DIFFERENTIAL SIMPLICITY AND A CRITERION FOR NORMALITY

by

Ives LEQUAIN

0. Introduction. Let P be a point on an algebraic variety V over a ground field k. Let R be the local ring of P on V, and let \mathcal{D} be the module of derivations of R into itself. If R is \mathcal{D}-simple, then P is a normal point.

Let P be a point on a noetherian scheme X. Let R be the local ring of P on X, and let \mathcal{D} be the module of derivations of R into itself. If R is \mathcal{D}-simple, then P need not be anymore a normal point. We give a necessary and sufficient condition for P to be normal.

1. Preliminaries. Let R be a commutative ring with identity. A derivation D of R is a map from R into R such that $D(a + b) = D(a) + D(b)$ and $D(ab) = aD(b) + bD(a)$ for all $a, b \in R$.

Let \mathcal{D} be a set of derivations of R. An ideal I of R is a \mathcal{D}-ideal if $D(I) \subseteq I$ for every $D \in \mathcal{D}$; R is \mathcal{D}-simple if it has no \mathcal{D}-ideal other than (0) and (1). If R contains the rational numbers and has no prime \mathcal{D}-ideal other than (0) and (1), then R is \mathcal{D}-simple [2, Cor. 1.5 p. 743].

If R is a domain with quotient field K, and if D is a derivation of R, then D can be uniquely extended to a derivation of K that we also call D [6, lemma p. 120]; if T is any domain between R and K such that $D(T) \subseteq T$, we say that D is regular on T, or that D can be extended to T.
We note that if D is regular on a ring T and if S is a multiplicative system of T, then D is regular on T_S. We note also that if R is \mathcal{D}-simple, if T is a ring such that $R \subseteq T \subseteq K$, and if every $D \in \mathcal{D}$ can be extended to T, then T is \mathcal{D}-simple [3, Prop. 1.1, p. 216]. We shall write $D^{(0)}(x)$ to denote x, and for $n \geq 1$, $D^{(n)}(x)$ to denote $D(D^{(n-1)}(x))$, i.e. the n^{th} derivative of x. If Q is a prime ideal of a ring R we shall write $Q^{(n)}$ to denote the n^{th} symbolic power of Q, i.e. $Q^{(n)} = Q^nR \cap R = \{ x \in R | \exists y \in R \setminus Q \text{ such that } xy \in Q^n \}$. Of course, when Q is a maximal ideal, we have $Q^{(n)} = Q^n$.

II. Case of a point on an algebraic variety. Let P be a point on an algebraic variety V over a ground field k. Let R be the local ring of P on V and let \mathcal{D} be the module of derivations of R. We have:

Proposition 1. If R is \mathcal{D}-simple, then P is a normal point, i.e. R is integrally-closed.

Proof: R is of the type $k[x_1, \ldots, x_n]_M$ where M is a maximal ideal of $S = k[x_1, \ldots, x_n]$. Denoting the integral closure of S by \overline{S}, \overline{S} is a finite S-module [6, Theorem 9, p. 267]; thus, the conductor of S in \overline{S} is certainly an ideal $A \neq (0)$; then, $\overline{S}_S \setminus M = \overline{R}$ the integral closure of $R = S_M$ and the conductor of R in \overline{R} is $AR \neq (0)$ [6, lemma p. 269]. If the characteristic of k is $p \neq 0$, then R is a field [2, Theorem 1.4 p. 743] and therefore integrally closed. If the characteristic of k is 0, then every $D \in \mathcal{D}$ can be extended to \overline{R} [5, p. 168] so that the conductor of R in \overline{R} is a \mathcal{D}-ideal of R; since it is $\neq (0)$, and since R is \mathcal{D}-simple, it has to be the ideal (1), so that $R = \overline{R}$ is integrally closed.

III. Case of a point on a noetherian scheme. The conjecture that the preceding proposition should be true for a point P on a noetherian scheme X was given a counterexample in [2, Example 2.2, p. 746] where a noetherian, local, 1-dimensional, not integrally closed domain R was constructed, and a derivation D of R.
was defined such that R was D-simple. Here, we shall look for conditions that make a point P normal when R is D-simple.

Thus, let X be a noetherian scheme, P a point on X, R the local ring of P on X, and \mathcal{D} the module of derivations of R. Our assumption is that R is D-simple. If R is of characteristic $p \neq 0$, R is a primary ring [2, Theorem 1.4, p. 743], hence is equal to its total quotient ring and therefore integrally closed; this case will not be anymore of interest in our considerations. Thus, we can now suppose that R is a D-simple noetherian ring of characteristic 0; it is then a domain containing the rational numbers. [2, Cor. 1.5, p. 743]. Let K be its quotient field and \overline{R} its integral closure in K; let $\mathcal{P} = \{ \text{minimal prime ideals of } R \}$, and $R' = \bigcap_{Q \in \mathcal{P}} R_Q$. We have:

PROPOSITION 2: $R \subseteq R' \subseteq \overline{R}$.

