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ON THE UNIVALENCE OF QUASI-ISOMETRIC MAPPINGS
by

Julian GEVIRTZ"

Let X and X’ be two Banach spaces and let G C B be open. John [1] defines
a quasi-isometric mapping f:G » X’ to be an open (i.e., maps open sets onto open

sets) local homeomorphism for which

yox o ly-x||
and
(L) 0<m< lim ing IO - [ ]]
y-+x - x|

for all points x in G . More precisely, we will call such a mapping f an (m, M)-

isometric mapping. The purpose of this paper is to offer a proof of the following

THEOREM. Let f:B > E" be an (m,M)-isometric mapping, where B is an
open ball in E", the n-dimensional Euclidean space. Then f is univalent (i.e.,

one to one) if M/m < 4421 - 1439, ..
4 +m

Using a completely different method, John [2, Theorem A1l obtained the same

conclusion for M/m < \/2 = 1.414 ... . Although John’s proof is valid in Hilbert

* The results contained in this paper were obtained while the author was a 8uest at the

University of Bonn.
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spaces and ours can be modified so as to handle the infinite dimensional case as

well, we restrict our discussion to E” in order to facilitate the exposition.

In our discussion we use the following conventions and notation : B(a,r) and
B (a,r) denote, respectively, the open and closed ball of radius and center a in
E”. B(r) = B(0,r) and B(r) = B(0,r), and D is the open unit disk in E2. 9A and
A denote, respectively, the boundary and closure of the set A. If C is a curve in
E” its length will be denoted by A(C) . All curves that we consider are rectifiable.
If C is a curve in E” parametrized by ©(2) and if f is a mapping in E”, then
by f(C) we shall mean the curve parametrized by f(®(2) ). For the sake of brevi-
ty we shall not always distinguish explicitly between a curve or surface as such
and the set of points that lie on it. This should cause no confusion. Finally, we

mention that all mapping considered are continuous.

Let C be aclosed curve in E”. We say that ©:D - E” represents a surface
which spans C if the restriction of ® to dD is a parametrization of C.Let C
be a simple closed curve in E” and let p be any point on C. The set of straight
line segments joining » to each of the other points on C is a cone which can be
viewed as a surface spanning C . This fact will be used later on. Let AC E” be
any point set and let C again be a closed curve in E”. We say that C links with
A if ANC = ¢ and if each surface which spans C intersects A . The following
lemma is probably quite trivial within the context of the theory of linking. Its proof

is included for the sake of completeness and to emphasize its elementary nature.

LEMMA 1 .Let n> 3. Let B(r) beaball in E" andlet [:B(r) »E" bea
mapping whose restriction to B(r) is a homeomorphism. Let a and b be two dis-
tinct points on OB(r) for which f(a) = f(b) . Let C; and C, be two simple cur-

ves which connect a and b on OB(r) and in B(r), respectively. Let A C B(r)
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be closed. If the simple closed curve C = C; U C, links with A, then f(C,),

links with f(A) .

Proof : Since A is compact, there is a number s <r for which A C B(s). We
claim that there is a surface spaning f(C;) which lies outside of B(s) and which
therefore does not touch f(A) . First of all, there exists a surface T spanning
f(C;) which does not contain all of f(B(s) ). Thus there is a point w in f(B(s))-
T . Since the restriction of f to B(s) is a homeomorphism, it is clear that there
is a mapping on E”~{w} which coincides with the identity outside of f(B(s)) and
maps f(B(s) )={w} onto f(dB(s)). Application of this mapping to the surface T

gives us the desired surface.

Now assume that § is a surface that spans f(C,). Putting this surface together,
in the obvious manner, with the surface shown to exist in the last paragraph, we get
a surface §* which spans f(C) and which touches f(A) if and only if S does.
Thus it suffices to prove that f(C) links with f(A). It is clear that the properties
of linking and non-linking of a curve with a point set are preserved when the curve
is continuously deformed without touching the point set. Since we can deform C to
a simple closed curve lying in B(r) while staying away from A, it is sufficient to
prove that if C is a simple closed curve in B(r) that links with A, then f(C)

links with f(A) . We do this.

