Revista Colombiana de Matemáticas Volumen VIII (1974), págs. 217-223

ON THE APPROXIMATION OF CONTINUOUS LY DIFFERENTIABLE FUNCTIONS

IN HILBERT SPACES

stinilai hu assas mutitil han aidea by

Jaime LESMES

Dedicado a Henri Yerly

§ 1. Introduction. For a real Banach space E and an integer $m \ge 1$, let $C^{m}(E)$ denote the algebra of the real C^{m} -functions on E.

We endow $C^m(E)$ with the topology of uniform convergence of the functions and their derivatives of order $\leq m$ on the compact subsets of E.

In [2], L. Nachbin proved that a subalgebra \mathcal{F} of $C^m(\mathbb{R}^n)$ is dense in $C^m(\mathbb{R}^n)$ if and only if it fulfills the following conditions:

- (N) (i) For every pair of distinct points a_1 , $a_2 \in \mathbb{R}^n$, there exists an $f \in \mathcal{F}$ such that $f(a_1) \neq f(a_2)$.
 - (ii) For every $a \in \mathbb{R}^n$, there exists an $f \in \mathcal{F}$ such that $f(a) \neq 0$.

(iii) For every $a \in \mathbb{R}^n$ and for every $u \in \mathbb{R}^n$ with $u \neq 0$, there exists an

 $f \in \mathcal{F}$ such that $[(Df)(a)](u) \neq 0$.

See also [1].

It seems natural to ask for similar conditions to be satisfied by a subalgebra of $C^m(E)$ in order that it be dense in $C^m(E)$. In this paper we give a partial answer to that problem, for the case that E is a Hilbert space H. Precisely, we give sufficient conditions for a subalgebra \mathcal{F} of $C^{1}(H)$ to be dense in $C^{1}(H)$, and show by a simple counterexample that, if $m \geq 2$ and H has infinite dimen – sion, these conditions are not sufficient for a subalgebra of $C^{m}(H)$ to be dense in $C^{m}(H)$. (See Remark 2 at the end of the article). In particular, the algebra of the polynomials of finite type on H is dense in $C^{1}(H)$, but not in $C^{m}(H)$, for $m \geq 2$. A related problem has been studied by G. Restrepo [3].

§ 2. The main theorem. Let H be a separable real Hilbert space of infinite dimension, $\{e_n; n \in \mathbb{N}\}$ an orthonormal basis of $H(\mathbb{N} = \{1, 2, ..., \})$, and for every $n \in \mathbb{N}$, H_n the span of $\{e_1, ..., e_n\}$ and P_n the orthogonal projection of H on the subspace H_n .

We say that a subalgebra $\mathcal F$ of $C^1(H)$ fulfills conditions (N_o) if :

- (i) For every pair of distinct points $a_1, a_2 \in H$, there exists an $f \in \mathcal{F}$ such that $f(a_1) \neq f(a_2)$.
- (ii) For every $a \in H$, there exists an $f \in \mathcal{F}$ such that $f(a) \neq 0$.
- (*iii*) For every $a \in H$ and for every $u \in H$ with $u \neq 0$, there exists an $f \in \mathcal{F}$ such that $[(Df)(a)](u) \neq 0$.
- (*iv*) There is an $M \in \mathbb{N}$ such that for every integer $n \ge M$, if $f \in \mathcal{F}$ then $f \circ P_n \in \mathcal{F}$.

Remark. We denote, as usual, by *Df* the derivative of $f \in C^{1}(H)$. *Df* is a mapping of *H* into the dual space *H*' of *H* (which is isomorphic to *H*).

Example. The algebra of the polynomials of finite type on H (that is, the algebra generated by the functions of the form $x \rightarrow u_1(x) \overset{\alpha_1}{\cdots} u_n(x) \overset{\alpha_n}{\cdots}$, where $u_1, \ldots, u_n \in H^*$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}_+$) fulfills conditions (N_0) .

THEOREM. Every subalgebra \mathcal{F} of $C^{1}(H)$ fulfilling conditions (N_{o}) is dense in $C^{1}(H)$ with the topology of the uniform convergence of the functions and their derivatives on the compact subsets of H.

§ 3. Proof of the theorem.

