Revista Colombiana de Matemriticas Yolumen VIII (1974), *prigs.* 221.232

ON THE FUNDAMENTAL UNIT AND CLASS NUMBER OF CERTAIN QUADRATIC FUNCTION FIELDS, I.

by Raj MARKANDA (1)

1. *Introduction* : Let $K = k_o(x)$ ($\sqrt{f(x)}$) be a function field, where k_o is a finite field of characteristic not equal to 2 and $f(x)$ is a square free polynomial of even degree and leading coefficient 1. In this situation *K* is said to be a real quadratic extension of $k_o(x)$. Throughout we will concentrate on real quadrati extensions of $k_o(x)$ with fundamental unit ε_o such that the norm of ε_o , denoted $N\epsilon_{_O}$, is a square in $k_{_O}^*$ = $k_{_O}$ – {0}. Our aim is to give explicit expressions for the fundamental unit and also lower bounds for the class number of the integral closure, $k_o(x) \left[\sqrt{f(x)}\right]$, of $k_o(x)$ in $k_o(x)$ ($\sqrt{f(x)}$) for certain kind of $f(x)$.

Such problems have been studied,for real quadratic number fields, by various authors e.g. Hasse *[l] ,* Yokoi [21, etc.

2. *Preliminaries:* We start by proving various results needed for our main theorems.

PROPOSITION 2.1: Let $\varepsilon_o = A_o + B_o \sqrt{f(x)}$ be the fundamental unit of $K = k_o(x)$ ($\sqrt{f(x)}$). If $\varepsilon = A_1 + B_1 \sqrt{f(x)}$ *is any non-trivial unit of K then*

(1) Currently Visiting Member, Tata Institute of Fundamental Research, Bombay- 5 India.

 $B_0 \, | \, B_1 \, | \,$ and $\, deg \, A_1 \geq \, deg \, A_0 \,$. By the set of the set of the set of the set of $\,$

Proof. By considering ε or its conjugate ε' we can write $\varepsilon = b \varepsilon_n^{\textit{n}}$ with *b* in k_o^* and $n \geq 1$. Then

 H^o

of even decerge and land to

御_{中国印}献、歌、笔、王 1970

$$
A_1 + B_1 \sqrt{f(x)} = b (A_0 + B_0 \sqrt{f(x)})^n = b (A_0^n + {^nC_2} A_0^{n-2} B_0^2 f(x) + \cdots)
$$

+
$$
b B_0 \left({^nC_1} A_0^{n-1} + {^nC_3} A_0^{n-3} B_0^2 f(x) + \cdots \right) \sqrt{f(x)}.
$$

Comparing both sides we see that $B_o \, | \, B_I$. But then

$$
\deg A_{1} = \frac{1}{2} \deg (B_{1}^{2} f(x) + N \epsilon) \Big\} \Big\| \Big\|
$$

Therefore, for 1 and $\epsilon = \frac{1}{2} \deg (B_{0}^{2} f(x) + N \epsilon) \Big\}$ are not shown with only $\epsilon = \frac{1}{2} \deg (B_{0}^{2} f(x) + N \epsilon) \Big\|$

whence the as.sertton.

PROPOSITION 2.2. Let ε_0 *be the fundamental unit of* $K = k_o(x)$ ($\sqrt{f(x)}$) $such$ *that* $N \varepsilon_n = a^2$. Then K *is* generated over $k_0(x)$ by a function of the form $\sqrt{g(x)^2 - a^2}$. Conversely, if K is generated over $k_o(x)$ by a function of the *form* $\sqrt{g(x)^2 - a^2}$ *then* $\varepsilon_o = g(x) + \sqrt{g(x)^2 - a^2}$ *is the fundamental unit of* K *and* $N \epsilon_0 = a^2$.

Proof. Suppose that K is generated by a function of the form $\sqrt{g(x)^2 - a^2}$. Let $\varepsilon_o = A_o + B_o \sqrt{g(x)^2 - a^2}$ be its fundamental unit. Now, since $g(x) + \sqrt{g(x)}$ is a unit of $\,$ K $\,$ with norm $\,$ *a* 2 , by Proposition 2.1, we see that $\,$ $^B_{}\,$ O is an elemen of k_o . Let $B_o = b$. We assert that $N \varepsilon_o = a^2 b^2$ and $A = \pm b g(x)$. Suppos that $N \epsilon_0 = a_1$ i.e. $A_0^2 - b^2 (g(x)^2 - a^2) = a_1$. Writing $A_0 = b(x) + G$, we get

$$
(b(x) + c)^2 = b^2 g^2(x) + a_1 - a^2 b^2
$$
 (2.1)

i.e.
$$
(bg(x)-b(x))(bg(x)+b(x))=2cb(x)+a^2b^2-a_1
$$
 (2.2)

Boulevy-5 lodin.

