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LINEAR FUNCTIONALS AND LOCAL MEASURES
(A version of the Riesz Representation Theorem in the context of metric spaces)
by

Jairo ALVAREZ

0) Introduction : The classical version of the Riesz Representation Theorem
is proved in the context of locally compact Hausdorff spaces and the local compact-
ness plays an essential role ([11). This means, for instance, that the theorem is not
true when the underlying space is a topological vector space of infinite dimension .
This paper shows that it is possible to modify the classic proof to establish a natu-
ral extension of this theorem in the context of metric spaces or, more generally, in
the context o1 paracomp .t spaces (see results in sections 5, 6, 7, 8). A similar ex-
tension can be obtained via the Daniell integral ([2]), using Stone theorem instead
of our lemma and following the same type of construction used in the proof of our
final theorem. However, taking advantage of the particular nature of a metric space,
we use a weaker condition regarding the type of continuity imposed on the *‘repre-
sentable’’ functionals.

The notion of local measure (see section 4) was introduced by C. Elson in [4]

and we follow the same type of construction used there in theorem 4.4 to establish

our final result.
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1): Conventions 1: Let (X, d) be a metric space and W a non-empty open sub-

set of X. Define :

S(f) : support of the function f.

. ES ={y€eX|d(y,E)<d}, where & is a positive number and E a subset of X.
Ws=tyew|3p>d B, (y) C W}, where 0 and p are positive numbers.

- A non empty subset E of X is said to be properly bounded in W if there exists
5> 0 such that diameter of E® is finite and E® C W.

- C,W)={f:X> R, f bounded, continuous and S(f) properly bounded in W }.

- A sequence of functions is said to converge uniformly in a local sense in X, if
every element of X has an open neighborhood in which the sequence converges
uniformly . Note that if X is a separable metric space this is equivalent 10 say
that there exists a countable open covering (V;) of X such that in each V;
the sequence converges uniformly.

- A sequence of functions in C_(W) is said to be C-convergent if it is uniformly
convergent in a local sense in X and the sequence is uniformly bounded. Note
that C_(W) is not closed with respect to this convergence.

- A sequence of functions (f,) in C_(W) is said to be C_-convergent or simply
that it is convergent in C_(W), if it is C-convergent and besides ngO §(f,) is
closed under this convergence. If / is the function in C_(W) defined by the limit
of a sequence (f) converging in C (W), we write f - f(C, (W) ).

- e’ space of linear functionals on C_(W) continuous with respect to the C-
convergence.

- Co(W)t space of linear functionals on C_(W) continuous with respect to the con-

vergence in C_ (W) . Note that cm*c CO(W)*.

- A partition of unity on W of class C(W) w.r.t to the open covering of W,
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tUyly eF + is a sequence of continuous functions (¢,) such that :

i) Forevery n, ¢ :X - [0, 1]

ii) For every n there exists @ €F, such that S, )8 cvU,, for some 6> 0.

iii) For every x EW there exists an open neighborhood of x, on which, except
for a finite number of indices #, Y,=0.

iv) S yix)=1 for xEW.
=174

2) PROPOSITION 1: Let W be a non empty open subset of a metric space X.
Every countable open covering of W admits a partition of unity of class C(W) .

Proof: Let (V) be a countable open covering for W. We may assume that all
V; are non-empty. For every V, denote by k(i) the first natural number for which
(Vi)l/k(i) # ¢ . The family { V) q/p: i20, k> k(i) } is a countable open
covering for W. Enumerate it as (W]-) . Since W, as a nfetric space, is a paracom-
pact space, there exist a sequence (x//].) of continuous functions defined on W
with range in [0, 1] satisfying the following properties : 1) For every j, S(l/lj) C
W]-. II) For every x €W there exists an open neighborhood U of x such that
un S(',/I]-) = ¢ except for finitely many indices j. “I)i>zo Y;(x) =1 for every
x €W . (see [3]). From I), it follows that for every j, there exists &(j) > 0 such
that S(l/l]-)‘S @ c V; CW for some i. This means that the functions ¢; can be
considered as continuous functions, defined in X, satisfying conditions i) and ii)

in the definition of partition of unity of class C(W), while conditions iii) and iv)

coincide with properties II) and III) above. This completes the proof.

