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§ 1. Introduccion. En esta segunda parte seguiremos usando la notacion introdu-
cida en la primera ([ 11), en la cual hemos expresado la maxima extension abeliana
L,/L de un cuerpo local L/Qp en la forma Lq(g/ﬁ) L, Be L™ méd 1.X1,

Gal(La/Lq) =~ ftg = grupo de las rafces ¢-ésimas de 1 contenidas en L, donde
g es la potencia de » maxima con esta propiedad. Recordemos que los Be L mod
L*? que satisfacen la aaterior propiedad (la cual hemos denominado P) fueron de-
terminados en los teoremas 5y 6 de [11 pero que, sin embargo, en el caso en que
L(\/Z;)/L , donde éq es una raiz primitiva g-ésima de L, ramificase totalmente
[1; teorema 61, un conocimiento explicito de los 8 que cumplian P requeria un

conocimiento también explicito de las bases cuya existencia se demostraba en los
teorema 1y 2 de [11, Es, pues, nuestro proposito explicitar algunas de estas ba-
ses, en especial cuando L = Qp (Cq) . Para ello sera necesario servimos de algu-
nas relaciones entre los simbolos locales y la ley de reciprocidad potencial. Pa-

ra las correspondientes definiciones y resultados, y sus demostraciones, remitimos
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a [5 : chapter 13] y [2].
PROPOSICION 1. Sea dado €e 0¢,). €= 1 (mddn), donde w = 1-( . En-

tonces ¢

a) ¢ _
(._é‘i) = (e,(_,’q)

donde el miembro izquierdo representa al simbolo de reciprocidad potencial [5:
pdg. 2431y (-, -) el simbolo local sobre Qp(éq) con respecto a las potencias
g-€simas.
-1
" ¢, UNec, el 1174
<

donde NQ(éq)/ 0 designa la norma .

c) [T < ) (log €)]/q
e e e
=
) (1+a/2) [ (log €)1/
T €
ikl o/ 2\ LTy 1 g flog ® 1.
L q9 Ky p=2

donde TQ(Cq)/Q designa la traza 'y log el logaritmo p-ddico. b)'y d) son las
llamadas fo’rmﬁlas explicitas de la reciprocidad .

El caso, repetimos, en el cual estamos interesados es aquél en que L (&Z;)/L
ramifica totalmente y en él los S requeridos pueden bien ser unidades o bien pa-
rdmetros uniformizadores de L. Pero estos iltimos se determinan una vez que se
ha escogido un parametro uniformizador 7 que cumpla (n,éq) =1. Por lo tanto,
podemos limitar nuestros célculos a las unidades de L, y como NL/QP(C:!]) (v,)<

UQ (¢ ) podemos siempre utilizar la siguiente
? =9

p Givi Ra %
PROPOSICION 2. Sean dados Qp(éq)g L. Entonces Bel* méd L o'y £
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tisface la propiedad P si, y sclo si, Qp(gq)( 3/?)/%(4}) ; donde (' =
N, /Qp (ép)(ﬁ) , satisface P con respecto al cuerpo Qp(éq) .

Ademds, podemos limitarnos inicamente a las unidades principales, pues
U, = y‘; x Uy 1 (;1:7 es el grupo de las raices de I contenidas en, L y de orden
primo con p) y (4, Cq) =1 sige ué ¢ L*?. La dificuliad de los cdlculos, sin
embargo, puede ser tremenda. En consecuencia, el siguiente resultado puede ser