Comparing both sides of (2.2), we see that either $bg(x) - b(x)$ or $bg(x) + b(x)$ is in k_o^* . for all polynomials D , $D = 0$, $\delta = 0$, and

Suppose that $bg(x)-b(x) = c_1$. Substituting in (2.2), we get $c = c_1$ and then (2.1) gives $a_1 = a^2 b^2$ and $c = 0$. Thus the assertion follows

The converse is trivial.

DEFINITION 2.1. We will say that $K = k_o(x)$ ($\sqrt{f(x)}$) is of (*) *type* if $f(x) = g(x)^2 - a^2$ for some $g(x)$ in $k(x)$ and *a*; in *k.*

PROPOSITION 2.3. Let $E = A + p(x) \cdot \sqrt{f(x)}$, where $p(x)$ is a prime poly*nomial, be a unit of* $K = k_o(x)(\sqrt{f(x)})$ *such that* $N \varepsilon = a^2$ for *some a in* k_o *Then* ^E *is the fundamental unit of ^K if and only if ^K is not of* (*) *type.*

Proof. Suppose that *K* is not of (*) type. Let $\varepsilon_o = A_o + B_o \sqrt{f(x)}$ be its fundamental unit. By Proposition 2.1, $\left\| B_{o} \right\| p \left(x \right)$. Since $\left\| K \right\|$ is not of $\left\| ^{\ast } \right\rangle$ type, $\left\| {{B}_{o}} \right\|$ *bp* (x) for some *b* in k^* follows by Proposition 2.2. Let $N \varepsilon_q = A_q^2 - b^2 p^2(x) f(x)$ $= a_1$. We also above $A^2-p^2(x) f(x) = a^2$. Comparing these, we get $a_1=b^2a^2$ and $A_{\alpha}^2 = b^2 A^2$. Hence $\varepsilon = A + p(x) \sqrt{f(x)}$ is the fundamental unit of *K*.

Conversely, if E is the fundamental unit of *K* then by Proposition 2.2, *K* is not of $(*)$ type.

The following lemma will give the existence of infinite numbers of polynomials $f(x)$ which are not of the form $g(x)^2 - a^2$.

LEMMA 2.1. *Suppose that A, B, C are polynomials of* $k_0(x)$ *such that deg B* > 0 *and B* \uparrow *A*. *Then* B^2D^2 + *AD* + *C is a square for atmost a finite number of polynomials D.*

Proof. Using $B \uparrow A$, we have $A = 2BC_0 + C_1$ with $C_1 \neq 0$ and $deg C_1 <$ *< deg B.* Thus Thus $A^2 - B^2 / (N = C$ has a solution implies that.

noi sana genT

 $deg(A-2BC_0)D = deg(C_1D) < deg(BD)$ died anti-(2.3)

 $theo(2.1)$

 $M_{\rm V} = \sigma (v)^2 - a^2$

Adairim él'deternée bdT

 $e^{i\phi}$ and $e^{i\phi}$ and $e^{i\phi}$ and $e^{i\phi}$

endT , 8 geb >

for all polynomials $D, D \neq 0$. Now write

$$
B^{2}D^{2} + AD + C = (BD + C_{o})^{2} + (A - 2BC_{o})D + C - C_{o}^{2}
$$

Then equation (2.3) gives

$$
deg ((A-2BC_o)D + C-C_o^2) < deg (BD + C_o)
$$

for almost all *D*. Moreover, $(A-2BC_{\overline{O}})D + C-C_{\overline{O}}^2 \neq 0$ except for one value of *D* and hence the required result follows. A later of the set to these set the mon

In order to give lower bounds for the class number of certain real quadratic extensions of $\left| k_{o}\left(x\right) \right|$ we will prove the following lemmas

LEMMA 2.2. *The Pelt's equation*

$$
A^2 - B^2 (g(x)^2 - a) = C
$$

where C *is not a square and deg* $C > 0$, *has no solution unless deg* $C \geq deg g(x)$. *Proof.* Follows by comparing degrees on both sides.