3) PROPOSITION 2: Let V and W be non-empty open subsets of a metric
space X such that VCW. If © is a functionin C_ (W) supported in V and
(f,) is a partition of unity on V of class C(V), then the sequence (9, =

n
k21 PYy) converges in C (W) to ®.1f 92> 0 the convergence is monotone (in-
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creasing).

Proof : For every x € S(9) it is possible to find a ball B, (yfx) such that
except for a finite number of ¢, , Br(x)(x) N S(yy) = ¢ . This means that for large
k, ©p =P on Br(x)(x), ie, the sequence (Cpk) converges uniformly to ¢ on
B,(fx) . If x £5(P) then there exists &(x) such that Bg(x) N S(¢) = ¢ and
hence ©, = ® =0 on By, )(x) for every k. In conclusion, (9,) converges to @
uniformly in a local sense. It is clear that : U S(Cpk)C $(p) and hence U S(Cpk)

k>0 k>0
is a properly bounded subset of W. Since it is immediate that the convergence is
bounded it follows that @, > @ (C_ (W) ). If ¢>0 then 0<9, < ?, ;<@ and
so the convergence in this case is increasingly monotonic.

4) Conventions 2: Let (X, d) be a metric space and W a non-empty open
subset of X .

For a subset E of X, at B (E) denote the Borel o- algebra w.r.t the topolo-
gy induced on E.

A natural measure in W is a non-negative measure defined on B (W) that takes
finite values on properly bounded subsets of W and is regular in the following

sense

i (E) = inf{u (V)| ECVCW, V opensubset}, E€Bw),

sup {p(K) | KCE, K closed subset }

- A'local measure v in W is a real valued set function defined on { U B(V), v
open subset properly bounded in W}, such that its restriction to any of the o -al-
gebras B (V) defines a real measure denoted by vy,. If A and B are open
subsets properly bounded in W it is clear that v, =vg on B(A N B). Itis
easy, therefore, to give a meaning to the expresion [ fav , for any a function f

in CO(W) . Note that if W=X and X is bounded, a local measure in X is a
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real measure and the previous symbol becomes the usual integral.

Using previous definition it is easy to see that a local measure in W can be
*
regarded as an element of C_(W). Our main result in this paper shows that the con-
verse is also true. We also establish that every local measure is a weak difference

of two natural measures.

5) LEMMA : (Riesz Representation for non-negative linear functionals). Let W
be a non-empty open subset of a metric space X. If T is a non negative linear
functional on C (W) such that lim T(f,) = T(f) whenever (f,) is an increasing

7n - oo

sequence of non negative functions which converges in CO(W) to f, then there

exists a unique natural measure v in W such that :

()= [ fdv , feC, (W)
/4

If in addition ||T||=sup{ T(h)|0<h< 1, heC, (W) }{<o then v is a finite

measure. Tkis is in particular the case when T is C-continuous.

6) Remark: When X is a metric space in which closed bounded subsets are
compact sets the non-negativity of the linear functional T implies that T, )/T(f)
whenever (f ) is a sequence of non negative functions which converge monotonica-
lly increasing to f in C,(W) and hence the previous lemma applies. In fact, take
g €C (W) such that 0<f- f, < g forevery n. Because of the compactness of
$(f) the convergence of (f ) to f in C_ (W) will be uniform. Therefore for arbi-

trary €> 0, n can be taken large enough such that f-f < £ ¢. Consequen-

T (g)
tly 0KT()-T(f)< e, ie. T(f,)/[T().
Proof : Our proof proceed as in the classical case. The main difference being

in the method of establishing the sub-additivity for the outer measure leading to

the definition of v .
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DEFINITION 1 : If V is an open subset of W . Define :

sup{ T(f): feC (V),0<f<1},if V#g

(v) =
g " Cif V=g

DEFINITION 2 : If E is a subset of W . Define :

p*(E) = inf { u(V) : ECV ; V open subset of W }
Note that :

i) If V is an open subset properly bounded in W, then p(V) <o . In this
case it is possible to find ¢ €C (W) such that Y=1 on V and therefore it can
be seen that T(y-f) >0 for every [ as specified in definition 1. Consequently
p(V)<T(Y) <.

ii) u*(E) < oo whenever E is properly bounded in W .

