Revista Colombiana de Matemáticas Volumen VIII (1974), págs. 97-109

POLYNOMIAL INVARIANTS OF BOUNDARY LINKS

by

M. A. GUTIÉRREZ

Dedicated to Professor H. Yerly

§ 0. Introduction. An *m*-link is a (smooth, polygonal) embedding $l: mS^1 \to S^3$ of the disjoint⁽¹⁾ union of *m* circles $S_1^1 + \ldots + S_m^1$ into S^3 .

If l extends to an embedding $V_1 + \cdots + V_m \rightarrow S^3$ of the disjoint union of *m*-surfaces V_i^2 with $\partial V_i = S_i^1$, l is called a *boundary m*-link, and $\{V_i\}$ is called a collection of *Seifert surfaces* for l.

The purpose of this note is to give an algebraic description of some properties of boundary *m*-links.

Let X be the space obtained from S^3 by removing the interior of m solid tori T_1, \ldots, T_m with cores $l(S_1^1), \ldots, l(S_m^1)$ respectively; X is a compact 3-manifold with boundary $\partial T_1 + \cdots + \partial T_m$, and of the homotopy type of the complement $S^3 - Im(l)$. By abuse of language we call X the *complement* of l. The fundamental group π of X is the group of l.

Let x_i (resp. y_i) be the meridian (resp. longitude) of ∂T_i . The image (via $\partial T_i \subset X$) μ_i (resp. λ_i) of x_i (resp. y_i) in π is called the ith meridian

⁽¹⁾ The plus sign + stands for disjoint union.

(resp. longitude) of l. The pairs (μ_i, λ_i) are determined up to simultaneous conjugation .

Finally, let $f: F \to \pi$ be the map from F, the free group on μ_1, \ldots, μ_m , into π defined by $(x_1 \lor \ldots, \lor x_m) \subset X$. In [2] we prove⁽²⁾

PROPOSITION 1. An m-link is boundary if and only if f is a rettaction, i.e., if there exists an exact sequence

$$(0) 1 \to K \to \pi \xrightarrow{p} F \to 1$$

and $pf = 1_F$.

The group K is then π_{ω} , the intersection of the members π_i of the lower central series of π [8].

The author is very grateful to Henri Yerly from whom he learned mathematics. This debt has always been uppermost in his mind. With this contribution to the *Revista* he wishes to express thanks to his teacher.

§ 1. The Fundamental Group. If l is a boundary link, let $\{V_i\}$ a collection of Seifert surfaces for it. Notice $\{V_i\}$ is not unique.

Define Y, of the homotopy type of $S^3 \cdot \bigcup V_i$, to be the space obtained from S^3 by cutting along the $V_i[6]$. Then Y is a compact manifold with boundary $\sum_{i=1}^{m} (V_{i0} \cup V_{i1})$, where $V_{it} = V_i (i=1, ..., m; t=0, 1)$ and $V_{i0} \cap V_{i1} = l(S_i^1)$.

For each $g \in Z^m$, let Y(g) be a copy of $Y \cdot I_m(l)$ which is an open manifold with boundary

$$\Sigma_i(Int V_{i0}(g) + Int V_{i1}(g))$$

Let, on the other hand, \tilde{X} be the covering space of X associated to the

⁽²⁾ This result is partially stated by Smythe in <u>Boundary links</u>, Wisconsin Topology Seminar, Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N.J. 1965.

commutator subgroup π_2 of π . Since the sequence

(1)
$$1 \rightarrow \pi_2 \rightarrow \pi \rightarrow \mathbb{Z}^m \rightarrow 0$$
,

grade add on her above

is exact, it follows [2], that \tilde{X} is obtained from $\bigcup_{g \in \mathbb{Z}^m} Y(g)$ by identifying Int $V_{i0}(g+\epsilon_i)$ to Int $V_{i1}(g)$, where $\{\epsilon_i\}$ is the canonical basis for \mathbb{Z}^m . We want to find a presentation for $\pi_2 = \pi_1(\tilde{X})$; in order to achieve this we use Neuwirth's technique as described in [10; th. 4.5.1].