itil si s6lo queremos exhibir un Be L méd L™ que satisfaga P .
PROPOSICION 3. Sean dadps L = Qp(éq) y Be Uy ;. Entonces
@) LYB) = LT piraalgin €= 1 (moan), ecQ(C,) y (B.L,) =
= Ju .
(g, Cq), donde mw Cq
b) Las siguientes afirmaciones son equivalentes :
() L ((q/F)/L satisface P
(1 ]NL/QP(E) | £ 1 (méd pgq)
(u) T (e) £ 0 (mod pq)
L/Qp
Demostracion. b) sigue de a) usando la proposicion 1 y el hecho de que
NL/Qp(e) = NQ(éq/Q () si Ee Q(Qq) (de igual modo para la traza), pues
Q(éq)/Q ramifica totalmente en p [5 : pags. 77 y 991 . Demostremos a) : toman-
do Ee Q((:q) tal que 8 el 1 (méd ?Lr”) para m suficientemente grande, obte-
nemos L(\7—E) = L((’/-E-) [5: pag. 2261y (B E'],Cq) =1 (por continuidad, to-
dos los elementos suficientemente cercanos a I son normas), es decir, (f8, éq)?

(€, ¢,) .

§ 2. Cdlculo explicito de algunas bases.

LEMA 1. [3: pag. 491 ye szz si, y s6losi, y=1(mdd8).

PROPOSICION 4. @,(\/B)/ @, satisface la condicion P si, y s6lo si,
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B =-1-2,6,3 mod QZXZ . Ademds, si m = 2 entonces mw = 2, a.» 1-75=
-3y @y =1=n=-1 forman una base de Q;( mod Q;Z que cumple las condicio-
nes del teorema 2 en[1].

Demostracion : En efecto, como =3 £ 1 (mod 8) y -3 =1 (mdd 4), siguese,
respectivamente, que -3 ¢ Q;Z (por el lema 1) y que Qz(\/-_3)/Q2 es inramifica-
do (puesto que en @(1/3) /@ el primo 2 no ramifica ). Por otro lado, usando la
ley suplementaria de la reciprocidad (proposicion 1, a), obtenemos las siguientes

relaciones

(2,2)3 =1 ; (2’_3)2=,,1 P (2,.1),=1%
(-3,-3)3=1 ; (-3,-Dy=1; (-1, -1)y3=-1 ;

de modo que {2, 3,-1} es una base de Q; mod Q;z que cumple las condicio-

nes requeridas. Finalmente, si
b b
B=2"(-3)°-1) 1 méd Q;z .
entonces b1 =1 si,ysolosi, 8=6,-23,-1(mod Q; 2) , 'y la proposicién re-
sulta entonces del teorema 6, b), en [1].

COROLARIO 1. Sea dada L(\/-1)/L totalmente ramificada. Si 3 esuna
unidad en L, entonces L (\B)/L satisface la propiedad P si, ysdlo si,
Np/g,(B) ==1.-23.6 mdd Q;Z

Demostracion : Resulta inmediatamente de (N, /QZ(B), -1)=(B,-D.

COROLARIO 2. Sean dadas L = Q,(\/B), B =+3,+6(méd @5%). En-
tonces L(\-1)/L ramifica totalmente si [3=+2,+3,+6 (mod Q;Z) . Ade-

mds, se tiene

a) Si B=+2,-3,:+6 mod szz y €= 7]+f\/ﬁ,n,fclp es ura uni-
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dad de L, entonces la extension L(\E)/L satisface P si, y sGlo si, 7]2 +

Bé2=-1,-2,3,6 méd 052 .

b) Si B =13 (mod QZXZ ), estamos en la situacion del teorema S en [11.

Demostracion : Del diagrama

QLWB, V-1 =L(y-1)

/

L=0,(VB)

Q,(V-B)

Q,(y/-1)
Q2 / 2

y observando que :

i) Para B=1+2,1+6, +3 (mod 95(2) la extension @, (V'F)/QZ ramifi -
ca totalmente ; y

ii) Gal (L (/-1)/ 0,) ~2/22x2/22 ,

dediicese que L (/-1)/L ramifica totalmente sélo cuando B # 3 méd szz :
El resto sigue del corolario 1 observando que Np /0, (p+&VB) = r,2+§2,8 .
Nuestro caso siguiente es L = Q2(44) =0, (y=1) . Para calcular una base
de LX mod L*% usamos el siguiente lema :
LEMA 2. (Eisenstein - Gauss) [6 : pag. 96|. Sea dada L = 0,(i) . Enton-

ces
_1)/2 : ~[(a=1)+ 1/4
(E,i)=i((x ¥ y (g, m)=1i P

si €=Uy Bi=1 (méda3), n=1-i.