* *
i) p (E;) < p(Ey), if E;jCE,
K(v) = p(v), if V is open

iv) (V) = sup {T(f): fEC (W), 0<f< 1, S() CV} (use proposition 2) «

We want to prove now that p* is an outer measure. It is enough to prove that
* * . %

w ( il>JOEi) < iEI W (Ei) ,when the E; are arbitrary subsets of W and £ ('_'>JOE,-)>0
with p*(Ei) <o for every i. Given €>0, and for every i, take V,; open subset
of W suchthat E;CV, and p*(E;)+ ——ii— >u(v;). Let c be areal number
2
such that p*( U E;)>c¢> 0. Since u(V= U _E.) > c there exists fEC (V)
i>0 1 - P >0 1 o
such that p(V)>T(f)>c. Let () be a partition of unity on V w.r.t (V).
k=n
From proposition 2 it is known that (f, =k2"1 fYy) is a monotonic increasing se-
quence of non-negative functions which converges in C (W) to f By hypothesis

lim T(f,) = T(f) and hence there exists N > 0 such that for every »> N, T(f D>c.
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n

But kél Y, f can be written as
r=M L(f,)
=2 F %/

r=1
LG,)
where @ = iél l/fkl_f eC, (V]»T) for some j, . It can be seen also that 0 <0 <1
and consequently T(Q )< [I.(Vj ) . In conclusion
r

r=M r=M M * B ) 5
C<TU)=3 T@ISI pV;)< 3 u"E) + = 5 y"E )+ c.

2]7 =
Since the analysis is valid for any c<p*( iL-’JI E;) and ¢>0 is arbitrary it follows
that

*
(U E.)< *E,
A L

It 1s known from measure theory that the collection of 1*-measurable sets from a
o-algebra on which p* is a measure. By proving that all open subsets of W are

¢ measurable it can be concluded that all Borel subsets of W are in this o-algebra.

We prove first that open subsets of W are inner regular. Let (V) = sup{p(K):
KCV, K closed subset of W}. It is immediate that i (V) < pu(V). To prove that
E(V)> p(V) assume that u(V)>0. Let c be areal number satisfying p(V)>c>0.
There exists f€C (V), 0< /<1, suchthat p(V)> T()>c. Let K be its sup-
port in V. If U is any open subset which contains K then / will be supported in
U and from observation iv in pag. 6, it follows that T(f) <p(U). This means that
p(W)> c. Therefore u*(K)> c. Since c is any number less than p(V) it follows

that Z(V)>pu(v).

i=N i=N

It is not difficult to prove now that p*(_U Ai) = .21 ;L*(Al-) , where the A; are
i= i=

disjoint open sets (or closed) and this result can be used to prove the 1 measura -

bility of open sets, ie that every open set V satisfy the equality 1A =pfAanv),
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(AN VO for any subset A of W. We omit the proof.

We will denote by v the measure induced by p* on the o-algebra of p* measu-
rable sets.

The measure v is finite on properly bounded measurable subsets of W. This
implies in particular that v is o-finite. Consequently, to prove regularity it is eno-
ugh to prove it for properly bounded measurable subsets of W. Let E be such a set.
Take closed subsets K and K, properly bounded in W such that ECKCK,,
with K properly bounded in K . For a given ¢> 0, it is possible to find on open
set V such that K-ECVCK_ and v(V)<v(K-E)+e¢. The set (K~V) NKis
closed and it is contained in E . Moreover, E-(Ko—- V) NKCENVC V-(K-E),
which implies that v (E) —p ((K ~K) N K) <v(V-(K-E) )<e. Since e is arbitrary
it follows that v (E) =sup{v (K)| K CE, closed subset if W}, which proves the
inner regularity of v . The outer regularity is immediate from its construction. In

conclusion, v is natural measure in W .

