DIFFERENTIABLE PATHS IN TOPOLOGICAL VECTOR SPACES

by

D. F. FINDLEY

In this note, we show that a strong form of the Bolzano-Weierstrass theorem in a topological vector space $E[T]$ is equivalent, for example, to the assertion that there are enough differentiable paths, $x(t)$, with non-trivial tangent vectors, so that a function f defined on E will be sequentially continuous for T if the composites $f(x(t))$ are all continuous. For a large class of locally convex spaces, this property is shown to be equivalent to the statement that the bounded sets of $E[T]$ are finite dimensional. This leads to some very precise results for special cases.

DEFINITIONS. A (continuous) path $x(t) : [0, 1] \to E[T]$ will be called differentiable (directional, tangential) at $t=0$ if the limit as t decreases to 0 of $(x(t) - x(0))/t$ exists in $E[T]$ and is different from 0.

If $E[T]$ is finite dimensional, then a strong form1 of the Bolzano-Weierstrass theorem holds, which says that a bounded sequence x_n in $E[T]$ will have a subsequence $x_{n'}$, which converges in a well-defined direction (cf. Property I (below)). In general, we shall show (cf. (1) and (6)) that this strengthened form of the theo-

1 For the "strongest possible" form of the theorem cf. [5].
rem holds if and only if the topological vector space $E[T]$ has one (hence all, cf. (1)) of the properties I-III listed below.

PROPERTY I. If $x_n \to x_0$ in $E[T]$, then there exists a path $x(t) : [0,1] \to E[T]$ which is differentiable at $t=0$, where $x(0) = x_0$, and which has the property that for some subsequence $x_{n'}$, of x_n there is a sequence $t_n \to 0$ in $[0,1]$ for which $x(t_{n'}) = x_{n'}$ holds.

PROPERTY II. If $x_n \to x_0$ in $E[T]$, there is a subsequence $x_{n'}$ of x_n and a sequence $\alpha_{n'} \to \infty$ of positive numbers such that $\lim_{n} \alpha_{n'}(x_{n'} - x_0)$ exists and is different from 0.

PROPERTY III. A map f from an open set O in $E[T]$ to a topological space S is sequentially continuous at $x_0 \in O$ if and only if the composite $f(x(t))$ is continuous at $t=0$, for every path $x(t) : [0,1] \to O$, with $x(0) = x_0$, which is differentiable at $t=0$.

(1) For any topological vector space $E[T]$ the properties I, II and III are equivalent.

Proof. I \Rightarrow II is obvious. (Let $\alpha_{n'} = 1/t_{n'}$.) II \Rightarrow I. Suppose $x_n \to x_0$ is given. Let $x_{n'}$ and $\alpha_{n'}$ be as in II. We define $t_{n'} = 1/\alpha_{n'}$, and we can assume that for each n', $t_{n'}$ belongs to $[0,1]$. We define a path $x(t) : [0,1] \to E[T]$ as follows: We set $x(0) = x_0$ and $x(t) = x_1$, if $t \in [t_{n'}, 1]$. Otherwise, for $t = \alpha t_{n'} + (1-\alpha) t_{(n+1)}$, $0 \leq \alpha \leq 1$ we define

$$x(t) = \alpha x_{n'} + (1-\alpha) x_{(n+1)}'.$$

Since for $t \in [t_{(n+1)'}, t_{n'}]$ we have

$$\frac{x(t) - x_0}{t} = \frac{\alpha(x_{n'} - x_0) + (1-\alpha)(x_{(n+1)} - x_0)}{\alpha t_{n'} + (1-\alpha) t_{(n+1)'}}$$

248
it is clear that
\[
\lim_{t \to 0} \frac{(x(t) - x_0)}{t} = \lim_{n' \to n'} (x_{n'} - x_0).
\]

Hence \(x(t)\) has the property required in \(I\). The proof of \(I \Rightarrow III\) is straightforward. We show \(I \Rightarrow III\).

Suppose \(x_n\) converges to \(x_0\) in such a way that no subsequence \(x_{n'}\) lies on path \(x(t)\), with \(x(0) = x_0\), which is differentiable at \(t = 0\). We define \(f(x)\) to be 1 if \(x \in \{x_n : n=1, 2, \ldots\}\) and 0 otherwise. Then \(\lim f(x_n) = 1 \neq 0 = f(x_0)\), but for any path \(x(t)\), differentiable at \(t = 0\) and such that \(x(0) = x_0\), we have \(\lim_{t \to 0} f(x(t)) = 0 = f(x_0)\), by the hypothesis on \(x_n\) and by the definition of \(f\).

Thus \(III\) is contradicted.

There are infinite dimensional topological vector spaces possessing properties \(I-III\). For any infinite set \(A\) let \(\omega_A\) denote the set of all complex-valued functions on \(A\) and let \(\phi_A\) denote the subspace of functions having finite support.

In the dual system \(\langle \phi_A, \omega_A \rangle\) formed in the usual way, all \(T_s (\omega_A)\)-bounded sets have finite dimensional span. This is also the essential property of both spaces \(E\) in \(E^*\) in the dual systems \(\langle E, E^* \rangle\) of the very interesting class of spaces studied by Y. Komura and Amemiya (cf. [1]). In such spaces \(I-III\) clearly hold. These examples are quite typical as the next theorems show.

First, we define:

PROPERTY IV. If \(x_n\) is a bounded sequence in \(E[T]\), then span \(\{x_n : n = 1, 2, \ldots\}\) is finite dimensional.

(2) If \(E[T]\) is a locally convex topological vector space for which there exists a weaker topology than \(T\) which is metrizable, then \(IV\) is equivalent to \(I-III\).
Proof. \(IV \Rightarrow II \) is elementary. The reverse implication follows from (3) below, which shows that \(- IV\) implies a strong form of \(- II\).

