Revista Colombiana de Matemáticas Volumen VIII (1974), págs. 227-232

ON THE FUNDAMENTAL UNIT AND CLASS NUMBER OF CERTAIN QUADRATIC FUNCTION FIELDS, I

by Rai MARKANDA⁽¹⁾

1. Introduction: Let $K = k_o(x) (\sqrt{f(x)})$ be a function field, where k_o is a finite field of characteristic not equal to 2 and f(x) is a square free polynomial of even degree and leading coefficient 1. In this situation K is said to be a real quadratic extension of $k_o(x)$. Throughout we will concentrate on real quadratic extensions of $k_o(x)$ with fundamental unit ε_o such that the norm of ε_o , denoted $N\varepsilon_o$, is a square in $k_o^* = k_o - \{0\}$. Our aim is to give explicit expressions for the fundamental unit and also lower bounds for the class number of the integral closure, $k_o(x) [\sqrt{f(x)}]$, of $k_o(x)$ in $k_o(x) (\sqrt{f(x)})$ for certain kind of f(x).

Such problems have been studied, for real quadratic number fields, by various authors e.g. Hasse [1], Yokoi [2], etc.

2. Preliminaries : We start by proving various results needed for our main theorems.

PROPOSITION 2.1: Let $\varepsilon_o = A_o + B_o \sqrt{f(x)}$ be the fundamental unit of $K = k_o(x) (\sqrt{f(x)})$. If $\varepsilon = A_1 + B_1 \sqrt{f(x)}$ is any non-trivial unit of K then

(1) Currently Visiting Member, Tata Institute of Fundamental Research, Bombay-5 India .

 $B_0 \mid B_1$ and deg $A_1 \ge \deg A_0$.

Proof. By considering ε or its conjugate ε' we can write $\varepsilon = b \varepsilon_0^n$ with b in k_0^* and $n \ge 1$. Then

$$A_{1} + B_{1}\sqrt{f(x)} = b(A_{o} + B_{o}\sqrt{f(x)})^{n} = b(A_{o}^{n} + {}^{n}C_{2}A_{o}^{n-2}B_{o}^{2}f(x) + \cdots)$$

+ $bB_{o}({}^{n}C_{1}A_{o}^{n-1} + {}^{n}C_{3}A_{o}^{n-3}B_{o}^{2}f(x) + \cdots) \sqrt{f(x)}$.

Comparing both sides we see that $B_0 | B_1$. But then

$$deg A_{1} = \frac{1}{2} deg \left(B_{1}^{2} f(x) + N \varepsilon\right)$$

$$= \frac{1}{2} deg \left(B_{0}^{2} f(x) + N \varepsilon_{0}\right)$$

$$= deg A_{0},$$

whence the assertion.

later revelop by

PROPOSITION 2.2. Let ε_0 be the fundamental unit of $K = k_0(x)$ ($\sqrt{f(x)}$) such that $N \varepsilon_0 = a^2$. Then K is generated over $k_0(x)$ by a function of the form $\sqrt{g(x)^2 - a^2}$. Conversely, if K is generated over $k_0(x)$ by a function of the form $\sqrt{g(x)^2 - a^2}$ then $\varepsilon_0 = g(x) + \sqrt{g(x)^2 - a^2}$ is the fundamental unit of K and $N \varepsilon_0 = a^2$.

Proof. Suppose that K is generated by a function of the form $\sqrt{g(x)^2 - a^2}$. Let $\varepsilon_o = A_o + B_o \sqrt{g(x)^2 - a^2}$ be its fundamental unit. Now, since $g(x) + \sqrt{g(x)^2 - a^2}$ is a unit of K with norm a^2 , by Proposition 2.1, we see that B_o is an element of k_o . Let $B_o = b$. We assert that $N \varepsilon_o = a^2 b^2$ and $A = \pm b g(x)$. Suppose that $N \varepsilon_o = a_1$ i.e. $A_o^2 - b^2 (g(x)^2 - a^2) = a_1$. Writing $A_o = b(x) + G$, we get

$$(b(x) + c)^{2} = b^{2}g^{2}(x) + a_{1} - a^{2}b^{2}$$
(2.1)

i.e.
$$(bg(x) - b(x))(bg(x) + b(x)) = 2cb(x) + a^2b^2 - a_1$$
 (2.2)

Rombay - 5 Lodin .