LEMMA 1. Let (x_n) be a sequence in H, convergent to $x \in H$. Then $\lim_{n \to \infty} P_n x_n = x$.

Proof. $|| P_n x_n - x || \le || P_n x_n - P_n x || + || P_n x - x || \le || x_n - x || + || P_n x - x || \to 0$

PROPOSITION 1. Let X be a metric space, $v: H \rightarrow X$ continuous and $v_n = v \circ P_n$. Then v_n converges to v uniformly on every compact subset K of H.

Proof. Obviously, for every $x \in H$, $\lim_{n} v_n(x) = v(x)$. Suppose that the convergence is not uniform on K. Then there exist an $\varepsilon > 0$, an increasing sequence of integers $n_1 < n_2 < \cdots < n_k < \cdots$ and a sequence (x_k) in K, such that

$$|v_{n_k}(x_k) - v(x_k)| \ge \varepsilon$$
, for $k = 1, 2, ...$ (*)

Since K is compact, (x_k) contains a convergent subsequence, which we shall denote also by (x_k) . Let $x = \lim_k x_k$. Then, by Lemma 1, we have : $\lim_k (P_{n_k} x_k) = x$, hence $\lim_k v_{n_k} (x_k) = \lim_k v(P_{n_k} x_k) = v(x)$, that is, $\lim_k (v_{n_k} (x_k) - v(x_k)) = v(x) - v(x) = 0$, which contradicts (*).

COROLLARY. P_n converges to the identity operator 1 of H, uniformly on every compact subset of H.

Proof. In Proposition 1, set X = H, v = I.

PROPOSITION 2. If K is a compact subset of H, then the closure of

 $\bigcup_{n=1}^{\infty} P_n(K) \text{ is also a compact subset of } H.$ Proof. We will show that $A = \bigcup_{n=1}^{\infty} P_n(K)$ is a precompact set.

For this, we show that every infinite subset E of A contains a Cauchy sequence. In fact, there are two possibilities for E:

a) There exists an index n such that the set $E \cap P_n(K)$ is infinite. In this case, it is obvious that E contains a Cauchy sequence.

b) There exist a sequence of indices $n_1 < \cdots < n_k < \cdots$ and a sequence (x_k) in E such that for every $k, x_k \in P_{n_k}(K)$.

Let us choose, for every index k, $y_k \in K$ such that $x_k = P_{n_k}(y_k)$. Since K is compact, the sequence (y_k) contains a convergent subsequence, which we shall denote also by (y_k) . If $y = \lim_k y_k$, we have by Lemma 1: $\lim_k x_k = \lim_k P_{n_k} y_k = y$, i.e., the sequence (x_k) is convergent in H.

PROPOSITION 3. Let \mathcal{F} be a subalgebra of $C^{1}(H)$ fulfilling conditions (N_{o}) . Then the algebra $\mathcal{F}_{n} = \{ f \mid H_{n} ; f \in \mathcal{F} \}$ is dense in $C^{1}(H_{n})$, for $n = 1, 2, \ldots$

Proof. We have to show that \mathcal{F}_n satisfies Nachbin conditions (N): (i) and (ii) are immediate. To prove (iii), we must show that for every $x \in H_n$ and for every $u \in H_n$ with $u \neq 0$, there exists an $f_n \in \mathcal{F}_n$ such that $[(Df_n)(x)](u) \neq 0$.

Since \mathcal{F} verifies (N_o) (*iii*), there exists $f \in \mathcal{F}$ with $[(Df)(x)](u) \neq 0$. Putting $f_n = f \mid H_n$, and recalling that $x, u \in H_n$, we have :

 $[(Df_n)(x)](u) = [(Df)P_n(x)](P_n(u)) = [(Df)(x)](u) \neq 0.$

Remark. $(Df_n)(x) = [D(f \circ P_n)](x) = [(Df)(P_n x)] \circ P_n$. LEMMA 2. For $f \in C^1(H)$ and $n \in \mathbb{N}$, put $f_n = f \circ P_n$. Then the operator Dfn converges to Df uniformly on every compact subset K of H.

Proof. For $x \in K$, let $\varphi_n(x) = Df(P_n x) \in H^*$.