To prove the representation formula we adapt the procedure used in step X in
the proof of theorem 2.14 in [11. It is enough to prove the inequality T(f) Su[fdv ,
since using the linearity of T it can be concluded that -T(f)=T (-f)< [(-f)dv =
- [ fdv and consequently T(f)> [ fdv . :

w w
Let f be a function in C_ (W) with range contained in [a,b]. Since f can be
written as [ = [V 0-(-f)v0, with fv0 and (-f)v0 in C (W), it can be assumed
that /> 0. Let K be its support. For a given ¢ >0 choose y;, i=1,2,...,n,such

that y;-y; ;<€ and y <a<y;<...<y,=b. Define the sets E; as follows

Ei={x€W:yi_1<f(x)$yi}n K, vid=1,2,, 0, ma

Since f is continuous, f is measurable and consequently, the E; are disjoint
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Borel sets whose union is K. For every E; it is possible to choose an open sub-

set V, properly bounded in W such that V;D E,, v(V,)<v(E;)+-5 and

f(x)<y;+e, forevery x €V . Let {h;};y be a partition of unity w.r.t {V 1.3 .
i=K

From proposition 2 it follows that .21 h,fef(C,(W)) and for N, large enough, it
1:

holds that

i=N
TP<T(Z bl +e.
t=

i=N n Lk j=Lk
But X b,f canbe writtenas 3 X b, [, where forevery k£, X "h; isa
i= k=1j=1 % =1

i
that

non negative function in C_(V,) bounded by I. It can be written

r(p<T(S 2 res s )
<T b. = T . ) ;
/ 3 D+e kél (]él b,],f)+e'5k2=1(yk+6) T(jé—"l b'j)+ €

k n n n
< ( (V,)+e2 ( JV(E}) ( £
i )’k+€)V k +€k=1 Yptelvit, +k§_1 yk+e)n + €

SE(yp-€)v(Ep)+ 2ev(K)+ (b+e)+e

n
Skz-l [fdv+e[2v(K)+ b+e+ 1]

By

< [fdv+el2v(K)+b+es1].
W

And since¢ is arbitrary, T(f) < [ fdv.
w

The uniqueness of v can be proved as in theorem 2.14 in [1] taking closed sets
instead of compact sets.

By definition v(W) = || T|| =sup {T(): 0<f<1, feC, (W}, therefore v
will be a finite measure if ||T|| <o . If T eC()™ then T ECO(W)>'< and it will
be a continuous, and hence bounded, linear functional on the vector space CO(W)

normed with the sup norm. Therefore, the previous statement is valid in this case.
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7) THEOREM : (Riesz Representation Theorem for C -continuous functionals).
Let W be a non empty open subset of a metric space and T a linear functional on
C,W. If T ECO(W):|< there exists a unique local measure p in W, which describes
T as a linear functional. Moreover, there exist natural measure p* and y in W

(with p = when T > 0), such that

T()= [ fdp=[ fdu*= [ fdu=, feC,(W)
W W W

If TeCOW then p is a real measure.

Proof: Let C}={feC,W):f>0}.For feC’ define TH() = sup{T(h)]|
f>h be C: {. Since T(0)=0,T%() is non-negative. If V is a properly boun-
ded open subset of W, which contains the support of f, then T is a continuous
linear functional on the vector space C_ (V) normed with the sup norm. Consequen-
tly for 0<h< f,|T(h)|< HTHV H/HN , where HTHV =sup{|T(g|:
geC,(V), ][g”w < 1} is finite. Hence T+(f)5 I T”VHIHN Note that if T is
C-continuous on C_(W) then T is a continuous operator on C (W) normed with

the sup norm and so T'(f) can be bounded independentely of its support by

Tl /1l

This not difficult to see that TV (cf) = cTH(f) for ¢> 0 and that TH(f+g) <
T+(/) +T%(g). Letus prove that T% is additive on C: by proving the reverse
inequality. Consider 5 EC: such that » < f+ g. Define the functions r and s
as follows :