Comparing both sides of (2.2), we see that either bg(x) - b(x) or bg(x) + b(x)is in k_0^* .

Suppose that $bg(x) - b(x) = c_1$. Substituting in (2.2), we get $c = c_1$ and then (2.1) gives $a_1 = a^2 b^2$ and c = 0. Thus the assertion follows.

The converse is trivial.

DEFINITION 2.1. We will say that $K = k_0(x) (\sqrt{f(x)})$ is of (*) type if $f(x) = g(x)^2 - a^2$ for some g(x) in k(x) and a in k.

PROPOSITION 2.3. Let $\varepsilon = A + p(x) \cdot \sqrt{f(x)}$, where p(x) is a prime polynomial, be a unit of $K = k_o(x)(\sqrt{f(x)})$ such that $N \varepsilon = a^2$ for some a in k_o^* . Then ε is the fundamental unit of K if and only if K is not of (*) type,

Proof. Suppose that K is not of (*) type. Let $\varepsilon_o = A_o + B_o \sqrt{f(x)}$ be its fundamental unit. By Proposition 2.1, $B_o | p(x)$. Since K is not of (*) type, $B_o = bp(x)$ for some b in k_o^* follows by Proposition 2.2. Let $N \varepsilon_o = A_o^2 - b^2 p^2(x) f(x)$ = a_1 . We also above $A^2 - p^2(x) f(x) = a^2$. Comparing these, we get $a_1 = b^2 a^2$ and $A_o^2 = b^2 A^2$. Hence $\varepsilon = A + p(x) \sqrt{f(x)}$ is the fundamental unit of K.

Conversely, if ε is the fundamental unit of K then by Proposition 2.2, K is not of (*) type.

The following lemma will give the existence of infinite numbers of polynomials f(x) which are not of the form $g(x)^2 - a^2$.

LEMMA 2.1. Suppose that A, B, C are polynomials of $k_0(x)$ such that deg B > 0 and B \uparrow A. Then $B^2D^2 + AD + C$ is a square for atmost a finite number of polynomials D.

Proof. Using $B \uparrow A$, we have $A = 2BC_0 + C_1$ with $C_1 \neq 0$ and $deg C_1 < deg B$. Thus

 $deg (A-2BC_{o})D = deg(C_{1}D) < deg(BD)$ (2.3)

- MAT + "Co Allainin erversing od T

endT . a gab >

for all polynomials $D, D \neq 0$. Now write

$$B^2 D^2 + A D + C = (B D + C_o)^2 + (A - 2BC_o) D + C - C_o^2 ,$$

Then equation (2.3) gives

$$deg ((A-2BC_{o})D + C-C_{o}^{2}) < deg (BD + C_{o})$$

for almost all D. Moreover, $(A-2BC_o)D + C-C_o^2 \neq 0$ except for one value of D and hence the required result follows.

In order to give lower bounds for the class number of certain real quadratic extensions of $k_o(x)$ we will prove the following lemmas.

LEMMA 2.2. The Pell's equation

$$A^{2}-B^{2}(g(x)^{2}-a) = C$$

where C is not a square and deg C > 0, has no solution unless deg $C \ge deg g(x)$. Proof. Follows by comparing degrees on both sides.

LEMMA 2.3. Let $K = k_o(x) (\sqrt{f(x)})$ be a real quadratic function field with the fundamental unit $\varepsilon_o = A_o + B_o \sqrt{f(x)}$. Then the Pell's equation

$$A^2 - B^2 f(x) = C , \quad \text{and the set of a difference of the set of the set$$

where C is not a square and deg C > 0, has no solution unless deg C \geq deg A₀ - 2 deg B₀.