Let F(S) be a free group with generators S. A Schreier system T is a nonempty subset F such that if $g \neq 1$ belongs to it, so does g', where g' is defined by writing $g = s_1^{n_1} \dots s_k^{n_k}$, $s_i \in S$ and

 $t_m = (x, y) \mapsto (x, y, y_m)$ is contained in X. Jut

$$= \begin{cases} gs_k & \text{if } n_k < 0 \\ \\ gs_k^{-1} & \text{if } n_k > 0 \end{cases}$$

Let W be the wedge of a collection of circles indexed by S, then $\pi_1(W,x)=F(S)$. If $G \subset F(S)$ is a subgroup, there exists a cover \tilde{W} of W such that $\pi_1^{\perp}(\tilde{W},\tilde{x}) = G$. There is a one-to-one relation between the maximal trees in W and the Schreier systems T of F(S) which contain exactly one element from each coset $G\alpha$ of G. If $\varphi(\alpha)$ is such an element then

LEMMA 1. G is the free group on the generators

$$gs(\varphi(gs))^{-1}, g \in T, s \in S$$
.

For a proof see [8]; T is called a Schreier system for F(S)/G. Let now $H_i = \pi_1(V_i)$ and $G^{(g)} = \pi_1(Y(g))$ the latter having a presentation

$$< Y_1^{(g)}, \ldots, Y_{\alpha}^{(g)} : R_1^{(g)}, \ldots, R_{\beta}^{(g)} > ;$$

99

we have maps $\nu_{it}^{(g)}: H_i \to G^{(g)}$ given by the inclusions $V_{it}(g) \subset Y(g)$. A Schreier system for F(M) over its commutator subgroup is the set of elements $g = \alpha_1^{g_1} \dots \alpha_m^{g_m}$ which we identify to \mathbb{Z}^m by $g \to \Sigma g_i \epsilon_i$. By the lemma the commutator of F(m) is the free group in the set E of elements of the form

(2)
$$\alpha = \alpha_1^{g_1} \dots \alpha_m^{g_m} \alpha_i (\alpha_1^{g_1} \dots \alpha_i^{g_i+1} \dots \alpha_m^{g_m})^{-1}, \ 1 \leq i \leq m.$$

Take the space W obtained by identifying $Int V_{il} (\Sigma_{j=1}^{i} g_{j} \epsilon_{j})$ to $Int V_{i0} (\Sigma_{j=1}^{i} g_{j} \epsilon_{j} + \epsilon_{i})$ for all *i* and $g_{j} \epsilon \mathbb{Z}$. Observe that each $Y(g) \subset W$ and that $Y(g) \cap Y(b)$ has ≤ 1 connected component in W. This can be seen in a very simple way :

The wedge $C_m = (x_1 \vee \cdots \vee x_m)$ is contained in X; let \tilde{C}_m be the universal abelian cover of C_m ; $\tilde{C}_m \subset \tilde{X}$ and W is the space constructed by placing the Y(g) at the vertices of the maximal tree T' of \tilde{C}_m associated to the above Schreier system and identifying the $V_{it}(g)$ as prescribed by the edges of T'.

The group $\pi_1(W)$ is then a (weak) tree product,

$$.$$

Here $1 \leq i \leq m$, $g \in \mathbb{Z}^m$ and ω_i is any element of the form $\sum_{j=1}^{i} g_j \epsilon_j$. This can be seen by thinking that the groups $G^{(g)}$ are in the vertices of the universal abelian cover of K and that the amalgamations correspond to the edges of the maximal tree. The remaining amalgamations in W, necessary to obtain X, correspond to the elements of E: if $\alpha \epsilon E$ is written as in (2), the corresponding identification is that of $Int V_{i1}(\Omega_i(\alpha))$ to $Int V_{i0}(\Omega_i(\alpha) + \epsilon_i)$ where $\Omega_i(\alpha) = \sum_{j=1}^m g_j \epsilon_j$; thus

PROPOSITION 2. The subgroup $\pi_1(\tilde{X})$ can be expressed as

(3)
$$\langle E, Y_j^{(g)}; R_k^{(g)}, \alpha \nu_{i0} \rangle = \nu_{i1} \rangle \langle \Omega_i(\alpha) \rangle$$

 $\langle \alpha \in E \rangle$

Proof. In fact by the Van Kampen theorem, for every new identification in W we introduce one generator $a \in E$ and one relation, namely

$$\begin{array}{c} (\Omega_i(\alpha) + \epsilon_i) \\ \alpha \nu_{i0} \\ \alpha \end{array}^{-1} = \begin{array}{c} (\Omega_i(\alpha)) \\ \nu_{i1} \\ \end{array}$$

§ 2. Polynomial Invariants .