Let C be a simple closed curve in B(r) that links with A. There exists a num-
ber t, s<t<r, for which CCB(#). Let 9:D > E” represent a surface span-
ning f(C). Let $” denote the unit sphere in E™!1 andlet pes”. Let
g:B(r) »S"={p} be a homeomorphism for which g(x) > » uniformly as x - dB(r)
and for which g(B(#) ) is a hemisphere. If k(x) = g(f"1(x)) for x in f(B(r) ) and

k(x) = p otherwise, then k:E” - S” is continuous.
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By approximating © by ‘‘nice’’ mapping we may assume that ¢ (D) contains no
open set in E” and hence that there is a point ¢ in §”-(g(B() ) U k(9(D) ) ). It
is then cleir that there exists a mapping h:5”=1{q} > g(B(#) ) which is a homeomor-
phism on g(B(2) ) and which maps S§”-{g}— g(B(t)) onto g(dB(1) ). If we consi-
der k1oh ok o@: D » E”, we have a surface which spans f(C), lies in f(B(r))
and touches A if and only if @(D) does. Upon applying f1 we see that indeed
©(D) touches.A and we are done. Q.E.D.

In the proof of the next lemma and also in that of the theorem itself we shall need
the following idea. Let H be any closed half plane lying in E”. We define a map-
ping Iy :E” > H which might be described as a * cylindrical projection’”. Let L be
the straight line which forms the edge of H . Let T be any half line which is per-
pendicular to L and whose end point lies on L . Then Il maps T isometrical-
ly onto the unique half line with end point x which is perpendicular to L and lies
in H . This defines Il uniquely. It is easy to see that this mapping is Lipschitz
continuous with Lipschitz constant 1 and consequently we have A(Il;(C)) < A(C)

for all curves C in E”.

LEMMA 2. Let B; and B, be disjoint open balls in E” of radius r. Let L;
and L, be straight lines which pass through the centers of By and B, , respec-

tively, and which intersect in a point p which lies outside both of the balls. Let
C be a closed curve which is disjoint from B; U B, , which passes through p and
which intersects each L in some point q; which lies on the opposite side of Bj;
from p. Then A(C) > (4 4+ 21)r.

Proof : We shall assume that L; # L, . The case L; =1, can be handled

either by a slight modification of the following procedure or by approximation.

We may decompose C into the union of three ares C;, C, and E, where C;



connects p to gq; and E connects g; to g,. Let P be the plane which conta-
ins L; and L,. Let H; be the half plane contained in P bounded by L; which
does not contain g, and let H, be the analogously defined half plane bounded by
L,.Let C} = HHi(Ci) Llearly , C*; comects p 10 g; and lies in H; and
MC3) < A(Cy) . Let B = H-él(an H;). Simple geometric considerations show
that B CB,. Since C; is disjoint from B;U B, , if is also disjoint from

B; UBY% . The definition of C% now implies that C’; is disjoint from HHI(BI UB%)=
(B;UBy) NHy. Butsince C*; liesin H, it is actually disjoint from B; UB,.
Similarly, C*, is disjoint from B; U B, . Similarly, C% is disjoint from B; U B,.
Let H be the half plane in P which is bounded by the line through the centers of
the two balls and which does not contain p. It is easily seen that E’= I, (E) lies

in H and is disjoint from B, U B, and furthermore, A(E’) < A(E).

Let C’ = Yy U c U E’. Then AC’) <A(C). If C* is not already a simple
closed curve, then it can be replaced by a simple closed curve of smaller length
which connects p 10 g; in H; and g; to q, in H and which is disjoint from
B; U B, . We see that two disjoint circles of radius r lie inside this curve. The
desired conclusion now follows from the fact that if Y C E? is any point set lying
inside a simple closed curve C, then A(C) is at least equal to the perimeter of
the convex hull of Y and the fact that the convex hull of two disjoint circles of

radius r has perimeter at least (4 + 27)r. Q.E.D.

In our proof of the theorem we use each of the defining conditions (U) and (L)
exactly once. We do not apply these conditions directly but use the following sim-

ple consequences of them instead.

(U’) Let G C E” be open andlet C be a curve lying in G. If f: G > E” satis-

fies condition (U) in G, then A(f(C)) < MA(C).
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(L) If f:B(a,r) > E” is a homeomorphism which satisfies (L) in B(a,), then

f(B(a,r) ) D B(f(a), mr) .

(U*) follows from the fact that a mapping satisfying (U) in G is locally Lips-
chitz continuous with Lipschitz constant M in G. This is essentially the content
of the Fundamental Lemma of Nevanlinna proved in John [1] . (L?) is a very simple

special case of Theorem Il of that same paper .

