DIFFERENTIAL SIMPLICITY AND A CRITERION FOR NORMALITY

Ьу

Ives LEQUAIN

0. Introduction. Let P be a point on an algebraic variety V over a ground field k. Let R be the local ring of P on V, and let $\mathfrak D$ be the module of derivations of R into itself. If R is $\mathfrak D$ -simple, then P is a normal point.

Let P be a point on a noetherian scheme X. Let R be the local ring of P on X, and let $\mathfrak D$ be the module of derivations of R into itself. If R is $\mathfrak D$ -simple, then P need not be anymore a normal point. We give a necessary and sufficient condition for P to be normal.

1. Preliminaries. Let R be a commutative ring with identity. A derivation D of R is a map from R into R such that D(a+b) = D(a) + D(b) and D(ab) = aD(b) + bD(a) for all $a,b \in R$.

Let \mathfrak{D} be a set of derivations of R. An ideal I of R is a \mathfrak{D} -ideal if $D(I) \subseteq I$ for every $D \in \mathfrak{D}$; R is \mathfrak{D} -simple if it has no \mathfrak{D} -ideal other than (0) and (1). If R contains the rational numbers and has no prime \mathfrak{D} -ideal other than (0) and (1), then R is \mathfrak{D} -simple $[2, \operatorname{Cor. 1.5 p. 743}]$.

If R is a domain with quotient field K, and if D is a derivation of R, then D can be uniquely extended to a derivation of K that we also call D [6, lemma p. $120 \ 1$; if T is any domain between R and K such that $D(T) \subseteq T$, we say that D is regular on T, or that D can be extended to T.

We note that if D is regular on a ring T and if S is a multiplicative system of T, then D is regular on T_S . We note also that if R is \mathfrak{D} -simple, if T is a ring such that $R\subseteq T\subseteq K$, and if every $D\in\mathfrak{D}$ can be extended to T, then T is \mathfrak{D} -simple [3, Prop. 1.1, p. 216]. We shall write $D^{(0)}(x)$ to denote x, and for $n\ge 1$, $D^{(n)}(x)$ to denote $D(D^{(n-1)}(x))$, i.e. the n^{th} derivative of x. If Q is a prime ideal of a ring R we shall write $Q^{(n)}$ to denote the n^{th} symbolic power of Q, i.e. $Q^{(n)}=Q^nR_Q\cap R=\{x\in R\mid \exists y\in R\setminus Q \text{ such that } xy\in Q^n\}$. Of course, when Q is a maximal ideal, we have $Q^{(n)}=Q^n$.

II. Case of a point on an algebraic variety. Let P be a point on an algebraic variety V over a ground field k. Let R be the local ring of P on V and let $\mathfrak D$ be the module of derivations of R. We have :

PROPOSITION 1. If R is \mathfrak{D} -simple, then P is a normal point, i.e. R is integrally-closed.

Proof: R is of the type $k[x_1,\ldots,x_n]_M$ where M is a maximal ideal of $S=k[x_1,\ldots,x_n]$. Denoting the integral closure of S by \overline{S} , \overline{S} is a finite S-module [6, Theorem 9, p. 267]; thus, the conductor of S in \overline{S} is certainly an ideal $A\neq (0)$; then, $\overline{S}_{S\backslash M}=\overline{R}$ the integral closure of $R=S_M$ and the conductor of R in \overline{R} is $AR\neq (0)$ [6, lemma p. 269]. If the characteristic of k is $p\neq 0$, then R is a field [2, Theorem 1.4 p. 743] and therefore integrally closed. If the characteristic of k is 0, then every $D\in \mathcal{D}$ can be extended to \overline{R} [5, p. 168] so that the conductor of R in \overline{R} is a \mathcal{D} -ideal of R; since it is $\neq (0)$, and since R is \mathcal{D} -simple, it has to be the ideal (1), so that $R=\overline{R}$ is integrally closed.

III. Case of a point on a noetherian scheme. The conjecture that the preceeding proposition should be true for a point P on a noetherian scheme X was given a counterexample in [2, Example 2.2, p. 746] where a noetherian, local, 1-dimensional, not integrally closed domain R was constructed, and a derivation D of R

was defined such that R was D-simple. Here, we shall look for conditions that make a point P normal when R is \mathfrak{D} -simple.

Thus, let X be a noetherian scheme, P a point on X, R the local ring of P on X, and \mathcal{D} the module of derivations of R. Our assumption is that R is \mathcal{D} -simple. If R is of characteristic $p \neq 0$, R is a primary ring [2, Theorem 1.4, p. 743], hence is equal to its total quotient ring and therefore integrally closed; this case will not be anymore of interest in our considerations. Thus, we can now suppose that R is a \mathcal{D} -simple noetherian ring of characteristic θ ; it is then a domain containing the rational numbers. [2, Cor. 1.5, p. 743]. Let K be its quotient field and \bar{R} its integral closure in K; let $\mathcal{P} = \{\text{minimal prime ideals of } R\}$, and $R' = \bigcap_{\theta \in \mathcal{P}} R_Q$. We have :

PROPOSITION 2: $R \subseteq R' \subseteq \overline{R}$.