Then, we have: $Df_n(x) = [\varphi_n(x)] \circ P_n$. By identifying *H* and its dual *H*', it follows from the self-adjointness of the orthogonal projections that

$$[\varphi_n(x)] \circ P_n = P_n (\varphi_n(x)).$$

Since for every $x \in K$ and every $n \in \mathbb{N}$,

$$\varphi_n(x) = Df(P_n x) \in (Df) \left(\bigcup_{n=1}^{\infty} P_n(K) \right),$$

it follows from Proposition 2, that the set $\Gamma = \bigcup_{n=1}^{\infty} \{ \varphi_n(x) ; x \in K \}$ is precompact in *H*. Then, by the corollary to Proposition 1, P_n converges to the identity operator 1 uniformly on Γ .

Since, by Proposition 1, $\varphi_n(x)$ converges to Df(x) uniformly for $x \in K$, we have proved the lemma.

Proof of the main theorem. Let K be an arbitrary compact subset of H, and for $b \in C^{1}(H)$, let $\Phi(b) = \sup \{ | b(x) | + | | Db(x) | | ; x \in K \}$, and $b_{n} = b \circ P_{n}$ $(n \in \mathbb{N})$. We are going to show that, given $f \in C^{1}(H)$ and $\varepsilon > 0$, there exists $g \in \mathcal{F}$ such that $\Phi(f \cdot g) < \varepsilon$. In fact, by Proposition 1 and Lemma 2, we can find an index $n_{o} \in \mathbb{N}$, such that for every $n \ge n_{o}$, $\Phi(f \cdot f_{n}) < \varepsilon/2$. Now, fix an $n \ge max\{n_{o}, M\}$ where M is the integer given by condition (N_{o}) (*iv*). Since, by Proposition 3, $\mathcal{F}_{n} = \{b_{n}; b \in \mathcal{F}\}$ is dense in $C^{1}(H_{n})$, there exists $g^{(n)} \in \mathcal{F}$ such that $\Phi(f_{n} \cdot g_{n}^{(n)}) < \varepsilon/2$. By condition (N_{o}) (*iv*), $g_{n}^{(n)} \in \mathcal{F}$, so we can take $g = g_{n}^{(n)}$.

§ 4. Some remarks.

Remark 1. Clearly, condition (iv) of (N_0) can be replaced by the following

(iv') There exists an increasing sequence (n_k) of indices such that for every k, $\mathcal{F}_{n_k} \subset \mathcal{F}$.

Remark 2. If $m \ge 2$, conditions (N_o) are not sufficient for a subalgebra of $C^m(H)$ to be dense in $C^m(H)$. For instance, if $f(x) = \frac{1}{2} ||x||^2$, we have $D^2 f = I$, but if p is a polynomial function of finite type on H, then for every $a \in H$ the operator $D^2 p(a)$ has finite rank. Consequently, the identity operator I cannot be approximated by a sequence of operators of that form.

Remark 3. It is easy to show that conditions $(N_o)(i)$, (ii), (iii) are necessary for \mathcal{F} to be a dense subalgebra of $C^1(H)$. It would be interesting to know if they are also sufficient, that is, if condition $(N_o)(iv)$ in the theorem is superfluous.

Remark 4. Let H be a non-separable real Hilbert space. Since compact metric spaces are separable, every compact subset of H is contained in some separable subspace of H. So, by modifying appropriately condition (N_o) (iv), one gets from the theorem sufficient conditions for a subalgebra of $C^1(H)$ to be dense in $C^1(H)$. In particular, the algebra of the polynomials of finite type on H is dense in $C^1(H)$.

I thank Prof. L. Nachbin, who proposed this problem to me and with whom I had helpful conversations. I thank also Prof. G. Restrepo, who called my attention to his paper [3], in which he used methods that suggested this proof.

REFERENCES

 Glaeser, G. Algèbres et sous-algèbres de fonctions différentiables. An. Acad. Brasil. Ci 37, 395-406 (1965).

- 2. Nachbin, L. Sur les algèbres denses de fonctions différentiables sur une variété.
 C. R. Acad. Sci. Paris 228, 1549-1551 (1949).
- 3. Restrepo, G. An infinite dimensional version of a theorem of Bernstein. Proc. Amer. Math. Soc. 23, 193-198 (1969).

Instituto de Matemática Pura e Aplicada Rio de Janeiro, Brazil

(Recibido en mayo de 1974).