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ON THE UNIVALENCE OF QUASI· ISOMETRIC MAPPINGS

by

*Julian GEVIRTZ

Let X and X' be two Banach spaces and let G C B be open. John [1] defines

a quasi-isometric mapping f: G ... X· to be an open (Le., maps open sets onto open

sets) local homeomorphism [or which

(U)

and

(L) 0< m < lim inf JUJY~~l!:~ll
Y ... x II Y - x II

for all points x in G . More precisely, we will call such a mapping f an (m, M)-

isometric mapping. The purpose of this paper is to offer a proof of the following

THEOREM. Let f:B ... En be an (m,M)-isometric mapping, where B is an

open ball in En, the n-dimen sional Euclidean space. Then f is univalent (L.e.,

one to one) if M/m < .L±_~ = 1.439 ...
- 4 + rr

Using a .completely different method, John [2, Theorem A 1 obtained the same

conclusion for M/m < -j2 = 1.414 .... Although John's proof is valid in Hilbert

• The results contained in this paper were obtained while the author was a guest at the

University of Bonn.
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spaces and ours can be modified so as to handle the infinite dimensional case as

well, we restrict our discussion to En in order to facilitate the exposition.

In our discussion we use the following conventions and notation: Bi a.r) and

B(a,r) denote, respectively, the open and closed ball of radius r and center a in

En. Btr) = B(O,r) and B(r) = 8(0-,r), and D is the open unit disk in E 2. () A and

A denote, respectively, the boundary and closure of the set A. If C is a curve in

En its length will be denoted by MC). All curves that we consider are rectifiable.

If C is a curve in En parametrized by cp(t) and if I is a mapping in En, then

by I(C) we shall mean the curve parametrized by I(cp(t)). For the sake of brevi-

ty we shall not always distinguish explicitly between a curve or surface as such

and the set of points that lie on it. This should cause no confusion. Finally, we

mention that all mapping considered are continuous.

Let C be a closed curve in En. We say that o . jj -> En represents a surface

wh ich spans C if the restrict ion of cp to () D is a parametri zat ion of C . Le t C

be a simple closed curve in En and let p be any point on C The set of straight

line segments joining P to each of the other points on C is a cone which can be

viewed as a surface spanning C. This fact will be used later on. Let A C En be

any point set and let C again be a closed curve in En. "'e say that C links with

A if An C = 1; and if each surface which spans C intersects A. The [ol lowing

lemma is probably quite trivial within the context of the theory of linking. Its proof

is included for the sake of completeness and to emphasize its elementary nature.

LEMMA 1 .Let n ~ 3. Let B(r) be a ball in En ani let I: B(r) ~ En be a

mapping whose restriction to Btr) is a homeomorphism. Let a and b be two dis-

tinct points on dB(r) lor which I(a) == I(b). Let C 1 and C2 be two simple cur-

ves which connect a and b on dB(r) and in Btr) , respectively. Let A C B(r)
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be closed. II the simple closed curve C = C 1 U C2 links with A, then I(C2) ,

links with I (A) •

Proo] : Since A is compact, there is a number s < r for which A C Bi s) . We

claim that there is a surface spaning I(C 1) which lies outside of Bt s) and which

therefore does not touch I(A). First of all, there exists a surface T spanning

I(C 1) which does not contain all of I(B(s)). Thus there is a point w in I(B(s))-

T. Since the restriction of I to B(s) is a homeomorphism, it is clear that there

is a mapping on En -I w I which coincides with the identity outside of 1(R(s)) and

maps I(B(s)) -I w I onto I(a Bts) ), Application of this mapping to the surface T

gives us the desired surface.

Now assume that S is a surface that spans I(C 2)' Putting this surface together,

in the obvious manner, with the surface shown to exist in the last paragraph, we get

a surfaee S' which spans I(C) and which touches I(A) if and only if S does.

Thus it suffiees to prove that fCC) links with I(A). It is clear that the properties

of linking and non-l ink ing of a curve with a point set are preserved when the curve

is continuously deformed without touching the point set. Since we can deform C to

a simple closed eurve lying in Btr) while staying away [rom A, it is sufficient to

prove that if C is a Simple closed curve in Btr) that links with A, then I(C)

links wit~ f(A). We do this.

