Reui sta Colombiana de Matemtiticas Vo lumen Vlll (1974), *p dgs.* 217 - 223

search ad at (M) is the emigglecture a set new at

ON THE APPROXIMATION OF CONTINUOUS LY DIFFERENTIABLE FUNCTIONS

IN HILBERT SPACES

by indini by some ranked by a side of **by**

Joime LESMES

Dedicado a Henri Yerly

§ 1. *Introduction*. For a real Banach space E and an integer $m \ge 1$, let $\mathcal{L}^{m}(E)$ denote the algebra of the real \mathcal{L}^{m} -functions on *E*.

We endow $C^m(E)$ with the topology of uniform convergence of the functions and their derivatives of order $\langle m \rangle$ on the compact subsets of E .

In [2], L. Nachbin proved that a subalgebra $\mathcal F$ of $c^m(\mathbb R^n)$ is dense in $C^m(\mathbb{R}^n)$ if and only if it fulfills the following conditions:

- *(N) (i)* For every pair of distinct points a_1 , $a_2 \in \mathbb{R}^n$, there exists an $f \in \mathcal{F}$ such that $f(a_1) \neq f(a_2)$.
	- *(ii)* For every $a \in \mathbb{R}^n$, there exists an $f \in \mathcal{F}$ such that $f(a) \neq 0$.

(iii) For every $a \in \mathbb{R}^n$ and for every $u \in \mathbb{R}^n$ with $u \neq 0$, there exists an

 $(f \in \mathcal{F}$ such that $[(Df) (a)] (u) \neq 0$.

See also $[1]$.

It seems natural to ask for similar conditions to be satisfied by ^a subalgebra of $C^m(E)$ in order that it be dense in $C^m(E)$. In this paper we give a partial

answer to that problem, for the case that E is a Hilbert space H . Precisely, we give sufficient conditions for a subalgebra $~\mathcal F~$ of $~c^1$ (*H*) to be dense in $~c^1$ (*H*), and show by a simple counterexample that, if $m \geq 2$ and *H* has infinite dimension, these conditions are not sufficient for a subalgebra of $C^m(H)$ to be dense in $C^m(H)$. (See Remark 2 at the end of the article). In particular, the algebra of the polynomials of finite type on *H* is dense in $c^I(\overline{H})$ *,* but not in $c^m(H)$ *,* for $m \geq 2$. A related problem has been studied by G. Restrepo [3].

§ 2. *The main theorem.* Let *H* be a separable real Hilbert space of infinite dimension, { e_n *; n* ϵ **N** } an orthonormal basis of $H(\mathbb{N} = \{ 1, 2, ..., 1 \})$,and for every $n \in \mathbb{N}$, H_n the span of $\{e_1, \ldots, e_n\}$ and P_n the orthogonal projectio of *^H* on the subspace *^Hn .* s L. Jutroduction. For a real Banach spice

We say that a subalgebra $\mathcal F$ of c^1 (*H*) fulfills conditions (N_o) if :

- *(i)* For every pair of distinct points a_1 , $a_2 \in H$, there exists an $f \in \mathcal{F}$ such that $f(a_1) \neq f(a_2)$. and their decisatives of order < m on the comp
- *(ii)* For every $a \in H$, there exists an $f \in \mathcal{F}$ such that $f(a) \neq 0$.
- *(iii)* For every $a \in H$ and for every $u \in H$ with $u \neq 0$, there exists an $f \in \mathcal{F}$ such that $\left[\left(Df\right) \left(a\right) \right] \left(u\right) \neq 0$.
- *(iv)* There is an *M* ϵ *N* such that for every integer $n \geq M$, if $f \epsilon$ \mathcal{F} then $f \circ P_n \in \mathcal{F}$.

Remark. We denote, as usual, by *Df* the derivative of $f \in C^1(H)$. *Df* is a mapping of *H* into the dual space *H'* of *H* (which is isomorphic to *H).*

Example. The algebra of the polynomials of finite type on *H* (that is, the α ^{*l*} *d l d l d l d l d l d d l* algebra generated by the functions of the form $x \rightarrow u_1(x)$ \cdots , $u_n(x)$ \cdots , where $u_1, \ldots, u_n \in H$, and $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}_+^n$ fulfills conditions (N_o)

THEOREM. Every subalgebra ~ of C *1(H) fulfilling conditions (N) is* o *dense in C 1 (H) with the topology of the uniform convergence of the functions and their derivatives on the compact subsets of H.*

§ 3. *Proof of the theorem.*

LEMMA 1. Let (x_n) be a sequence in H, convergent to $x \in H$. The $\lim_{n} P_n x_n = x$

