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LINEAR FUNCTIONALS AND LOCAL MEASURES

(A version of the Ri e sz Representation Theorem in the context of metric spaces)

by

Jairo ALVAREZ

0) Introduction: The classical version of the Riesz Representation Theorem

is proved in the context of loca lIy com pact Hausdorff spaces and the local compact-

ness plays an essential role ([1]). This means, for ins tance , that the theorem is not

true when the underlying space is a topological vector space of infin ite dimension.

This paper shows that it is possible to modify the classic proof to establish a natu-

ral extension of this theorem in the context of metric sraces or, more generally, in

the context 01 paracomp ct spaces (see results in sections 5, 6, 7, 8). A similar ex-

tension can be obtained via the Daniell integral.( [2}), using Stone theorem instead

of our lemma and following the same type of construction used in the proof of our

final theorem. However, taking advantage of the particular nature of a metric space.

we use a weaker condition regarding the type of continuity imposed on the" repre-

sentable " functionals.

The notion of local measure (see section 4) was introduced by C. Elson in [4]

and we follow the same type of construction used there in theorem 4.4 to establish

our final result.
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1)' Conventions 1: Let (X, d) be a metric space and W a non-empty open sub-

set of X. Define:

5(1): support of the function I.

EO", I y ex I dey, E) < 0 I, where 0 is a positive number and E a subset of X.

Wo'" lyE W I :3 p > 0 Bp (y) C wI, where 0 and p are positive numbers.

A non empty subset E of X is said to be properly bounded in W if there exists

0> 0 such that diameter of EO is finite and EO C W.

Co (W) = I I: X ....IR r I bounded, continuous and 5(1) properly bounded in wI.
A sequence of functions is said to converge uniformly in a local sense in X, if

every element of X has an open neighborhood in which the sequence converges

uniformly. Note that if X is a separable metric space this is equivalent to say

that there exists a countable open covering (Vi) of X such that in each V·t

the sequence converges uniformly.

- A sequence of functions in Co(W) is said to be C-convergent if it is uniformly

convergent in a local sense in X and the sequence is uniformly bounded. Note

that Co(W) is not closed with respect to this convergence.

- A sequence of functions Un) in Co(W) is said to be Co' convergent or aimplv

that it is convergent in C (W), if it is C· convergent and besides U S(ln) iso n>O
closed under this convergence. If I is the function in Co(W) defined by the limit

of ~ sequence Un) converging in Co(W) , we write In .... I(Co (W) ).

*C(W) : space of linear functionals on Co(W) continuous with respect to the C·

convergence.

*- Co(W) ~ space of linear [unct ional s on Co(W) continuous with respect to the con-

* *vergence in Co(W). Note that C(W) C Co(W) •

A partition of unity on W of class C(W) w.r.t to the open covering of w,
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I val a E ~ , is a sequen ce of continuous functions (tfrn) such that:

j) For every n, tfrn: X .... [0, 1]

ii) For every n there exists a E~, such that S (tfrn;O eVa' for some [) > o.

iii) For every x E W there exists an open ne ighborhood of x, on wh ich , except

for a finite number of indices n , tfrn == 0 .
;=00

iv) I !/I,(x) = 1 for x EW.
i= 1 t

2) PROPOSITION 1: Let W be a non empty open subset of a metric space X.

Every countable open covering of W admits a partition of unity of class C(W).

Proof: Let (Vi) be a countable open covering for W. We may assume that all

V i are non-empty. For every Vi denote by k W the first natural number for wh ich

(Vi) l/kW i ¢. The family I (Vi) 11k: i : 0, k? uu I is a countable open

covering for W. Enumerate it as (Wj). Since W. as a nretrtc space, is a paracom-

pact space, there exist a sequence (tfrj) of continuous functions defined on W

with range in [0, 11 satisfying the Iol lowing properties: n For every j. S(tfrj) C

Wj' II) For every x E W there exists an open neighborhood V of x such that

V n S(tfr
j
,) = ¢ except for finitely many indices j .• III), I tfr;Cx) = 1 for every

t» 0

x E W • (see [3]). From I), it follows that for every i, there exists [) ti) > 0 such

that S(tfrj)[) (j) C Vi C W for some i. This means that the functions tfri can be

considered as continuous functions, defined in X, satisfying conditions j) and ii)

in the definition of partition of unity of class C(W), while conditions iii) and iv )

coincide with properties II) and III) above. This completes the proof.