PROPOSICION 5. Sea dada L = @,(i) . Entonces
m=lai 0,0, =i, 0,=7-6i,
donde 0. es cualquier elemento 4=primario de L, forman una base de L™ mod
Lx4 que cumple las condiciones del teorema .
Demostracion : Como g = g’ =1 (véase el teorema 1 en[1]), podemos to-
mar 0 ; =i y 0 arbitrario y 4-primario. Determinamos ahora 0, =0+ f i,

@, Be2 (podemos tomar 0, Be Z pues éste es denso en 2,) segin las condi-

ciones
(a-1)/2 -1 ~[(a-1)+ B1/4
(062,1'):1' =4 (OLZ,n)=i =

d

A+ Bi=1=2(1+i)(n+&i), n €2 .

Una solucion de este sistema de ecuaciones esta dado por ¢ =7, 8 =-6, n=0
yi&=3,

Consideremos ahora L = @3((3) . Aqui usamos el

LEMA 3. (Einsenstein) [6: pag. 96 . Sean dados L = @3(C3) y m = 1-(j3.

Entonces
~[(a-1) 1/3 (o=1)/3
(8;43)'_‘43 i y (8'”)243

si €= 0+ B3 =1 (mdd3).

PROPOSICION 6. Sea dada L = @3((3) . Entonces m, 0, = I—n7 , 4=
l=m, 0y =4=3m, donde m = 1-£:3 , forman una base de L™ mod Lx3 que cum -
ple las condiciones del teorema 1 en (11,

Demostracion : Sirviéndose del lema 3, la demostracion prosigue como en la

proposicion 5, observando ahora que I-73 es 3—primario [5 : pag. 3531 .
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Observacion . A la luz de la proposicién 1, ¢), el método usado en la anterior
proposicion podria usarse para determinar 0, enel caso p> 3,y obtener asi
p3 ®(p) extensiones de L = QP(CP) que cumplen P, a saber, aquellas definidas
por

B = rrm(l-rrp)ao(l-n)al OC;Z (mod L*?) ,

donde a, £ 0 (mdd p). Queremos anotar aqui que usando las férmulas explicitas de
reciprocidad (proposicion 1, b) y ¢), y a fin de encontrar un Oy que satisfaga
(g, 062) = ({P, 0y) = g”p y (m,05) =1, debemos necesariamente tener que log
ed Qp’ donde €=1 (modnm), m = I-Cq ; esto evidentemente dificulta la 1area .
Podriamos preguntarnos si la muy canénica base 7 = 1- ép‘ a, = 1=n?, 0y =l-m,
o =l-a¥,v=2...,p-1 de LX mdd LX? I = QP(CP), satisface las condi-
ciones requeridas. Desafortunadamente, éste no es el caso. En efecto, usando las
siguientes propiedades [4 : pag. 353 ] ,

i) L (\p/ao)/L es inramificada ;

)(

e % (@

5 - W =lanV
i) (av,dﬂ)-(av.avﬂl V+;1'") , donde 0, =1-7",

v =12, p-1, y, por supuesto, 0 = o,

iii) si v+p> p+1, entonces (@, B) =1 cuando deU; ,BelUp ,
iv) Cp si v=p

(a

o) =

1 en el caso contrario ,

vemos facilmente que para p=3, (0}, 0,) =1 # {3, de modo que la condicion
(iv) del teorema 1 en [1] no subsiste. Sin embargo, no debe sorprendernos el hecho
de que para el primo 2 las cosas marchen, como lo vimos en la proposicion 4. Nues-

trosiguiente ejemploes L = @, (v=3). En este caso demostramos la

PROPOSIC16N 7. §i L =0, (\/3), entonces m=2, OCO, a;==1y 0=
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24 \/j, donde a, es cualquier elemento 2-primario de L, forman una base,del
tipo requerido, de L™ mod <2,