LEMMA 2.3. Let $K = k_o(x)$ ($\sqrt{f(x)}$) be a real quadratic function field with *the fundamental unit* $\varepsilon_o = A_o + B_o \sqrt{f(x)}$. *Then the Pell's equation* only ovis live ammol and

$$
A^2 - B^2 f(x) = C \quad \text{and all to one such that } (x)
$$

where C *is not a square and deg* $C > 0$, *has no solution unless deg* $C \geq deg$ $A_o-2\deg B_o$. Found by every sign of $\mathbb{R}^2\setminus\{1,2\}$ and $I\cup\{0,1\}$ is the condition

 θ Proof. We are given that $\{x\}^2 = a^2 = a$, Writing $A_n = \mathbb{R}$, shall more bad here

y J gob bns O't

$$
N \varepsilon_o = A_o^2 - B_o^2 f(x) = a.
$$

Thus $A^2 - B^2 f(x) = C$ has a solution implies that

$$
A^2 B_o^2 - B^2 (A_o^2 - a) = C B_o^2
$$

is solvable; whence, by lemma 2.2, \deg (CB $_o^Z$) \geq deg A_o , i.e. \deg C \geq deg A_o^+ *2degBo '*

3. Main Results: Let $p(x)$ be any prime polynomial and consider $f_C(x)$ = $p(x)^2$ $C^2 + 2aC$ for some polynomial $|C|$ and $|a|$ in k_o^* . Then the Pell's equation

$$
A^2 - B^2 f_c(x) = a^2
$$

has a solution $A = p(x)^2 C^2 + a$, $B = p(x)$.

TH EOREM 3.1. *Let pt x) be any prime polynomial and consider* $f_C(x) = p(x)^2 C^2 + 2aC$ for some polynomial *C* and *a* in k_o . Then $K = k_o(x)$ ($\sqrt{f_C(x)}$) *is* not of (*) type for almost all C and then $\varepsilon_0 = (p(x)^2 C^2 + a) + p(x) \sqrt{f_C(x)}$ *is its fundamental unit.*

Proof. Since $f_C(x) - b$ is not a square, for any element of k_o for almost all C, by lemma 2.1, we see that *K* is not of (*) type for almost all C. Then, by Proposition 2.3, the result follows.

THEOREM 3.2. Let $f_c(x) = p(x)^2 C^2 + 2 a C$ be as in theorem 3.1. Suppose *that* $k_o(x)$ ($\sqrt{f_c(x)}$) *is not of* (*) *type and* $p(x)$ *splits in it.* If *h is the class number of* $k_o(x)$ ($\sqrt{f_c(x)}$) then

$$
b \ge \frac{\deg (p(x)^2 C^2 + a) - 2 \deg p(x)}{\deg p(x)}
$$

Proo], Note, first, that

$$
deg p(x) < deg (p(x)^{2} C^{2} + a)-2 deg p(x).
$$

if $\deg C \geq 1$. The right hand side of the inequality is the boundary condition of lemma 2.3.

By theorem 3.1 , $k_o^{}(x)$ ($\sqrt{f_C^{}(x)}$) is not of (*) type implies tha ϵ_o = (p(x)² c^2 +a)+p(x) $\sqrt{f_C(x)}$ is its fundamental unit. Now, by assumption, $(p(x)) = p p'$ in $k_0(x) (\sqrt{f_C(x)})$. If p were principal, the Pell's equation

$$
N(\rho) = A^2 - B^2 f_C(x) = c p_0(x)
$$

would have a solution for some c in k_o^* . Introduced processed and $\cos \xi + \cos \xi$

rabiseon bas baison

But then, by lemma 2.3, $deg p_o(x) > deg (p(x)^2 C^2 + a) - 2 deg p(x)$ a cont radiction to the choice of C . Thus the order of P is greater than one. In particular p^b is principal and thus the Pell's equation

$$
N(\mathbf{p}^b) = C \rho_o(\mathbf{x})^b
$$

has a solution. This, by lemma 2.3, implies that the meant and says deploy an

$$
deg \ \ p_{0}(x)^{b} \geq deg \ (p(x)^{2} \ C^{2} + a) - 2 \ deg \ p(x) ,
$$

$$
e. \quad b \geq \frac{deg \ (p(x)^{2} \ C^{2} + a) - 2 \ deg \ p(x)}{deg \ p(x)} ;
$$

Portion to character de course track wide

hence result follows. at an ad Dans + 20 $\frac{1}{2}$ (x) $\frac{1}{2}$ (x) $\frac{1}{2}$ (x)

 $\sum_{i=1}^n\max\{1,\dots,n\}$

, *References*

- *1. E. Artin. Qu adr ati s c be Kbrper in Gebiete der hoheren Kongruenzen, I,* Math. Z. 19(19 24) pp. 153 - 206. which is a little state
- *2. H. Hasse, iiber mehrklassige, aber eingeschlectige reell- quadratis cbe Zahlkorper,* Elemente der Math. 20(1965) pp. 49_59.
- *3. H. Yokoi, On the fundamental unit of real quadratic fields with norm* I, J.Number Theory 2(1970) pp. 106.115.

dege C >1 , The right hand side of the uptility at the bounders rought

when implies that \sim , \sim , \sim , ϵ , ϵ , ϵ amatal

(Recibido en mayo de 1974) .