3) PROPOSITION 2: Let V and W be non-empty open subsets of a metric

space X such that V C W. If rp is a function in Co (W) supported in V and

(tfrn) is a partition of unity on V of class C(V). then the sequence (qJ n
n

k"!:l qJ tfrk) converges in Co(W) to e . If qJ? 0 the convergence is monotone (in-
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creasing).

Prool: For every xES (ep) it is possible to find a ball Br(xjx) such that

except for a finite number of !/Jk, Br(x/x) n S(!/Jk) := 1>. This means that for large

k, epk := ep on Br(xlx), ie, the sequence (epk). converges uniformly to ep on

Br(x/x). If x t S (ep) then there exists 8 ix) such that B8 (xix) n seep) = 1> and

hence epk = ep = 0 on B8(x/x) for every k. In conclusion, (epk) converges to ep

uniformly in a local sense. It is clear that U s( epk) C s (ep) and hence U S(epk)
k> 0 k> 0

is a properly bounded subset of W. Since it is immediate that the convergence is

bounded it follows that epk'" ep (Co (W)). If ep ~ 0 then 0::s epn::s epn+ 1 ::s ep and

so the convergence in this case is increasingly monotonic.

4) Conventions 2: Let (X, d) be a metric space and W a non-empty open

subset of X .

F or a subset E of X, at :J3 (E) denote the Borel a- algebra w.r.t the topolo-

gy induced on E.

A natural measure in W is a non-negative measure defined on :J3 (W) that takes

finite values on properly bounded subsets of Wand is regular in the following

sense:

J1 (E) = in] I/l (V) lEe V C W, V open subset I, E e :J3 (W).

= sup! p. (K) IKe E, K closed subset J

A local measure v in W is a real valued set function defined on ! U 33 (V), V

open subset properly bounded in wI, such that its restriction to any of thea-al-

gebras :J3 (V) defines a real measure denoted by "v - If A and B are open

subsets properly bounded in W it is clear that v A = vB on :J3 (A n B). It is

easy, therefore, to give a meaning to the expresion J Idv , for any a function I
W

in Co(W), Note that if W = X and X is bounded, a local measure in X is a
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real measure and the previous symbol becomes the usual integral.

Using previous definition it is easy to see that a local measure in W can be

*regarded as an element of Co(W). Our main result in this paper shows that the con-

verse is also true. We also establish that every local measure is a weak difference

of two natural measures.

5) LEMMA: (Riesz Representation for non-negative linear [unc tiona ls ). Let W

be a non-empty open subset of a metric space X. If T is a non negative linear

functional on Co(W) such that lim TUn) = T(f) whenever (fn) is an increasing
n-+oo

sequence of non negative functions which converges in C/W) to t. then there

exists a unique natural measure v in W such that:

T(f) = f fdv
W

If in addition [I T[I = sup! ro» 10::; h::; 1, h ECo(W) 1<00 then v is a finite

measure. This is in particular the case when T is C - continuous.

6) Remark: When X is a metric space in which closed bounded subsets are

compact sets the non-negativity of the Iinear functional T impl ies that T( fn) !T( f)

whenever (fn) is a sequence of non negative functions which converge monotonica-

By increasing to f in Co(W) and hence the previous lemma applies. In fact, take

g E C o(W) such that 0::; f - fn::; g for every n, Because of the compactness of

S(jJ the convergence of Un) to f in Co(W) will be uniform. Therefore for arbi-

trary e > 0, n can be taken large enough such that f - f < _!- g. Consequen-
n - T (g)

Proof: Our proof proceed as in the classical case. The main difference being

in the method of establishing the sub-additivity for the outer measure leading to

the definition of v.
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DEFINITION I: If V is an open subset of W. Define

11 (V)

= {SoUP I T(/): / ECO(V) , o~ t-: I I , if vi ¢

, if V =¢

DEF IN ITION 2: If E is a subset of W. Define :

11* (E) = in/ I 11 (V) : E C V ,. V open subset of W I

Note that:

j) If V is' an open subset properly bounded in W, then 11 (V) < 00. In this

case it is possible to find t/J E Co(W) such that t/J = l on V and therefore it can

be seen that T(t/J-j) ~ 0 for every / as specified in definition 1. Consequently

*ii] 11 (E) < 00 whenever E is properly bounded in W.