Proof. $|| P_n x_n - x || \le || P_n x_n - P_n x || + || P_n x - x || \le || x_n - x || + || P_n x - x || \to 0$

PROPOS ITION 1. Let X be a metric space, $v : H \rightarrow X$ continuous and $v_n = v \circ P_n$. Then v_n converges to *v* uniformly on every compact subset K *of H.*

Proof. Obviously, for every $x \in H$, $\lim_{n \to \infty} v_n(x) = v(x)$. Suppose that the convergence is not uniform on K . Then there exist an $\epsilon > 0$, an increasing sequence of integers $n_1 < n_2 < \ldots < n_k < \ldots$ and a sequence (x_k) in *K*, such that

$$
|v_{n_k}(x_k) - v(x_k)| \ge \varepsilon \,, \quad \text{for} \quad k = 1, 2, \ldots \quad (*)
$$

 $\lim_{k \to \infty}$ Since *K* is compact, (x_k) contains a convergent subsequence, which we shall denote also by (x_k) . Let $x = \lim_k$ $\lim_{k} (P_{n_k} x_k) = x$, hence $\lim_{k} v_{n_k} (x_k) =$ $\lim_{k \to \infty} (v_n(x_k) - v(x_k)) = v(x) - v(x) = 0$, which contradicts (*). *xk .* Then, by Lemma 1, we have $\lim_{k} v(P_{n_k} x_k) = v(x)$, that is,

COROLLARY. P*n converges to the identity operator I of H , uniformly on every compact subset of H.*

Proof. In Proposition 1, set $X = H$, $v = I$.

PROPOS ITION 2. *If K is a compact subset of H, then the closure of*

 $\bigcup_{n=1}^{\infty} P_n(K)$ *is also a compact subset of H. Proof.* We will show that $A = \bigcup_{n=1}^{\infty} P_n(K)$ is a precompact set.

For this, we show that every infinite subset *E* of *A* contains a Cauchy sequence. **In** fact, there are two possibilities for *E:*

a) There exists an index n such that the set $E \cap P_n(K)$ is infinite. In this case, it is obvious that *E* contains a Cauchy sequence.

b) There exist a sequence of indices $n_1 < \cdots < n_k < \cdots$ and a sequence (x_k) in *E* such that for every *k,* $x_k \in P_n$ *k K)*. In set *K* hall **MONTI 20908**

Let us choose, for every index *k* , $y_k \in K$ such that $x_k = P_{n_k} (y_k)$. Since *K* is compact, the sequence (y_k) contains a convergent subsequence, which we shall denote also by (y_k) . If $y = \lim_{k \to \infty} y_k$, we have by Lemma 1: *lim* $x_k =$ $lim_{k \to \infty} P_n$ $y_k = y$, i.e., the sequence (x_k) is convergent in *H*. *k k*

PROPOSITION 3. Let \mathcal{F} be a subalgebra of $C^1(H)$ *fulfilling* conditions (N_o) . *Then the algebra* $\mathcal{F}_n = \{ f \mid H_n : f \in \mathcal{F} \}$ *is dense in* $C^1(H_n)$, for $n = 1$ $=$ **1**, **2**, \therefore , \therefore ,

Proof. We have to show that \mathcal{F}_n satisfies Nachbin conditions *(N): (i)* and *(ii)* are immediate. To prove *(iii),* we must show that for every $x \in H_n$ and for every $u \in H_n$ with $u \neq 0$, there exists an $f_n \in \mathcal{F}_n$ such that $[(Df_n)(x)](u) \neq 0$.

Since \mathcal{F} verifies (N_o) *(iii)*, there exists $\mathcal{F} \in \mathcal{F}$ with $[(Df)(x)]$ $(u) \neq 0$. Putting $f_n = f \mid H_n$, and recalling that *x, u e H_n*, we have :

 $P_{n}(Df_{n})(x)$ $(u) = [(Df)P_{n}(x)] (P_{n}(u) = [(Df)(x)] (u) \neq 0$

I. *Remark.* $(Df_n)(x) = [D(f \circ P_n)](x) = [D(f)(P_n)x)] \circ P_n$ $PROPOIITION$ all M_1M_2 M_3 M_4 and M_5 *LEMMA* 2. *For* $f \in C^1(H)$ *and* $n \in \mathbb{N}$, put $f_n = f \circ P_n$. Then the operator D*fn converges to* D*f uniformly on every compact subset K of H .*

Proof. For $x \in K$, let $\varphi_n(x) = Df(P_n x) \in H^n$.

