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SUMMARY

A theorem of Fatou is extended to the bycilinder.

Let D;,D, be two copies of the unit disc, D = D; x D, ,and dD ;x 3D, #dyD
the distinguished boundary of D. Let A be the set of all functions #, continuous
in D and holomorphic in D ; let A]-(j‘=1, 2 ) be the set of all functions #, conti-
nuous in l—)]- and holomorphic in D]- ;

For D; we have the following

THEOREM (Fatou). Let K| be a closed set of Lebesgue measure zero on the
boundaryof D . Then there exists a function in A which vanishes precisely on
K;. (See Hoffman [1], p. 80).

Our purpose is to study the possibility of an extension of this theorem to the
bicylinder D .

PROPOSITION. If ue A, and rfl € dD; then the function zy»u({;,z;)
belong to A 5.

Proof. Let z; be a sequence in D;, converging to ¢y and let

121



: We hiave = i i | | is e ) .
u,:zywu (27, z) . We have : i) u, € A, ., ii) |u, | is uniformly bounded, iii)
u, »u(;,z,) pointwise. The proposition follows from the Stieltjes- Vitali theo-

rem (cfr. Hérmander [2], Cor. 1.2.6).

Let K be a closed subset of the distinguished boundary of D and write
Ké’l‘—‘{ézi(él;éz)EK} for éleaDl,
Kézzfél"(él’éz)EK} for §2€8D2.

If K]. is a measurable set included in GD]. , we shall denote by iK]\ its li-

near Lebesgue measure.

DEFINITION. Let K be a closed subset of d,D ;

a) if for every é'] E(?D]- we have either |K§] | =0 or IKC]! = 27 for
j=1, 2, we say that K is a separately Fatou set of D "

b) if there exists a function f€A satisfying f(z) =0 if z€K and f(2)#0
if zeD-K, we say that K is a Fatou set of D, or simply a Fatou set .

If K is a Fatou set, the proposition and known properties of the boundary-va-
lues of holomorphic functions of one variable show that it is a separately Fatou set
of D, but the converse is not true as the following example communicated by Prof-

fesor E. Stein shows :

Example. (1) Consider first a function ¢ (z;,z,) holomorphic in the cartesian
product of the half-planes, Rz; <0, Rz, < 0 and continuous in the closure (ex-
cept at ). Let Zp =X+ Ay .2y T X+ 1Y) (x; <0, x,<0) and suppose that
¢ vanishes in a segment (or simply in a set of positive Lebesgue measure) of the
line y, =ky;, , k>0 of the distinguished boundary x;=0,x,= 0. Then the func-
tion y(z) = ¢ (z,kz) holomorphic in a half-plane and continuous in its closure, va-

nishes on a segment of the boundary, and so vanishes identically .



(2) Now let f({;.{3) be holomorphic in the bicylinder |{;| < 1,]|¢,] <1,
continuous in its closure, and vanish on a segment of the line 0, = k0;, of the
line 0, = k0;, of the distinguished boundary ({;=exp i}, (5= exp i, ) whe-
re k is positive and irrational. Write {; = exp z;,{,=exp z;, and consider
the function

qS(zl, 22) = f(exp zp, exp 22) i z]. = x].+ iy]-
which has the properties required in (1). This function vanishes on the whole strai-
ght line 6, = k6; , generated by the segment in the distinguished boundary of D.

In view of the periodicity of ¢ (7y;,7y,) and the irrationality of %, the function

¢(iy1, iy,) is zero in a dense set and therefore zero identically. Hence f=0.
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