < \frac{1}{2}$. $+||Ax||$

Since $A + bB$ is closed and symmetric, it suffices to prove that Proof.

$$
D(A + bB)^* \subset D(A + bB).
$$

Let $y \in D(A + bB)^*$. Then we have

$$
\left| \left((A + bB)^* y, Ax \right) + k^2 (y, x) \right|
$$

\$\leq (|| (A + bB)^* y || + || y ||) ||x||_1\$

Thus the linear functional g on H_1 given by $g(x) = (A + bB)^* y$, $Ax + k^2(y,x)$ is bounded. Thus $\exists z \in D(A)$ such that

$$
g(x) = ((A + bB) z', Ax) + k^2(z', x)
$$
 for all $x \in D(A)$.

Thus we have, since *A+bB* is symmetric,

$$
(y-z')
$$
, $((A + bB)A + k^2)x) = 0$ for all $x \in D(A^2)$.

Since $R [k^2 + (A + bB)A] = H$, we have $y = z^r$. Hence $D(A + bB)^r = D(A + bB)$.

COROLLARY. The Theorem is true for all b with $0 < b < 1$.

Proof. Let
$$
A_0 = A
$$
, $A_{n+1} = A_n + \frac{\alpha}{2^{n+1}} B$, $n = 0, 1, 2, ...$ m, where

$$
b = \alpha \left[\frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^m} \right] \text{ and } 0 < \alpha < 1.
$$

Then
$$
\frac{\alpha}{2^{n+1}} ||Bx|| \leq (||A_n x|| + a_n ||x||) - \frac{\alpha}{2}
$$

for some a_n . Induct on *n*.

REFERENCE

1. KATO, T. Perturbation Theory for Linear Operators. Springer- Verlag, New York, Inc., New York, 1966.

Departamento de Matematicas Un ivers idad de I Vaile Cali, Colombia, S. *A.*

(Recibido en enero de 1973).