*11 '(V) = 11 (V), if V is open

Iv) 11 (V) = sup IT (/) : / E Co(W) , 0 ~ / ~ i , s sn c V I (use proposition 2) •

We want to prove now that 11* is an outer measure. It is enough to prove that

11* ( U E
t
,) < L 1l*(Et,) .wh en the E· are arbitrary subsets of Wand 11*( I} E» 0

i> 0 - i =] t t» 0 •

wft~ 1l*(Ei) < 00 for every i. Given (> 0, and for every i, take Vi open subset

of W such that E. C V. and 1l*(E .)+ --~- > 11 (V.). Let c be a real number
t t \ t 2i t

such that 11*( U E.) > c> O. Since 11 (V == U E.) > c there exists / E Co(V)
i> 0 t - i > 0 t

such that 11 (V) ~ T (/) > c. Let (t/Jn) be a partition of unity on V w.r.t (Vi) .
k:::n

F rom proposition 2 it is known that (/ ::: L / t/Jk) is a monotonic increasing se-
n k:::]

quence of non-negative functions which converges in Co(W) to [. By hypothesis

lim T(I) = T(/) and hence there exists N> 0 such that for every n ~ N, T(/n»c.
n ....oc n
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n
But k ~ 1 o/k / can be written as

r= M
/ = ~
n r=l

Uir)
where CPr= ,~_ o/k.! E Co (V

J
,) for some i . It can be seen also that ° < cP < 1

,-1, r r - r-

and consequently T(CPr) $ J1 (Vi'>' In conclusion

r=M r=M M
c < T (/ ) = ~ T (ep ) < ~ f1 (V, ) < ~ J1*(E. ) + .s.: i: J1*(E ,) + e ,

n r = 1 r - r= 1 Jr - r= 1 Jr 2Jr i= 1 '

00

Since the analysis is valid for any c< J1*( ilJ1 Ei) and e > ° is arbitrary it follows

that

J1"r U E ,) < ~ J1*{E ,)
i> ° t - i> ° '

It IS known from measure the ory that the collection of J1*- measurable sets from a

a- algebra on which J1* is a measure. By proving that all open subsets of Ware

J1*- measurable it can be concluded that all Borel subsets of IV are in this a-algebra.

'Ve prove [irs t that open subsets of Ware inner regular. Let ji(V) =sup!J1*(K):

K C V. K closed subset of WI. It is immediate that i1 (V) :::: J1 (V). To prove that

ji(V):;:J1(V) assume that J1(V»o. Let c be areal number satisfying J1(V»c:;:O.

There exists !ECo(V). 0::::/$1. such that J1(V)~ T(I) > c. Let K be its sup-

port in V. If U is any open subset which contains K then / will be supported in

U and from observation iv in pag. 6 I it follows that T(I) $ J1 (U). This means that

/1 (U) > c. Therefore /1*(K) ~ c. Since c is any number less than /1{V) it follows

i=N i=N
It is not difficult to prove now that /1*( U A,,) = ~/1*(A,,) . where the A" are

i=l i=l .
disjoint open sets (or closed) and this result can be used to prove the /1*-measura-

bility of open sets, ie that every open set V satisfy the equality /1*(A) = p*(A n V)+
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/1 *(A n VC) for any subset A of W. We omit the proof.

We will denote by v the measure ind uced by /1* on the 0 - afgebra of /1*- me asu-

rable sets.

The measure v is finite on properly bounded measurable subsets of W. This

implies in particular that v is 0- finite. Consequently, to prove regularity it is eno-

ugh to prove it for properly bounded measurable subsets of W. Let E be such a set.