Let $l: mS^1 \to S^3$ be an *m*-link with complement X. By virtue of (1), \mathbb{Z}^m acts on \tilde{X} and so $H_1(\tilde{X})$ is a finitely generated module over the ring $\Lambda_m = \mathbb{Z}[\mathbb{Z}^m]$. Observe that Λ_m is isomorphic to the polynomial ring $\mathbb{Z}[t_1, t_1^{-1}, \dots, t_m, t_m^{-1}]$. We distinguish two homomorphisms :

i) $\epsilon: \Lambda_m \to \mathbb{Z}$ defined by $\epsilon(t_i) = 1$, and

ii) $f \mapsto \overline{f}$ an involution on Λ_m defined by $\overline{t}_i = t_i^{-1}$.

Let now

(4)
$$F_2 \xrightarrow{d} F_1 \rightarrow H_1(\tilde{X}) \rightarrow 0$$
.

be a free presentation of $H_1(\tilde{X})$, where F_1 (resp. F_2) is a free Λ_m -module of rank r (resp. g). The map d is determined (upon a choice of bases for the F_i) by a matrix M with polynomial entries. For any $k \ge 0$, consider $\Delta_k \subset \Lambda_m$, the ideal generated by the $(r \cdot k) \times (r \cdot k)$ minors of M. This ideal is independent of (4). Since Λ_m is a UFD, we can define $\lambda_k \in \Lambda_m$ to be the generator (determined up to units) of the smallest principal ideal P satisfying

$$\Delta_k \subset P \subset \Lambda_m$$
.

For justifications of the above assertions, see [5]; the λ_k can be chosen

101

chosen so that $\epsilon \lambda_k \ge 0$. The polynomials λ_k are called the (Alexander) polynomials of l. With this terminology we can rewrite proposition 2 as follows : let l be a boundary link with Seifert surfaces V_i , suppose $Z_k^i(k=1,\ldots,2\alpha_i)$ is a base for $H_1(V_i)$. Then $H_1(Y)$ is free of rank 2α , where $\alpha = \sum \alpha_i$. Let $\{w_j\}$ be the base of $H_1(Y)$ dual to $\{Z_k^i\}$ and write

$$\nu_{it}(Z_k^i) = \sum_j \xi_{kj}^{it} w_j.$$

The matrix $M = ||t_i \xi_{kj}^{i0} \cdot \xi_{kj}^{i1}||_{i,j,k}$ can be divided into blocks M_{ij} , where M_{ii} is the $(2\alpha_i \times 2\alpha_i)$ matrix $||t_i \xi_{kj}^{i0} \cdot \xi_{kj}^{i1}||_{k,j}$, which depends exclusively on the knot $l(S_i^1)$ (cf. [1, p. 153]) and, for $i \neq j$, M_{ij} is the $(2\alpha_i \times 2\alpha_j)$ -matrix $(t_i - 1) ||\nu(Z_k^i, Z_b^j)||_{k,b}$ where $\nu(Z_k^i, Z_b^j)$ is the linking number (in S^3) of Z_k^i and Z_b^j , $(k = 1, ..., 2\alpha_i, b = 1, ..., 2\alpha_j)$. Let T be the cokernel of M, we have

COROLLARY 3. If l is a boundary m-link (with Seifert surfaces V_i),

$$H_1(\tilde{X}) \stackrel{\sim}{=} \Lambda_m^{m-1} \oplus T$$

We now prove

THEOREM 4. Let l be a boundary m-link, then $\lambda_i = 0$ for i = 1, ..., m-1 and Δ_m is the principal ideal (λ_m) , where

(i) $\epsilon \lambda_m = 1$ (ii) $\bar{\lambda}_m = \lambda_m$.

