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1. Introduction : Let K = k(x) (\V7(x)) be a function field, where ko is a fi-
nite field of characteristic not equal to 2 and f(x) is a square free polynomial
of even degree and leading coefficient 1. In this situation K is said 10 be a real
quadratic extension of & (x). Throughout we will concentrate on real quadratic
extensions of £ (x) with fundamental unit g, such that the norm of ¢/, denoted
NEO , is a square in k; = ko— {0} . Our aim is to give explicit expressions for
the fundamental unit and also lower houndsfor the class number of the integral clo-

sure, k (x) [V, of ky(x) in k (x) (\/f(x) ) for certain kind of f(x).

Such problems have been studied, for real quadratic number fields, by various authors

e.g. Hasse [11, Yokoi [2], etc.

2. Preliminaries : We start by proving various results needed for our main
theorems.
- oy ;
PROPOSITION 2.1: Let € =A + B\ [(x) be the fundamental unit of

K=Fk(x)(y f(x)). If €= A;+B;y f(x) is any non-trivial unit of K then

(1) Currently Visiting Member, Tata Institute of Fundamental Research, Bombay- 5 India .
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BOIBI and deg A;> deg A, .

Proof. By considering € or ils conjugate € we can write £= 5 E: with &

in k‘o and n> 1. Then
n
A+ BT = b(A,+ B, 7)) = b(AZ +7Cy AZ? B2 f(x) 4+ )
+ 8B ("C A%y 13 AP B2 f() 4 - 0) [ .
Comparing both sides we see that B | B; . But then

2
; deg (B, f(x) + N€ )

n

deg A
. 2
= :deg (B f(x) + NEe)

= deg Ao'

whence the assertion.

PROPOSITION 2.2, Let € be the fundamental unit of K = ko(x)A( Vv f(x))

such that N € = a®. Then K is generated over k (x) by a function of the form

\/g(x)z— a’. Conversely, if K is generated over k,(x) by a function of the

form J g(x)z— a’ then €, = glx)+ \/g(x)z—a2 is the fundamental unit of K

o
and NEO-—a .

P.roof. Suppose that K is generated by a function of the form +/ g(x)z— AP

2
Let €, = A, + B, Vv g(x)z_ a2 be its fundamental unit. Now, since g(x)+\/g(x)-a2
is a unit of K with norm 2, by Proposition 2.1, we see that B_ is an element

a?p? and A=1b g(x) . Suppose

of kO.Let Bo=b. We assert that N €,

that N €, = a; i.e. Af—bZ(g(x)z— a%) = a; . Writing A = h(x)+ G, we get

(h(x) + c)? = b2g2(x)+ al-azbz (2.1)

ive. (bg(x)=h(x)) (bg(x) + b(x))=2ch(x) + a* b*=a, (2.2)
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Comparing both sides of (2.2), we sce that either bg (x)—b(x) or bg(x)+ h(x)
isin k .

Suppose that bg(x)—h(x) = ¢, . Substituting in (2.2), we get ¢ = ¢; and
then (2.1) gives a; = a®% and ¢=0. Thus the assertion follows.

The converse is trivial.

DEFINITION 2.1, We will say that K = ky(x) (J [(x)) isof (*) type if

.f(x)=g(x)2—a2 for some g(x) in k(x) and @ in k.

PROPOSITION 2.3. Let £=A+ p(x)*\[f(x), where pl(x) is a prime poly -
nomial, be a unit of K =k (xN\/[(x)) such that N &= @ for some a in k;

Then € is the fundamental unit of K if and only if K is not of (*) type.

Proof. Suppose that K is not of (*) type. Let E,=A,+ B,y/f(x) be its fun-
damental unit. By Proposition 2.1, B, [ p(x). Since K is not of (*) type, B, =

bp(x) for some b in k; follows by Proposition 2.2. Let N € = A()Z- 2 pz(x) f(x)
= a;. We also above Az—pz(x) f(x) = a. Comparing these, we get a1=b2a2
and Aoz =524%. Hence €= A +p(x) \”_/—(x_) is the fundamental unit of K.
Conversely, if € is the fundamental unit of K then by Proposition 2.2, K
is not of (*) type.
The following lemma will give the existence of infinite numbers of polynomials

f(x) which are not of the form g(x)z—az.