Let C be a simple closed curve in Btr) that links with A. There exists a num-

ber t, s < t < r , for which C C B(t). Let cp: D .... En represent a surface span-

ning I(C). Let s" denote the unit sphere in En+1 and let p ESn• Let

g: Btr) ....sn_ 1 p I be a homeomorphism for which g(x) ....p uniformly as x ....aB(r)

and for which g(B(t)) is a hemisphere. If k(x) = g(j"1(x)) for x in I(B(r)) and

k(x) = p otherwise, then k: En ....s" is continuous.
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By approximating cp by' 'nice" mapping we may assume that cp(D) contains no

open set in En and hence that there is a point q in Sn_(g(B(t)) U k(cp(D))). It

is then clei r that there exists a mapping h: Sn_! q I ....g(B(t)) which is a homeomor-

phism on g(B(t)) and which maps sn-lql- g(B(t)) onto g(JB(t)). If we cons i-

d -1 - n fer k 0 h 0 k 0 cp: D ....E , we have a sur ace which spans HC), lies in /(B(r))

and touches A if and only if cp(O) does. Upon applying r' we see that indeed

cp (D) touches. A and we are done. Q.E.D.

In the proof of the next lemma and also in that of the theorem itself we shall need

the followingidea. Let H be any closed half ~Iane lying in En. We define a map-

ping IIH: En ....H which might be described as a" cylindrical projection". Let L be

the straight line which forms the edge of H • Let T be any half line wh ich is per-

pe ndi cul ar to L and whose end point lies on L. Then IIH maps T isometrical-

ly onto the unique half line with end point x which is perpendicular to L and lies

in H. This defines IIH uniquely. It is easy to see that this mapping is Lipschitz

continuous with Lipschitz constant 1 and consequently we have '\(lIH(C)).:s MC)

for all curves C in En.

LEMMA 2. Let B 1 and B2 be disjoint open balls in En of radius r, Let L 1

and L2 be straight lines which pass through the centers of B1 and B2, respec-

tively, -and which intersect in a point p which lies outside both of the balls. Let

C be a closed curve 'which is disjoint from B 1 U B 2' which passes through p and

which intersects each Li in some point qi which lies on the opposite side of Bi

from p. Then '\(C) ~ (4 + 277) r .

Proof: We shall assume that L 1 i- L 2' The case L 1 = L 2 can be handled

either by a slight modification of the following procedure or by approximation.

We may decompose C into the union of three arcs C l ' C2 and E, where C i
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connects p to qi and E connects q1 to q2' Let P be the plane which conta-

ins L 1 and L2. Let HI be the half plane contained in P bounded by L 1 which

does not con tain q2 and let H 2 be the analogously defined half plane bounded by

L2 . Let Ci = ITH fCi) .Clearly , C'i connects p to qi and lies in Hi and
t

-1 .
MGt):::; A(Ci)· Let B'2 = ITH/B2n HI)' Simple geometric considerations show

that Bi C B2. Since C 1 is disjoint from B 1 U B2 ' if is also disjoint from

B 1 UBi· The definition of Ci now implies that C'i is disjoint from ITH (B1UBi):
1

(B 1 U B2) n HI' But since C'1 lies in HI' it is actually disjoint from B 1 U B2.

Similarly, C'2 is disjoint from B1 U B2• Similarly, Ci is disjoint from B1 U B2.

Let H be the half plane in P which is bounded by the line through the centers of

the two balls and wh ich does not contain p. It is easi ly seen th at E': ITH(E) lies

in H and is disjoint from B1 U B2 and furthermore, A(E')::; A(E).

Let C' = Ci U Ci U E'. Then MC')::; A.(C). If C' is not already a simple

closed curve, then it can be replaced by a Simple closed curve of smaller length

which connects p toqi in Hi and q1 to q2 in H and which is disjoint from

B 1 U B2 . We see that two disjoint circles of radius r lie inside this curve. The

desired conclusion now follows from the fact that if Y C E2 is any point set lying

inside a simple closed curve C, then MC) is at least equal to the perimeter of

the convex hull of Y and the fact that the convex hull of two disjoint circles of

radius r has perimeter at least .(4 + 217)r • Q.E.D.

In our proof of the theorem we use each of the defin ing conditions (V) and (L)

exactlyonce. We do not apply these conditions directly but use the following s im-

pIe consequences of them instead.

(V') Let G C En be open and let C be a curve lying in G. If f: G ~ En s at ia-

fies condition (V) in G, then A (f(C) )::; M MC) .
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(L') If f: Bt a , r) -> En is a homeomorphism which satisfies (L) in Bt a,r), then

f(B(a,r) i : B(j(a), mr ) •

(U') follows from the fact that a mapping satisfYing (U) in G is locally Lips-

chitz continuous with Lipschitz constant M in G. This is essentially the content

of the Fundamental Lemma of Nevanlinna proved in John [1] . (L;) is a very simple

special case of Theorem II of that same paper.

We now begin the proof of the theorem. We shall assume throughout that n? 3.