Conversely, given $\lambda \in \Lambda_m$ satisfying (i), (ii), there exists a boundary m-link with $\lambda_m = \lambda$.

in particle stars of the above as entires, see [5]; the A_{\pm} -could educen

Proof. The first part of the proof follows from corollary 3; for the converse, we apply the me thod of [5] to the trivial link : write $\lambda = \sum G_g \cdot g$, where $g \in \mathbb{Z}^m$, $C_g = C_{(g^{-1})}^{(3)}$. Only finitely many integers C_g are nonzero. Of those g for which $C_g \neq 0$ and its inverse g^{-1} , choose exactly one to obtain a set Φ . Notice $1 \in \Phi$. Let $1: mS^1 \to S^3$ be the trivial link with complement X_o . Let D be a 3-cell in X_o and in D choose a disjoint family of circles $S_g, g \in \Phi$, with linking numbers

$$v(s_{g}, s_{1}) = v(s_{1}, s_{g}) = C_{g}$$

and zero otherwise. Let a'_g be an arc in D connecting S_g to S_1 so that the a'_g are mutually disjoint and meet $\bigcup S_g$ only at its endpoints. Choose $u_g, g \in \Phi, g \neq 1$, a disjoint family of closed curves in $X_o \cdot D$, representing the element g of $H_1(X_o) = \mathbb{Z}^m$, and bounding a disk d_g in $S^3 \cdot D$, where the d_g are mutually disjoint. Choose now an arc from an interior point of a'_g to a point of u_g whose interior is disjoint from all a'_g, d_g . Let a_g be the connected sum of a'_g and u_g along this arc. Finally, let S be the connected sum of the S_g along the arcs a_g . We can assume that S is unknotted.

Suppose too that $l(S_i^l)$ bounds a disk D_i ; S pierces D_i in pairs of points with opposite intersection numbers; this is because in taking the connected sum of the S_g along the a_g , we use ribbons with core u_g : its boundary pierces the D_i in pairs of points with the desired intersection numbers.

As in [3; p. 61] we can eliminate a *pair* of intersection points by adding a tube joining the boundaries of small disks (centered at the intersection points) removed from the D_i . At the end of the process the link l has a collection

⁽³⁾ Observe that \mathbb{Z}^m is written multiplicatively.

 $\{V_i\}$ of Seifert surfaces (with genus depending on the number of times *S* intersects D_i) and $S \cap V_i = \phi$ for all *i*.

The next step consists on doing surgery on S^3 using a thin tubular neighborhood τ of S so that $\tau \cap V_i = \phi$. The calculation in [5; p. 81] indicates that we obtain a new link $l': mS^1 \rightarrow \chi(S^3, \tau) = S^3$ which is a boundary link with Seifert surfaces V_i . If \tilde{X} is the universal abelian cover of l',

$$H_1(\tilde{X}) = \Lambda_m^{m-1} \oplus (\Lambda_m / \lambda \Lambda_m) .$$

This finishes the proof of the theorem.

§ 3. Cobordism .

In [4] we prove the following

LEMMA 5. Let π be a group and let a_1, \ldots, a_m be elements of π satisfying

- a) $\pi/\pi_2 = \mathbb{Z}^m$, where the cosets of $a_1, \ldots, a_m \in \pi$ generate π/π_2 .
- b) $H_2(\pi) = 0$. The set of the set of the set of short π , but the set of the set o
- c) π is the smallest normal subgroups generated by the a_i .

Then, there exists a free group L on the letters b_1, \ldots, b_r , and words

(5)
$$R_j = a_{i_j} w_j b_j w_j^{-1}$$

where j=1,...,r and $w_j \in \pi * L$, such that if R is the consequence of $\{R_1,...,R_r\}$, the group $\rho = (\pi * L)/R$ contains the free group F generated by $a_1,...,a_m$ as a retraction. We use lemma 5 to prove

THEOREM 6. Let $l: mS^1 \rightarrow S^3$ be an m-link with group π . Suppose F is the free group generated by the meridians μ ; then l is cobordant [1] to a

boundary link if and only if the maps $f_{\#}: F/F_i \rightarrow \pi/\pi_i$ defined for i=2,3,...are isomorphisms. In other words if and only if all the Milnor invariants [9] are zero.