We now begin the proof of the theorem. We shall assume throughout that 7> 3.
This causes no difficulties since the case n=2 follows trivially from the case
n=3. Also, minor modifications of the following proof yield a direct proof for the
case n=2. Let f be an (m,M)-isometric mapping of the ball B(r) in E” into

E” | We assume that f is not one to one and show that this implies that

Let o be the greatest lower bound of the set of all numbers s for which f
is not one to one in B(s). Then 7>7,>0 and there are two distinct points a
and b on dB(ry) for which f(a) = f(b). We have ry> 0 because the mapping
is a local homeomorphism. The existence of the two points @ and & can be justi-
fied as follows : There exist two sequences {a, } and {&, }{, which can be assu-
med to be convergent, such that a, # b , f(a, ) = f(b ) and a,,b, EB(r)+ 1/n).
If 2 and 5 denote the limits of these two sequences, then @ # b, since [ is a
local homeomorphism. Also, wehave a,b 85(70) and the definition of the number

ro implies that, in adition, a,b €9 B(ry) .

Let P be the plane containing the three points @, 4 and 0. We introduce a
rectangular coordinate system (tI , t2) in such a way that a = (zl,zz) and b =

(z7,-2z5) , where 0 < z; and 0 < Zy and also the point (0,0) coincides with
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the origin 0 of E”. Let H be the right half plane t;>0.

Let C; be the subarc of the semi-circle aB(ro) N H which connects @ and
b. We now claim that there exist two disjoint open disks W; and W, in H of
equal radius p and a curve C, joining @ to b in B(ry) N H for which the fo-
llowing conditions hold : (1) W, and W, lie inside the simple closed curve

CiUC,,and(2) A(Cy<(4+m)p.

In the case z; >z, we consider first the open disk W, centered at (21—22/2,
z,/2) with radius p = z,/2 together with W, , its mirror image with respect to
the t;-axis. We consider the curve C consisting of the following three pieces and
their mirror images with respect to the #;-axis : the straight line segment connec-
ting 2 to the point (z;-z,/2,z,), the shorter of the two arcs of 9W; which con-
nect this point to (z;-z,,2,/2) and the straight line segment from this last point
to (z;-2z,,0). We have A(C) = (4+7)p. Since W; and W, do not touch
dB(rg) , wecan move them towards 0B(r)) and then replace C by a curve C, of
smaller lenght for which condition (1) holds. In the case z; <z, wetake W; and
W, to be the open disks inscribed, respectively, in the first and fourth quadrants of
the circle aB(ro) N P. If p is the radius of these disks, then it can easily be seen

that there always exists a curve C, for which conditions (1) and (2) are satisfied.

Let the centers of W; and W, be the points w; = (w,v) and w,=(u-v),
respectively. Let §; be the (n-2)-dimensional spherewith radius # and center at
the point (0,) which lies in the hyperplane which is perpendicular to the f,-axis
and which passes through (0,v) . Let S, be the sphere similarly defined with cen-
terat (0,-v) . The curve C; U C, links with §; and §,. To see this, we con-
sider the cylindrical projection defined in the paragraph that preceeds Lemma 2. If

there were a surface in E” spanning C; U C, which were disjoint from, say §;,
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then by applying Iy to this surface we would have a surface in P which spanned
C; U C, but which dit not contain the point w, . This contradicts the fact that w;

is inside the simple closed curve c;uc,.

Let K be any cone made up of all the line segments connecting a fixed point
p on f(Cy) 1o all other points on f(C,) . It was pointed out above that K is the
set of points lying on a surface which spans f(C,) . Applying Lemma 1 with A=S§,
we see that f(C,). links with f(S;) . Consequently, there exists x; €S; for
which f(x;) €K . Since B(xy,p) CBl(ry), [(B(x;,p))  [(Cy)=¢. This follows
since f(B(ry)) [(dB(ry)) = ¢ . Now we apply (L’) and conclude that
B(f(x;),mp) C f(B(x;,p) ). Thus f(Cy) B(f(x;),mp)=¢ . Let L; be the
straight line containing p and f(x;). Then by the definition of x; and K, there
is a point ¢; €L; [(C,) which lies on the opposite side of B(f(x;), mp) from
p. We now apply Lemma 2 with B; = B(f(x;), mp) and conclude that A(f(C,)) >
(4 + 2n)mp . However, since A(C,) <(4+m)p, we have, by (U’), that
A(f(Cy) ) <M(4 + m)p . Putting these two bounds for A(f(C;) ) together we obtain
M/m> %227 which is exactly what we had to prove.

4+
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