Take closed subsets K and Ko properly bounded in W such that E eKe Ko '

with K properly bounded in Ko . For a given e > 0 , it is possible to find on open

set V such that K-E eve Ko and v (V) < v (K-E) + e , The set (Ko- V) n K is

closed and it is contained in E. Moreover, E -(Ko- V) n K C E n V C V -( K-E ) ,

which implies that v (B) -/1 ((Ko- K) n K) S v (V-(K-E) l «e , Since e is arbitrary

it follows that v (£) = sup Iv (K) IKe E, closed subset if WI, which proves the

inner regularity of v . The outer regularity is immediate from its construction. In

conclusion, v is natural measure in W.

T~ prove the representation formula we adapt the procedure used in step X in

the proof of theorem 2.14 in [11. It is enough to prove the inequality T(I) S J [dv ,
W

since using the linearity of T it can be concluded that -T(I)= T(-I)S J(-!Jdv'=
W

- J [dv and consequently T(I)? J [dv .
w W

Let I be a [unc t ion in Co(W) with range contained ill [a.b ]. Since I can be

written as 1=/vO-(-I)vO, with IvO and (-I)vO in Co(W),itcanbeassumed

that I? O. Let K be its support. For a given (>0 choose Yi' i=1, 2, ... , n , such

that Y'-Y'1« and y <a<y.< ..• <y =b. Define the sets E. as followst t- 0 tnt

Ei=lxfW:Yi_1<I(x)SYi1n K, i=1,2, ... ,n.

Since I is continuous, I is measurable and consequently, the Ei are disjoint
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Borel sets whose union is K. For every Ei it is possible to choose an open sub-

set Vi properly bounded in W such that Vi") E i ' v (Vi) < v (E i) + -ii- and

[Ix) < Yi+ e , for every x EVi. Let Ihili>o be a partition of unity w.r.t IVili>o.
t-«

From proposition 2 it follows that !. h.1 E I(C (W)) and for N, large enough, it
i= 1 t 0

holds that
i=N

T(I)<T(!. hil) +l.
i= 1

i=N
But !. h. I can be written as

i= 1 t

n Lk
!. !. h·l,

k=lj=l 'i
C /V k) bounded by 1.

j=Lk
whe re for every k.!. hi.

j = 1 J
It can be written that

is a

non negative function in

n
<!. fldv+l[2v(K)+b+l+l]
- k=l

Ek
::; J Idv+d2v(K)+b+l+l1.

W

And since .. is arbitrary, T(I) ::; f Id v .

W

The uniqueness of v can be proved as in theorem 2.14 in [1] taking closed sets

instead of compact sets.

By definition v(W) = II Til'" sup IT (I): 05: I::; 1 . I E Co~W) I, therefore v

* *will be a finite measure if II Til < 00. If T E C(W) then T·E Co(W) and it will

be a cont inuous, and hence bounded, linear functional on the vector space Co(W)

normed "ith the sup norm. Therefore, the previous statement is valid in this case.



7) THEOREM: (Rie s z Representation Theorem for C -continuous [unctional s),
o

Let W be a non empty open subset of a metric space and T a linear functional on

*Co(W). If T E CiW} there exists a unique local measure /l in W, which describes

T as a linear functional. Moreover, there exist natural measure /l+ and /l in W

(with /l '" when T> 0) r such that

T(j) = f fd/l = f fd/l+- f fd/l-, f ECo(W)

W W W

If T E C(W/ then /l is a real measure.

Proof: Let C~=!fECo(W):f~OI.For fE< define T+(j)=suplT(h}!

t: h, h E C; I. Since T(O) = 0, T+(IJ is non-negative. If V is a properly boun-

ded open subset of w, which contains the support of f, then T is a cont inuous

linear functional on the vector space Co(V} nonned with the sup norm. Consequen-

tty for () 'Sh 'S. t, I t o» I :511 Tllv II fll"" , where" Tllv = sup II T(g) I:
g E Co(V), II gll",,:5 1 I is finite. Hence T+(f}:5 [I T II

V
[I f II",,' Note that if T is

C-continuous on Co(W) then T is a continuous operator on Co(W) normed with

the sup norm and so T+( f} can be bounded independentely of its support by

This not difficult to see that T+ (cf) = cT+(f} for c 2: 0 and that T+{f+g):5

r+( f) + T+(g). Let us prove that T+ is additive on C~ by proving the reverse

inequality. Consider h E C: such that h:5 f + g, Define the func tions rand s

as follows:

r(x) j
L(x) h(x~

[Ix) + gi x)

o

, on V = lyE X I f (y ) + g (y» 0 I

,on x- V
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I
g(x) hex)

f{x) + gt x}
5 (X) = .