Proof: That $R \subseteq R' = \bigcap_{Q \in \mathcal{P}} R_Q$ is clear. Now, let $Q \in \mathcal{P}$; by the Cohen-Seidenberg lying over theorem [6, Theorem 3, p. 256], there exists a prime ideal \overline{Q} of \overline{R} such that $\overline{Q} \cap R = Q$; by [2, Theorem 3.3, p. 749], \overline{Q} is unique, and is a minimal prime; furthermore, the map $\varphi: \mathcal{P} = \{ \text{minimal prime ideals of } R \} \to \overline{\mathcal{P}} = \{ \text{minimal prime ideals of } \overline{R} \}$ defined by $\varphi(Q) = \overline{Q}$ is clearly injective since $Q = \overline{Q} \cap R$, and is surjective [2, Theorem 3.3, p. 749]. Now, since R is a noetherian domain, \overline{R} is a Krull ring [4, (33.10) p. 118] and $\overline{R} = \bigcap_{Q \in \mathcal{P}} \overline{R_Q}$, so that we have $R' = \bigcap_{Q \in \mathcal{P}} R_Q \subseteq \bigcap_{Q \in \mathcal{P}} \overline{R_Q} = \overline{R}$.

In [2, Example 2.2, p. 746] it was shown that $R' \not\subseteq \overline{R}$ can happen.

LEMMA 3. If R is 1-dimensional, let Q be its unique non trivial prime ideal, and let $D \in \mathcal{D}$ be such that $D(Q) \not\subseteq Q$. Then the following statements are equivalent:

(i) P is a normal point on X, i.e. $R = \overline{R}$.
Proof: Suppose \(R \) integrally closed; then \(R \) is a rank-1-discrete valuation ring. Let \(u \) be a generator of \(Q \); since \(D(Q) \nsubseteq Q \), we have \(D(u) \notin Q \); we can suppose that \(D(u) = 1 \). If \(x \in Q^n \), we certainly have \(D(0)(x), \ldots, D(n-1)(x) \in Q \); conversely, if \(x \in Q^n \), we have \(x = u^kt \) with \(k < n \) and \(t \) a unit in \(R \); then, \(D(k)(x) = k!t + ur_k \) with \(r_k \in R \); since \(R \) is \(D \)-simple of characteristic 0, \(k!t \) is a unit in \(R \) and \(D(k)(x) \notin Q \). Thus \((i) \Rightarrow (ii)\).

Now, suppose \((ii)\) true, and let \(\mathcal{R} \) be the integral closure of \(R \). By [5, p. 168] and [3, lemma 2.2 p. 216] \(\mathcal{R} \) has only one prime ideal, thus \(\mathcal{R} \) is a rank-1-discrete valuation ring, \(D \)-simple; let \(\overline{Q} \) be its maximal ideal. For \(\mathcal{R} \), the condition \((i)\) is satisfied, hence, as was checked, we have, for every \(n \geq 1 \), \(\mathcal{Q}^n = \{ x \in \mathcal{R} \mid D(i)(x) \in \overline{Q} \text{ for } i = 0, 1, \ldots, n-1 \} \). Then, we get \(\mathcal{Q}^n \cap R = \{ x \in R \mid D(i)(x) \in \overline{Q} \cap R = Q \text{ for } i = 0, 1, \ldots, n-1 \} = Q^n \) since we suppose \((ii)\) true. Hence, \(R \) is a topological subspace of \(\mathcal{R} \) (with the \(Q \)-adic and \(\overline{Q} \)-adic topology respectively), and \(R^* \subseteq \mathcal{R}^* \) where \(R^* \) and \(\mathcal{R}^* \) are the completions of \(R \) and \(\mathcal{R} \) respectively. By [1, p. 330], \(\mathcal{R}^* \) has no nilpotent element other than 0, hence \(R^* \) has no nilpotent element other than 0 either, and again by [1, p. 330], \(\mathcal{R} \) is a finite \(R \)-module, and the conductor \(C \) of \(R \) in \(\mathcal{R} \) is different from (0). But \(C \) is a \(D \)-ideal and \(R \) is \(D \)-simple; thus \(C = (1) \) and \(R = \mathcal{R} \).

LEMA 4. If \(Q \) is any prime ideal of \(R \), and \(D \) any element of \(\mathcal{D} \), the following statements are equivalent:

\[(i) \quad Q^nR_Q = \{ x \in R_Q \mid D(i)(x) \in QR_Q \text{ for } i = 0, 1, \ldots, n-1 \}\]

\[(ii) \quad Q^nR_Q \cap R = \{ x \in R \mid D(i)(x) \in Q \text{ for } i = 0, 1, \ldots, n-1 \}\]

Proof: This is an easy computation that we shall omit.

THEOREM 5: The following statements are equivalent:
(i) P is normal on X, i.e. $R = \bar{R}$

(ii) $R = R'$ and $\forall Q \in \mathcal{P}, \exists D \in \mathcal{D}$ such that $\forall n \geq 1$, the n^{th} symbolic power $Q^{(n)}$ of Q is equal to

$$\{ x \in R \mid D^{(i)}(x) \in Q \text{ for } i=0,1,\ldots,n-1 \}.$$

Proof: Note that R is integrally closed if and only if $R = \bigcap Q R = R'$ and R_Q is integrally closed for every $Q \in \mathcal{P}$; then apply lemmas 3 and 4.

Remark: When R is a \mathcal{D}-simple noetherian ring, it is not known if $R \subset R' = \bigcap R_Q$ can happen, i.e. equivalently if R can have some principal ideals with some embedded associate prime. It is nor known either if \bar{R} is noetherian in general.

BIBLIOGRAPHY

IMPA

Rua Luiz de Camões, 68
Rio de Janeiro, Brasil, S. A.

(Recibido en noviembre de 1973)