Proof. Start with a Wirtinger presentation (cf. [9])

$$\pi = \langle x_{ij} | r_{ij}, 1 \leq i \leq m, 1 \leq j \leq \alpha_i \rangle,$$

where x_{ij} is represented by a loop going once around the ith component $l(S_i^1)$ of l and $r_{ij} = u_{ij} x_{ij} u_{ij}^{-1} x_{i,j+1}^{-1}$, $u_{ij} = x_{pq}^{\epsilon}$, $\epsilon = \pm 1$. Consider $S_{ij} = v_{ij} x_{i1} v_{ij}^{-1} x_{i,j+1}^{-1}$, where $v_{ij} = u_{ij} \cdot u_{i,j+1} \cdots u_{i1}$. Then

(6)
$$\pi = \langle x_{ij} | S_{ij} \rangle .$$

Finally, write $x'_{ij} = x_{ij} x_{ij}^{-1}$ and $x_i = x_{i1}$. The group π can be presented by (6') $\langle x_1, \dots, x_m, x'_{ij} | x'_{i,j+1} = [V_{ij}, x_i], [V_{i\alpha_i}, x_i] = 1 > .$ Let

(6")
$$\pi^* = \langle x_1, \ldots, x_m, x_{ij} | x_{i,j+1}^* = [V_{ij}, x_i], j < \alpha_i \rangle$$

Assertion. If all the Milnor invariants of l are zero the natural epimorphism $\pi^* \rightarrow \pi$ induces isomorphisms

$$\pi^*/\pi^*_i \to \pi/\pi_i \qquad (2 \le i \le \omega).$$

This follows from the definitions [9].

Observe now that π^* satisfies the hypothesis of lemma 5 if we take $a_i = x_i$, in fact (6'') is a presentation with defect m.

Let X be the complement of l; take the product $X \times I$ and to $X \times \{1\}$

attach r 1-handles $b_1^1, \ldots, b_r^1; \partial (X \times I \cup \Sigma b_j^1) = X \times \{0\} \cup \partial X \times I \cup X^*$, where $\pi_1(X^*) = \pi^*L$. Let γ_j be the loop in X' describing the word R_j of (5). Along tubular neighborhoods of the γ_j , attach 2-handles b_i^2 . Notice that $\partial X = \Sigma (S_i^1 \times S^1)$ and that, if we attach $\Sigma (S_i^1 \times D^2 \times I)$ to $X \times I \cup \Sigma b_j^1$ along $\partial X \times I$, the words R_j isotop to the cores b_j of the b_j^1 . As a result $X \times I \cup \Sigma b_j^1 \cup \Sigma b_j^2$ is a cobordism (modulo boundary) of X and a link complement X'' with fundamental group $\pi'' = (\pi^*L)/R$.

There is a natural epimorphism $p \to \pi^{\prime\prime}$, where $p = (\pi^* * L)/R$. Further, by our assertion $p/p_i \to \pi^{\prime\prime}/\pi_i^{\prime\prime}$ is an isomorphism for $i = 1, 2, ..., \omega$. By lemma 5, $p/p_{\omega} \cong F$ and so $\pi^{\prime\prime}/\pi_{\omega}^{\prime\prime} \cong F$ and, by proposition 1, $X^{\prime\prime}$ is the complement of a boundary link. This completes the proof.

One natural question arises : which boundary links are null-cobordant ?"

A necessary condition comes from observing that if $b:(mS^1) \times I \to S^3 \times I$ is a null-cobordism for l, the embedding $\sum V_i \to S^3$ of Seifert surfaces for lextends to an embedding $\sum W_i^3 \to S^3 \times I$, where $\partial W_i = V_i \cup (\partial V_i \times I) \cup D_i$, where D_i is a disk. Also $W_i \cap (S^3 \times \{0\}) = V_i$ and $W_i \cap (S^3 \times \{1\} = D_i)$.

Let Θ_{ij} be the $(2\alpha_i \times 2\alpha_j)$ -matrix $|| \nu(Z_r^i, \nu_{jl}Z_s^j) ||$ and Θ the block matrix $||\Theta_{ij}||$. If I_{α_i} is the identity $(Z\alpha_i \times Z\alpha_i)$ -matrix, let Δ be *diag* $(t_1I_{\alpha_1}, \ldots, t_mI_{\alpha_m})$ a diagonal matrix. If M is the presentation matrix of $H_1(\tilde{X})$

$$M = \Delta \Theta \cdot \Theta' \cdot \Theta' = 0$$

By the arguments in [7; § 8], let $j_i : H_1(V_i) \to H_1(W_i)$ be the inclusion map; then rank $(ker j_i) = \alpha_i$. Notice that (with the notation of § 2) if $x \in ker j_i$ and $y \in ker j_k$, then the linking number $v(x, v_{kl}y)$ is zero (cf. [7]). It follows that Θ_{ii} has the form

where 0 is a $(\alpha_i \times \alpha_j)$ - matrix as a result.