[DbG)  on yv=fyeX|fly)+gly)>0}
f(x) + g(x)
r(x) =
0 ,on X-V
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£(x) b(x)

_— \4
f(x) + g(x) e

s(x) =
, on XV

It can be seen that 0<s<f, 0<r<g, s+r=h and that they are in C:.Hen-

ce, it can be deduced that
T(h) = T(s) + T() < TV (f) + TH(g) .

Since the analysis is valid for any b SCZ satisfying » < f+ g it follows that

T+ < THP + THG) .

Observing that any f EC,(W) can be expressed as [= f+—/- where ff= fvo
and f = (-f) v O are functions in C; , T can be extended to all of C,W) as fo-

llows

TN = TN -1 (), for feC W)

T" is a linear functional on CO(W) . We prove its additivity. To see this observe

that f+g = (/+g)+— (f+g) =ft-f+gT-g". Consequently (f+ g)++f-+g+ =(f+g)+
. +

f++g . Apply T" to both sides an use its additivity on C, to get that T+(/+g) =

T + T () .

Consider now an increasing sequence of non-negative functions (f,) converging

to fin C_ (W). Itis clear that /lim T+(fn) , say a, exists and that a < T+(f).

7 - 00

If a< T+(/) there exists 5 EC; , b< [ such that a<T(h)< T+(f). The sequen-

ce (hA f,) convergesto b in C,W) and hence /im T(h A f,) = T(h). But for

n->00
every n, T(ha f,)< T+(fn)5 a <T(h) which leads to the contradictions
lim T(bA f,) = T(h) < a<T(h) . In conclusion lim T+(fn) = T+(f), ie T" is a

7n - 00 n-o00

non negative linear functional satisfying all conditions required by previous lemma.
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Hence, there exists a unique natural measure p*, associated with T+, satisfying
all properties described in the lemma. Moreover, p is a finite measure when T is

C-continuous, since in this case : #+(W) < |[F||W .

We define now T on CO(W) as follows :
T(f) = T(f) =T()) , feC W)

It is not difficult to see that T isa non-negative linear functional satisfying all
conditions required by the lemma. We write 4~ to denote the corresponding natural
measure associated with it. This measure is finite when T is C-continuous since
in this case p" W) <2 || T IIW :
From the definition of T  and T  .it follows that
T =T (D-T (D= fdu*~[jau’, fec,m.
L4 W
If T>0 then T'='T and we obtain T =0. Consequently u'=0.

Let E €B(V), where V is properly bounded open subset of W . Define

w (E) =y (E)-p (B) .
It is immediate that p is a local measure and that the representation formula given
in the statement of the theorem is valid. Let v be another possible local measure
which describes T as a linear functional on CO(W) . If U is a properly bounded
open subset of W, v(U) = u(U) because the indicator function of U can be appro-
ximated pointwise and boundedly by functions f, in C_ (W) and with the union of

their supports as a properly bounded subset of W . Hence

v(U)= lim [ f dv= lim [ fdp=p(U).
7300 7200
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Now, for a given properly bounded subset V of W the class of Borel subsets of
V on which v=y is ao-algebra which contain all open subsets. Hence v=p on
B(v) , which implies the uniqueness of . Since p* and y~ are finite measures
when T is C-continuous it is immediate that y is a real measure when that is the

case.

8) Remark : As it can be seen, proposition 1 plays a central role in the proof
of the results presented here. A similar proposition is valid for paracompacts spa-
ces (see [3]), namely that given any open contable covering (Az-) of a paracom -
pact space X, there exists a continuous partition of unity (f; ). Therefore, if we
consider the space of functions { f:X » R: f bounded and continuous } instead
of C (X), and C-convergence instead of C_-convergence the same proofs can be
used to obtain the corresponding results expressed in the second part of both the

lemma and the theorem.
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