LEMMA 2.1. Suppose that A, B, C are polynomials of k,(x) “such that deg
B>0 and BT A. Then BZDp2 4+ AD+ C isa square for atmost a finite number
of polynomials D.

Proof. Using BT A, we have A =2BC_+ C; with C #0 and deg C; <

< deg B. Thus
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deg (A=2BC_)D = deg(C;D) < deg (B D) (2.3)

for all polynomials D, D # 0. Now write

2

B%°D?2 4+ AD + C = (BD + c0)2+(,4-213c0)z)+c_co2 i

Then equation (2.3) gives

2
deg ((A—ZBCO)D + C—CO ) <deg (BD + Co)

for almost all D. Moreover, (A-2BC_)D + C-COZ # 0 except for one value of

D and hence the required result follows.
In order to give lower bounds for the class number of certain real quadratic ex-
tensions of k_(x) we will prove the following lemmas.
LEMMA 2.2, The Pell’s equation
A%-B%(g(xv?-a) = C,
where C is not a square and deg C > 0 , has no solution unless deg C > deg g(x).

Proof. Follows by comparing degrees on both sides.

LEMMA 2.3. Let K =k (x) (\[f(x)) be areal quadratic function field with

the fundamental unit €, =A_ + B \/[(x). Then the Pell’s equation

A’—B% f(x) = C ,
where C is not a square and deg C > 0, bhas no solution unless deg C > deg
A,—2degB, .
Proof. We are given that
N e, =A2-B2 [(x) =a.

Thus A°-B? f(x) = C has a solution implies that
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2
G

2

2 3.2 -
A"B -B“(Aj~a)= CB,

is solvable; whence, by lemma 2.2, deg (CBO2 ) > deg A, , i.e. deg C > deg A+

2degB, .

3. Main Results : Let p(x) be any prime polynomial and consider Icx) =
p(x)2 &% & 3¢ Tor some polynomial C and a in k; . Then the Pell’s equation
A2-B2 [ (x) = a?

has a solution A = p(x)2 c’+a, B-= p(x).

THEOREM 3.1. Let p(x) be any prime polynomial and consider
fc(x) = p(x)2 C2+ 2aC for some polynomial C and a in k. Then K=k (x) (\/m)
is not of (*) type for almost all C and then ¢, = (p(x)2 s a)+ p(x) \/7((_x) is ils
fundamental unit . |

Proof. Since [-(x)-b is not a square, for any element of &  for almost all
C, by lemma 2.1, we see that K is not of (*) type for almost all C. Then, by
Proposition 2.3, the result follows.

THEOREM 3.2. Let [.(x) = p(x)° C* + 2aC be as iu theorem 3.1. Suppose
that k, (x) (\/'f—cm) is not of (*) type and p(x) splits init. If b is the class

number of k (x) (\/ fc(x)) then

, o _deg (p(x)? €2+ a)=2deg p(x)
= deg p(x)

Proof. Note, first, that
deg p(x) < deg (p(x)? €%+ a)=2 deg p(x) ,

if deg C > 1. The right hand side of the inequality is the boundary condition of

lemma 2.3.
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By theorem 3.1, k, (x) ( Vic(x)) isnotof (*) type implies that
= 2
g =(p(x) C2+ a)+p(x) \/ fc (%) is its fundamental unit. Now, by assumption,
(p(x) )= p p" in ky(x) (\/ fc(x)). If p were principal, the Pell’s equation
N(p) = A= B? [0 (x) = cp,(x)
would have a solution for some ¢ in k; :

But then, by lemma 2.3, degp (x) > deg (p(x)z e b)-2 deg p(x) a cont-
radiction 1o the choice of C . Thus the order of p is greater than one. In parti-

cular p}’ is principal and thus the Pell’s equation
Nph) = Cp, ()
has a solution. This, by lemma 2.3, implies that
deg p ()" > deg (p(x)® C*+ a)-2 degp(x),

deg (p(x)% €%+ a)=2 deg p(x) |
deg p(x) "

i.e. b >

hence result follows.
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