PROPOSITION 9. Let *l* be a boundary m-link. If $f_i(t_i) \in \mathbb{Z}[t_i, t_i^{-1}]$ is the Alexander polynomial for the knot $l(S_i^{-1})$ and if *l* is cobordant to a split link, then

 0_{ii}^{I}

Two block matrices

$$f = \prod f_i \cdot g \cdot \overline{g}$$

where f is the Alexander polynomial for l and $g \in \Lambda_m$.

§ 4. A Question of Genus

Let $\Theta^t = ||\Theta_{ij}^t||$ be a block matrix (t=1,2). We say that Θ^2 is obtained from Θ' be an elementary *i*-expansion (or Θ^1 is an elementary *i*-reduction of Θ^2) if Θ_{ii}^2 is of the form

of a surface V; belonging to a collection of Soffers surfaces for

(where *a* is a row vector and *b* a column vector), Θ_{ij}^2 $(i \neq j)$ is of the form

$$(\Theta_{ij}^{I}, 0, c)$$
 or $(\Theta_{ij}^{\prime}, c, 0)$, respectively,

(c is a column vector) and Θ_{ji}^2 is of the form the set λ , into item

Two block matrices $A = \|A_{ij}\|$ and $B = ||B_{ij}||$ of the same size (i.e., A_{ij} and B_{ij} are both $(a_i \times a_j)$ -matrices i, j = 1, ..., r) are block-congruent if there exists a matrix C of the form

where C_k is a nonsingular $(a_k \times a_k)$ - matrix such that

$$B = CAC'$$

Two block matrices Θ^{I} and Θ^{2} are *S*-equivalent if Θ^{2} can be obtained from Θ^{I} be a finite series of *i*-expansions, *i*-contractions and block congruences. (cf. [7]).

As in [11; p. 484] every S-equivalence class of block matrices has a representative whose diagonal blocks are non-singular. We call it a *reduced* matrix.

PROPOSITION 8. Let *l* be a boundary m-link (with Seifert surfaces V_i of genus α_i). If the matrix Θ is reduced the Alexander polynomial $\lambda \in \Lambda_m$ of *l* bas degree $2\alpha_i$ in the variable t_i .

This result can be reinterpreted thusly :

COROLLARY 9. Let 1 be a boundary m-link. If λ is the Alexander polynomial for 1, λ bas even degree 2a, on each variable t_i and a_i is the genus of a surface V_i belonging to a collection of Seifert surfaces for 1.

References

- R. H. Fox, A quick trip through knot theory, in Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice Hall, Englewood Cliffs, N.J., 1962, pp. 120 - 167.
- 2. M. Gutiérrez, Boundary links and an unlinking theorem, Trans. Amer. Math. Soc. 171 (1972), pp. 491-99.
- 3. _____, Homology of knot groups, 1: Groups with deficiency one, Bol. Soc. Mat. Mex. 16(1971), pp. 58-63.
- Unlinking up to cobordism, Bull. Amer. Math. Soc., 79(1973), pp.1299-1302.
- 5. J. Levine, Generating link polynomials, Am. J. Math. 89 (1967), pp. 69-84.
- 6. _____, Unknotting spheres in codimension two, Topology 4(1965), pp. 9-16.
- Knot cobordism groups in codimension two, Comment. Math. Helv. 44(1969), pp. 229-244.
- 8. W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Interscience, New York 1969.
- J. Milnor, Isotopy of links, in Algebraic Geometry and Topology, Princeton University Press, Princeton, N. J., 1957, pp. 280-306.
- 10. L. Neuwirth, Knot groups, Ann. of Math. Studies, no. 56, Princeton Univ. Press, Princeton, N. J., 1965.
- 11. H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. (2) 76 (1962), pp. 464-498.

Institute for Advanced Study Princeton, New Jersey and

Queens College Flushing, New York

(Recibido en junio de 1973)