o

on V

on X-V

It can be seen that 0:$ 5 :$ I, 0::s T:$ s . 5 + T = h +and that they are in Co' Hen-

ce, it can be deduced that

Since the analysis is valid for any h E C~ satisfying h:$ 1+ g it follows that

T+{f+g):$ T+(I) + T+(g).

Observing that any I ECo(W) can be expressed as 1= 1+-( where 1+= IvO

- + +
and I = (- I) V 0 are functions in Co' T can be extended to all of C/W) as fo-

llows

+ + + +-T(I)=T(I )-T (I), for I ECo(W)

+
T is a linear functional on Co(W). We prove its additivity. To see this observe

+ - +- +- +--that I+K = (f+g) -(I+g) =1 -I +g -g . Consequently (I+g) +I+g+ = (I+g)+
+ - A + + +I + g. npply T to both sides an use its add itivity on Co to get that T (1+ g) =

T+{f) + T+(g) .

Consider now an increasing sequence of non-negative functions (In) con,:erging

to I in Co(W). It is clear that lim T+(ln) , say a, exists and that a::S T+( I).
n400

+ + + TIf a < T (I) there exists h ECo ' h:$ I such that a < T(h):$ T (f). he sequen-

ce (h /I In) converges to h in Co(W) and hence lim ro. II In) = tis), But for
n400

every n, rt» II f ) < T+(f ) < a < T (h) which leads to the contradictionsn - n-

lim T(h" In) = T(h) ~ a < rtn . In conclusion lim T+(ln) = T+(j), ie T+ is a
n400 n~oo
non negative linear functional satisfying all conditions required by previous lemma.

25



Hence, there exists a unique natural measure fl-+-, associated with T+, satisfying

all properties described in the lemma. Moreover, fl+ is a finite measure when T is

C-continuous, since in this case : fl+(W):::; liTilW'

We define now T- on Co(W) as follows -:

It is not difficult to see that T is a non-negative linear functional satisfying all

conditions required by the lemma. We write fl- to denote the corresponding natural

measure associated with it. This measure is finite when T is C-continuous since

in this case fl-(W):S 2 II T II
W

'

From the definition of T+ and T- -it follows that

+ - - + -
T(I) = T (I) -T (I) = I [d u. - I Idfl • IE Co(W) .

W W

If T2:0
+

then T = T and we obtain T '" O. Consequently fl'", 0 .

Let E E:B (V), where V is properly bounded open subset of w. Define

+ -fl (E) = fl (E)-fl (E).

It is immediate that fl is a local measure and that the representation formula given

in the statement of the theorem is valid. Let v be another possible local measure

which describes T as a linear functional on C (W). If U is a properly bounded_ 0

open subset of W, v (U) = fl (u) because the indicator function of U can be appro-

ximated pointwise and boundedly by functions In in Co(W) and with the union of

their supports as a properly bounded subset of W. Hence

v(U) = lim I Indv ::
n -.00

W

lim f Indfl = fl (U) •
n->oo

W
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Now, for a given properly bounded subset V of W the class of Borel subsets of

V on which Va/l is a a- algebra which contain all open subsets. Hence V""/l on

~ (V) , which impl ie s the uniqueness of /l • Since /l + and /l- are fin it e measures

when T is C-continuous it is immediate that /l is a real measure when that is the

case.

8) Remark: As it can be seen, proposition 1 plays a central role in the proof

of the results presented here. A similar proposition is valid for par aco mpacts spa-

ces (see [3] ) , name Iy that given any open con table covering (Ai) of a paracom -

pact space x, there exists a continuous partition of unity (fi l , Therefore, if we

consider the space of functions ! [: X .... IR: f bounded and con inuous I instead

of C/X), and C- convergence instead of Co' convergence the same proofs can be

used to obtain the corresponding results expressed in the second part of both the

lemma and the theorem.
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