Demostracion : Como @, (\/j)/QZ es inramificada (proposicion 4 ), 2 es
ain un parametro uniformizador de @, (/-3) . Sabemos también que g=¢q’=1,por
el corolari(-) 2,a), proposicion 4. Sea entonces a, cualquier elemento 2 - primario
de L,ytomemos 7=2, 0; ==1, Queremos determinar @5 de tal manera que

0, de tal manera que (7,0,) =1y (0;0,) =-1.

(a+BVT. 2 = (0% 38%,2), y (a4 By3, -1 = (0?4382 1),

(los miembros derechos se calculan sobre @,), podemos verificar que o) = 243

satisface ambas condiciones .

Veamos ahora cémo se calculan bases del tipo requerido si L = 0, (\/-E) 3
B=1+2,+6 (mod Q;z). En todos estos casos, ¢’ =g=1, de modo que toma-
mos @, =-I,; obviamente, L (y/_-E)/L es inramificada, pudiéndose tomar de nue-
vo a = -3 . En seguida escogemos 7 de tal manera que (7,-1) = (NL/QZ(n),-1)=
1 (esto es facil por tanteo o de cualquier otra manera). Solo falta determinar una
unidad @% 1al que (-1, 06'2) =-1vy (m, 06:2) =i(a,, 06'2) = 1. Valiéndonos de la
relacion (06'2, -1) = (NL/Q2 (y ),—1)2, es facil determinar 06'2 en forma tal que
(Oté,—l) =(-1,03) ==1 ; como siempre se liene (06'2, 060) = 1, el unico hecho
que falta es decidir si (a'z, 7) =1 o no. Sipor acaso (06'2, m) =-1, entonces
, =-305 se encargara de lo que queremos, pues (0, m)=(-3,m) (06'2, m) =
(-1)(=1) =1. Tomemos, por ejemplo, L = @, (\/-2-). En este caso, podemos de -
terminar

7=4+3\2, a ==3,0;==I, ay=1+\Z ,

tal como se ha indicado arriba. Ahora bien, (4 +3 V2, 1+/2) =1 <=> 4437
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es una norma proveniente de Qz(\/-Z—, \/1+;7§ )<=> 4432 =(a+p \/7)2 =

(n+ ‘f\/?)z ol e A B N 2, <=> el sistema de ecuaciones diofanticas
a? 4282 -n?-2624né = 4
20B-2pé-n%2¢7 = 3

tiene solucién en Z,. Este parece ser dificil. Por eso usamos el siguiente siste-

ma
(X2+ 2B2+ 31’2.{. 6£2+ 127’,£= 4

208 + 37]2 + 6fz+ 6né =3,
el cual, por un razonamiento analogo al anterior, tiene solucién si, y soélo si ,

(4+3\/7, -3 +\/.§))= 1. Por tanteo, encontramos 0 =1,8=0,¢=0,

n =1. De modo que hemos demostrado la

PROPOSICION 8. Si L = Q,(\/2), entonces n=4+3 Y7, a =-3,a,=
-1y ay = =3(1+ \/'2) forman una base de L™ mdd sz que satisface las con-

diciones requeridas.
COROLARIO . El sistema de ecuaciones diofinticas
o? v 2B%-n-2¢%uné =4
2(1B—21]{"— ”2_2{;2 =3
no tiene soluciones enteras.

Observacion . Esie corolario pone de manifiesto nuevamente la estrecha rela-

cién que existe entre la ley de reciprocidad y las formas normicas [2: capitulolll].
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