Proof. We are given that

$$N \ \varepsilon_o = A_o^2 - B_o^2 f(x) = a \, .$$

Thus $A^2 - B^2 f(x) = C$ has a solution implies that

$$A^{2}B_{o}^{2} - B^{2}(A_{o}^{2} - a) = CB_{o}^{2}$$

is solvable; whence, by lemma 2.2, $deg(CB_o^2) \ge deg A_o$, i.e. $deg C \ge deg A_o^2$. 2 $deg B_o$.

3. Main Results: Let p(x) be any prime polynomial and consider $f_C(x) = p(x)^2 C^2 + 2aC$ for some polynomial C and a in k_o^* . Then the Pell's equation

$$A^2 - B^2 f_c(x) = a^2$$

has a solution $A = p(x)^2 C^2 + a$, B = p(x).

 $(a)^2 \in (x + a) - 2 \operatorname{deg} p(a)$ a const

THEOREM 3.1. Let p(x) be any prime polynomial and consider $f_C(x) = p(x)^2 C^2 + 2aC$ for some polynomial C and a in k_0 . Then $K = k_0(x) (\sqrt{f_C(x)})$ is not of (*) type for almost all C and then $\varepsilon_0 = (p(x)^2 C^2 + a) + p(x) \sqrt{f_C(x)}$ is its fundamental unit.

Proof. Since $f_C(x) - b$ is not a square, for any element of k_o , for almost all C, by lemma 2.1, we see that K is not of (*) type for almost all C. Then, by Proposition 2.3, the result follows.

THEOREM 3.2. Let $f_C(x) = p(x)^2 C^2 + 2aC$ be as in theorem 3.1. Suppose that $k_o(x) (\sqrt{f_C(x)})$ is not of (*) type and p(x) splits in it. If b is the class number of $k_o(x) (\sqrt{f_C(x)})$ then

$$b \geq \frac{\deg(p(x)^2 C^2 + a) - 2\deg p(x)}{\deg p(x)}$$

Proof. Note, first, that

$$deg p(x) \le deg (p(x)^2 C^2 + a) - 2 deg p(x)$$

if $\deg C \ge 1$. The right hand side of the inequality is the boundary condition of lemma 2.3.

By theorem 3.1, $k_o(x) (\sqrt{f_C(x)})$ is not of (*) type implies that $\varepsilon_o = (p(x)^2 C^2 + a) + p(x) \sqrt{f_C(x)}$ is its fundamental unit. Now, by assumption, $(p(x)) = p p^*$ in $k_o(x) (\sqrt{f_C(x)})$. If p were principal, the Pell's equation

$$N(p) = A^2 - B^2 f_C(x) = c p_o(x)$$

would have a solution for some c in k_o^* .

But then, by lemma 2.3, $\deg p_0(x) \ge \deg (p(x)^2 C^2 + a) - 2 \deg p(x)$ a contradiction to the choice of C. Thus the order of p is greater than one. In particular p^b is principal and thus the Pell's equation

$$N(p^{b}) = Cp_{o}(x)^{b}$$

has a solution. This, by lemma 2.3, implies that

Pullimenter commercial de preses on hech al

$$deg \ p_{0}(x)^{h} \ge \ deg \ (p(x)^{2} \ C^{2} + a) - 2 \ deg \ p(x) ,$$

i.e. $b \ge \frac{deg \ (p(x)^{2} \ C^{2} + a) - 2 \ deg \ p(x)}{deg \ p(x)};$

hence result follows, as an od that a SO Sizia = (201) and

its in if. If h is fire

References

- 1. E. Artin, Quadratische Körper in Gebiete der höheren Kongruenzen, I, Math. Z. 19(1924) pp. 153 206.
- H. Hasse, Über mehrklassige, aber eingeschlectige reell quadratische Zahlkörper, Elemente der Math. 20(1965) pp. 49-59.
- 3. H. Yokoi, On the fundamental unit of real quadratic fields with norm 1, J.Number Theory 2(1970) pp. 106.115.

don implies that the state and

(Recibido en mayo de 1974).