Then, we have: $Df_n(x) = [\varphi_n(x)] \circ P_n$. By identifying *H* and its dual *H* it follows from the self-adjointness of the orthogonal projections that

$$
[\varphi_n(x)] \circ P_n = P_n (\varphi_n(x)).
$$

Ante t del socia " W de seus stial! Since for every *x (K* and every *n e TN ,*

$$
\varphi_n(x) = Df(P_n x) \epsilon(Df) \left(\bigcup_{n=1}^{\infty} P_n(K)\right)
$$

it follows from Proposition 2, that the set $\Gamma = \coprod_{n=1}^{\mathsf{U}} \{ \varphi_n(x) : x \in K \mid \}$ is precon act in *H* . Then, by the corollary to Proposition 1, *P_n* converges to the identit operator \textbf{l} *uniformly* on Γ .

Since, by Proposition 1, $\varphi_n(x)$ converges to $Df(x)$ uniformly for $x \in K$, we have proved the lemma.

Proof of the main theorem. Let *K* be an arbitrary compact subset of *H,* and for $b \in C^{1}(H)$, let $\Phi(b) = \sup \{ |b(x)| + | |Db(x)| | ; x \in K \}$, and $b_n = b \circ P$ $(n \in \mathbb{N})$. We are going to show that, given $f \in C^1(H)$ and $\epsilon > 0$, there exists $g \in \mathcal{F}$ such that $\Phi(f \cdot g) < \varepsilon$. In fact, by Proposition 1 and Lemma 2, we can find an index $n_o \in \mathbb{N}$, such that for every $n \ge n_o$, $\Phi(f-f_n) < \varepsilon/2$. Now, fix an $n \geq max \{n_o, M\}$ where *M* is the integer given by condition (N_o) *(iv)* .Since, by Proposition 3 , $\mathcal{F}_n = \{b_n : b \in \mathcal{F}_1\}$ is dense in $\mathcal{L}^1(\mathcal{H}_n)$, there exis $g^{(n)} \in \mathcal{F}$ such that $\Phi(f_n \cdot g_n^{(n)}) < \varepsilon/2$. By condition (N_o) *(iv)*, $g_n^{(n)} \in \mathcal{F}$, so we can take $g = g_n^{(n)}$.

§ 4. *Some remarks.*

Remark 1. Clearly, condition *(iv)* of (N_{o}) can be replaced by the following

of hetenikeers of homme. I

(iv') There exists an increasing sequence (n_k) of indices such that for every k , \mathcal{F}_{n_k}

 Df_m converges to Df uniformly on every compact subset, K, of U.

Remark 2. If $m \ge 2$, conditions (N_o) are not sufficient for a subalgebra of *C^m(H)* to be dense in *C*^m(H). For instance, if $f(x) = \frac{1}{2} | |x||^2$, we have $D^2 f \equiv I$, but if *p* is a polynomial function of finite type on *H*, then for every $a \,\epsilon\, H$ the operator $D^2\, p\,(a)$ has finite rank. Consequently, the identity operator I cannot be approximated by a sequence of operators of that form.

Remark 3. It is easy to show that conditions $(N_o)(i)$, (ii) , (iii) are necessary for ${\mathcal F}$ to be a dense subalgebra of *C* 1 (*H*). It would be interesting to know if they are also sufficient, that is, if condition $(N_o)(iv)$ in the theorem is superflu-Since, by Proposition Deventor converges to differ waiformly for set. ous,

Remark 4. Let *H* be a non-separable real Hilbert space. Since compacr metric spaces are separable, every compact subset of *H* is contained in some separable subspace of *H.* So, by modifying appropiately condition (N_o) *(iv)*, one gets from the theorem sufficient conditions for a subalgebra of $\int C^1(H)$ to be dens in $\overline{\overline{C}}^I(\overline{H})$. In particular, the algebra of the polynomials of finite type on $\overline{\overline{H}}_0$ is dense in $\sim C^{\,1}(H)$

I thank Prof. L. Nachbin, who proposed this problem to me and with whom I had helpful conversations. I thank also Prof. G. Restrepo, who called my attention to his paper [3], in which he used methods that suggested this proof. (s)

REFERENCES

1. Glaeser, G. Algebre s et sou s-algebr e s de [on ctions dillerentiables. An.Acad. Brasil. Ci 37, 395.406 (1965). As (at) nonjbnos , (basil) and waves Will

- 2. Nachbin, L. Sur les algèbres denses de fonctions différentiables sur une variété. C. R. Acad. Sci. Paris 228, 1549-1551 (1949).
- *3. Restrepo, G, An infinite dimensional version* 0/ *a theorem of Bernstein.* Amer. Math. Soc. 23, 193 - 198 (1969). Proc.

Make County for will refuse their motion of the county

Instituto de Matemdtic a Pura e *Aplicada Rio de Janeiro, Brazil*

(Recibido en mayo de 1974),