This causes no difficulties since the case n =2 follows trivially from the case

n =3. Also, minor modifications of the following proof yield a direct proof for the

case n = 2. Let f be an (m,M)·isometric mapping of the ball Btr) in En into

En. We assume that f is not one to one and show that this implies that

Mlm >_{L217_ .
4+17

Let ro be the greatest lower bound of the set of all numbers 5 for which f

is not one to one in B(5). Then r > rO > 0 and there are two distinct points a

and b on d B(rO) for which [I a) = I(b). We have ro> 0 because the mapping

is a local homeomorphism. The existence of the two points a and b can be jusli-

fied as follows: There exist two sequences Ian land !bn l . which can be assu-

med to.be convergent, such that an =I bn, I(an) = I(bn) and an,bn EB(rO+ lin).

If a and b denote the limits of these two sequences, then a =I b ,since I is a

local homeomorphism. Also, WP- have a.b EB(rO) and the definition of the number

'o implies that, in adition, a.b EJB(rO)'

Let P be the plane containing the three points a, band O. We introduce a

rectangular coordinate system (11' '2) in such a ~,ay that a = (zl,z2) and b =

(Zl' -Z2) , where 0::; zl and 0 < z2' and also the point (0,0) coincides with
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the origin a of En. Let H be the right half plane t1 ::::a .

Let C 1 be the subarc of the semi-circle aB(TO) n H which connects a and

b. We now claim that there exist two disjoint open disks w 1 and W2 in H of

equal radius p and a curve C2 joining a to b in B(TO) n H for which the fo-

llowing condi tions hold: (1) W 1 and W 2 lie inside the simple closed curve

C1 U C2 • and (2) A (C 2 < ( 4 + 77) P •

In the case »i : z2 we consider first the open disk W1 centered at (z1-z2/2.

z2/2) with radius p = z2/2 together with W2• its mirror image with respect to

the traxis. We consider the curve C consisting of the followi g three pieces and

their mirror images with respect to the t1-axis: the straight line segment connec-

ting a to the point (z1-z2/2. z2)' the shorter of the two arcs of a w 1 which con-

nect this point to (z1-z2' z2/2) and the straight line segment from this last point

to (z1-z2'0). We have MC) = (4+77)P, Since W1 and W2 do not touch

aB (TO)' we can move them towards aB (TO) and then replace C by a cu rve C2 of

smaller lenght for which condition (1) holds. In the case z1 < z2 we take W1 and

W2 to be the open disks inscribed, respectively, in the first and fourth quadrants of

the circle aB(TO) n P. If p is the radius of these disks, then it can easily be seen

that there always exists a curve C2 for which conditions (1) and (2) ave satisfied.

Let the centers of W1 and W2 be the points w1=(u,v) and w2=(u.-v).

respective Iy, Let 51 be the (n-2)- dimensional sphere with rad ius u and center at

the point (O,v) which lies in the hyperplane which is perpendicular to the t2- axis

and which passes through (0, v). Let 52 be the sphere similarly defined with cen-

ter at (O,-v). The curve C1 U C2 links with 51 and 52' To see this,we con-

sider the cylindrical projection defined in the paragraph that preceeds Lemma 2. If

there were a surface in En spanning C1 U C2 which were disjoint from, say 51'
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then by applying IIH to this surface we would have a surface in P wh ich spanned

C 1 U C 2 but which dit not contain the point WI' This contradicts the fact that WI

is inside the simple closed curve C 1 U C 2 •

Let K be any cone made up of all the line segments connecting a fixed point

p on f(C2) to all other points on f(C2). It was pointed out above that K is the

set of points lying on a surface which spans f(C2). Applying Lemma 1 with A = Si'

we see that f(C2). links with f(Si)' Consequently, there exists Xi ESi for

which f(xi) EK. Since B(xl' p ) C B(rO) , f(B(xi' p I )

since f(B(ro)) f(JB(ro)) = ep. Now we apply (C) and conclude that

B(j(xi),mp)Cf(B(xi,p)). Thus f(C2) B(j(xi),mp)=ep. Let Li be the

straight line containing p and f(xi)' Then by the definition of Xi and K, there

is a point qi ELi f(C2) which lies on the opposite side of B(j(xi)' m p ) from

p. We now apply Lemma 2 with Bi = B(f(xi)' m p } and conclude that A (j(C2)) ~

(4+27T)mp. However, since A(C2)«4+7T)p, we have ,by (V'), that

A.(j(C2)) < M(4 + 7T)P, Putting these two bounds for A. (f(C2) ) together we obtain

M/ m > ~-±J!!_, which is exactly what we had to prove.
4+7T
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