(3) Let \(E[T] \) satisfy the hypothesis of (2) and suppose that \(z_n \) is a bounded sequence of linearly independent elements in \(E \). Then there is a sequence \(x_n \) in \(F = \text{span} \{ z_n : n = 1, 2, \ldots \} \) which converges to 0 and which has the following property:

If for some scalar sequence \(\alpha_n \) the sequence \(\alpha_n x_n \) has a \(Ts(E') \)-adherent point \(x \) in \(E \), then \(x = 0 \). \((E' \text{ denotes the dual of } E[T].)\)

Proof. Let \(F \) denote the weak closure of \(F \) in \(E \). With respect to the induced weaker metrizable locally convex topology \(\overline{F} \) is a separable metric space, so by ([3] 21, 3, (5)) its dual \(F' \) is weakly separable. Hence, there is a linearly independent sequence \(\psi_m \) in \(F' \) with the property that if for some \(x \in F \) we have \(\psi_m(x) = 0 \) for all \(m \), then \(x = 0 \).

With the aid of the Hahn-Banach theorem applied in the dual system \(<F', F> \), we can obtain sequences \(\phi_m \) in \(F' \) and \(y_n \) in \(F \) such that

\[
\begin{align*}
\text{(*)&} & \quad \text{span} \{ \phi_1, \ldots, \phi_m \} = \text{span} \{ \psi_1, \ldots, \psi_m \} \quad \text{for all } m, \quad \text{and} \\
\text{(**)} & \quad \phi_m(y_n) \neq 0 \quad \text{if and only if} \quad m = n; \quad m, n = 1, 2, \ldots.
\end{align*}
\]

Since each \(y_n \) is a finite linear combination of elements from the \(T \)-bounded set \(\{ z_n : n = 1, 2, \ldots \} \), we can find a sequence of non-zero scalars \(\beta_n \) such that \(x_n = \beta_n y_n \) is \(T \)-convergent to 0. Let \(\alpha_n \) be any sequence of scalars and suppose that \(x \) is a \(Ts(E') \)-adherent point of \(\alpha_n x_n \). For any fixed \(m \), it follows that there is a subsequence \(\alpha_n', x_n' \) such that

\[
\phi_m(x) = \lim_{n' \to m} \phi_m(\alpha_n' x_n') = \lim_{n' \to m} \alpha_n' \beta_n' \phi_m(y_{n'}) = 0
\]
But it follows from (*) that ϕ_m also separates the points of F, so we must have $x = 0$. Thus the sequence x_n has the sought after property.

If $E[T\ell]$ is itself locally convex and metrizable, with metric $\rho(x,y)$, we can say more. For if y_n is any linearly independent sequence in E, then we can choose non-zero scalars δ_n so that $\rho(\delta_n y_n, 0) < 1/n$. The sequence $z_n = \delta_n y_n$ is then bounded so that (3) applies. Hence, by (2):

(4) A locally convex and metrizable space $E[T\ell]$ has one of the properties I-IV if and only if E is finite dimensional.

In a similar vein, it follows from (4) and ([3, 19, 5, (5) and 22, 6, (4); cf. also [4]) that:

(5) In a quasi-complete (LF)-space $E[T\ell]$, the properties I-IV are each equivalent to the assertion that $E[T\ell]$ is of the form $\phi_A[T_S(\omega_A)]$ (cf. above (2)) for some countable set A.

There are some simple observations we can use to say something about the properties I-III in a general topological vector space $E[T\ell]$.

(6) If $E[T\ell]$ has the properties I-III, then every bounded sequence in $E[T\ell]$ has a convergent subsequence.

Proof. Suppose that II holds and let x_n be a bounded sequence. Since x_n/n converges to 0, there must exist, by II, a subsequence x_{n^*}, and a scalar sequence α_{n^*}, such that $(\alpha_{n^*}/n^*)x_{n^*}$ converges to some $x \neq 0$. Because x is not 0, no subsequence of α_{n^*}/n^* is convergent to 0. Hence n^*/α_{n^*} is bounded and there is a subsequence $n^{**}/\alpha_{n^{**}}$ of n^*/α_{n^*} which is convergent, say to α. This implies that $x_{n^{**}} = (n^{**}/\alpha_{n^{**}})(\alpha_{n^{**}}/n^{**})x_{n^{**}}$ converges to αx.

(7) If each neighborhood of 0 of the metrizable space $E[T\ell]$ contains a ray
\{a \in \mathbb{R} : a > 0 \} \ (x \neq 0)$, then there is a sequence $x_n \to 0$ in $E[T]$ such that for any choice of scalars $\alpha_n > 0$, the sequence $\alpha_n x_n$ converges to 0. Hence $E[T]$ does not have properties I-IV.

Proof. Let $U_1 \supseteq \ldots \supseteq U_n \supseteq \ldots$ be a fundamental system of neighborhoods of 0. Let the sequence x_n be so chosen that for each n, $\{a x_n : a > 0 \} \subseteq U_n \setminus \{0\}$. Then $\alpha_n x_n \in U_n$ for all $n \geq n_0$, for any n_0 and for any choice of non-negative scalars α_n.

Remark: We can weaken what we have called Properties I-III by allowing as differentiable paths $x(t)$ for which $x'(0)$ may be 0. It follows from Lemma 3.3 (p. 99) of [2] that every topological vector space on which continuity and sequential continuity coincide has these weaker properties (which are equivalent by the proof of (1)).

REFERENCES

Department of Mathematics
University of Cincinnati
Cincinnati, Ohio, 45221, E.U.A.

(Recibido en febrero de 1974).