Proof: That $R \subseteq R' = \bigcap_{Q \in \mathcal{P}} R_Q$ is clear. Now, let $Q \in \mathcal{P}$; by the Cohen-Seidenberg lying over theorem [6], Theorem 3, p. 256], there exists a prime ideal \overline{Q} of \overline{R} such that $\overline{Q} \cap R = Q$; by [2, Theorem 3.3, p. 749], \overline{Q} is unique, and is a minimal prime; furthermore, the map $\varphi : \mathcal{P} = \{ \text{minimal prime ideals of } R \} \rightarrow \overline{\mathcal{P}} = \{ \text{minimal prime ideals of } \overline{R} \}$ defined by $\varphi (Q) = \overline{Q}$ is clearly injective since $Q = \overline{Q} \cap R$, and is surjective [2, Theorem 3.3, p. 749]. Now, since R is a noetherian domain, \overline{R} is a Krull ring [4, (33.10) p. 118] and $\overline{R} = \bigcap_{Q \in \mathcal{P}} \overline{R}_{\overline{Q}}$, so that we have $R' = \bigcap_{Q \in \mathcal{P}} R_Q \subseteq \bigcap_{Q \in \overline{Q}} \overline{R}_{\overline{Q}} = \overline{R}$

In [2, Example 2.2, p. 746] it was shown that $R' \subseteq \overline{R}$ can happen.

LEMMA 3. If R is 1-dimensional, let Q be its unique non trivial prime ideal, and let $D \in \mathfrak{D}$ be such that $D(Q) \subset Q$. Then the following statements are equivalent:

(i) P is a normal point on X_i i.e. $R = \overline{R}$.

(ii)
$$\forall n \geq 1, \quad Q^n = \{x \in R \mid D^{(i)}(x) \in Q \text{ for } i = 0, 1, ..., n-1\}$$

Proof: Suppose R integrally closed; then R is a rank-1-discrete valuation ring. Let u be a generator of Q; since $D(Q) \not\subset Q$, we have $D(u) \not\in Q$; we can suppose that D(u) = 1. If $x \in Q^n$, we certainly have $D^{(0)}(x), \ldots, D^{(n-1)}(x) \in Q$; conversely, if $x \not\in Q^n$, we have $x = u^k t$ with k < n and t a unit in R; then, $D^{(k)}(x) = k! t + u r_k$ with $r_k \in R$; since R is D-simple of characteristic 0, k! t is a unit in R and $D^{(k)}(x) \not\in Q$. Thus (i) \Rightarrow (ii).

Now, suppose (ii) true, and let \overline{R} be the integral closure of R. By [5,p]. 168] and [3, lemma 2.2 p. 216] \overline{R} has only one prime ideal, thus \overline{R} is a rank-1-discrete valuation ring, D-simple; let \overline{Q} be its maximal ideal. For \overline{R} , the condition (i) is satisfied, hence, as was checked, we have, for every $n \geq 1$, \overline{Q} $n = \{x \in \overline{R} \mid D^{(i)}(x) \in \overline{Q} \text{ for } i = 0, 1, \ldots, n-1\}$. Then, we get \overline{Q} $n \cap R = \{x \in \overline{R} \mid D^{(i)}(x) \in \overline{Q} \cap R = Q$ for $i = 0, 1, \ldots, n-1\} = Q^n$ since we suppose (ii) true. Hence, R is a topological subspace of \overline{R} (with the Q-adic and \overline{Q} -adic topology respectively), and $R \subset \overline{R}$ where R and R are the completions of R and R respectively. By [1,p] 330, R has no nilpotent element other than R has no nilpotent element other than R is a finite R-module, and the conduction R of R in R is different from (0). But R is a finite R-module, and R is R-simple; thus R is different from (0). But R is a R-ideal and R is R-simple; thus R is different from (0). But R is a R-ideal and R is R-simple; thus R is different from (0).

LEMMA 4. If Q is any prime ideal of R, and D any element of \mathfrak{D} , the following statements are equivalent:

(i)
$$Q^n R_Q = \{ x \in R_Q \mid D^{(i)}(x) \in QR_Q \text{ for } i = 0, 1, \dots, n-1 \}$$

(ii) $Q^n R_Q \cap R = \{ x \in R \mid D^{(i)}(x) \in Q \text{ for } i = 0, 1, \dots, n-1 \}$

Proof: This is an easy computation that we shall omit.

THE OREM 5: The following statements are equivalent:

- (i) P is normal on X, i.e. $R = \overline{R}$
- (ii) $R = R^{\epsilon}$ and $\forall Q \in \mathcal{P}$, $\exists D \in \mathcal{D}$ such that $\forall n \geq 1$, the n^{th} symbolic power $Q^{(n)}$ of Q is equal to

$$\{x \in R \mid D^{(i)}(x) \in Q \text{ for } i=0,1,\ldots,n-1\}.$$

Proof: Note that R is integrally closed if and only if $R = \bigcap_{Q \in \mathcal{P}} R_Q = R'$ and R_Q is integrally closed for every $Q \in \mathcal{P}$; then apply lemmas 3 and 4.

Remark: When R is a $\widehat{\mathbb{D}}$ -simple noetherian ring, it is not known if $R \subsetneq R' = \bigcap_{i \in \mathcal{P}} R_i$ can happen, i.e. equivalently if R can have some principal ideals with some embedded associate prime. It is nor known either if \overline{R} is noetherian in general.

BIBLIOGRAPHY

- 1. Y. Akizuki, Einige Bemerkungen über primäre Integritätsbereiche mit Teilerkettensatz, Proc. Physico-Math. Soc. Japan, 17 (1935), 327-336.
- 2. Y. Lequain, Differential simplicity and complete integral closure, Pacific J. Math. 36 (1971), 741-751.
- 3. _____, Differential simplicity and extensions of a derivation, Pacific J. Math. 46 (1973), 215-224.
- 4. M. Nagata, Local rings, John Wiley and Sons, New York, 1962.
- 5. A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16(1966), 167-173.
- 6. O. Zariski-P. Samuel, Commutative Algebra, v. 1, Van Nostrand Co., 1958.

IMPA Rua Luiz de Camoes, 68 Rio de Janeiro, Brasil, S. A.

(Recibido en noviembre de 1973)