Revista Colombiana de Matemáticas Volumen IX (1975), págs. 23 - 28

ON RATIOS OF CERTAIN ANALYTIC FUNCTIONS

by

G. R. BURDICK and E. P. MERKES

ABSTRACT

Let H(z)=f(z)/g(z) and b(z)=f'(z)/g'(z) where both f and g are in one of the classes whose members are convex, starlike relative to the origin, or typically-real in the open unit disk E. Sharp bounds on $\alpha>0$ and $\beta>0$ such that $\Re\{H(z)\}^{\alpha}>0$, $\Re\{b(z)\}^{\beta}>0$, $z\in E$, are obtained with one exception. In the case where b(z) is considered for f and g typically-real, z is restricted to the precise region in E of univalence of the class of typically-real functions.

1. Introduction. Let A denote the analytic functions $f(z) = z + a_2 z^2 + \cdots$ in $E = \{z : |z| < 1\}$. Let K, S^* , and T respectively denote the subclasses of A whose functions are convex, starlike with respect to the origin, and typically-real in E([5], [6]).

A number of authors (e.g., [1], [2]) have treated problems of the following type: Fund the radius of starlikeness and the radius of convexity of the class of functions $f \in A$ such that $\Re \{f'(z)/g'(z)\} > 0$, $z \in E$, for each g contained in a certain subclass of A. In this paper, we assume f and g are in one of the

classes K, S^* , or T and determine the largest positive value of α such that $\Re_{\mathbf{e}} \left\{ h(z) \right\}^{\alpha} > 0$, $z \in E$, where h(z) = f'(z) / g'(z), $\left\{ h(0) \right\}^{\alpha} = 1$. Also the largest positive value of β is determined such that $\Re_{\mathbf{e}} \left\{ H(z) \right\}^{\beta} > 0$, $z \in E$, where f and g are in one of the cited classes and H(z) = f(z) / g(z), $\left\{ H(0) \right\}^{\alpha} = 1$. In particular, we obtain the following sharp results.

THEOREM 1. If f, g \(\epsilon \) K, then $\Re \{ H(z) \}^{1/2} > 0$ and $\Re \{ b(z) \}^{1/4} > 0$ for $z \in E$.

THEOREM 2. If f, $g \in S^*$, then $\Re_{\mathbf{c}} \{ H(z) \}^{1/4} > 0$ and $\Re_{\mathbf{c}} \{ b(z) \}^{1/6} > 0$ for $z \in E$.

THEOREM 3. If f, g \in T, then $\Re \{H(z)\}$ > 0 for $z \in E$ and $\Re \{\{b(z)\}\}$ > 0 for z in the exact region D of univalence of the class T.

Each $f \in T$ is known [4] to be univalent in the region $D \subseteq E$ defined by

(1)
$$\{z: \Re\{z/(1-z)^2\} > -1/4\}.$$

Moreover, if $z_0 \in E$, $z_0 \notin D$, it can be shown (see [4]) that there exists a function $f \in T$ for which $f'(z_0) = 0$. This implies that b(z) = f'(z)/g'(z), where f, $g \in T$, is not always analytic outside the region D. It is, therefore, necessary to restrict attention to the region D for the second part of Theorem 3.

2. Proof of Theorem 1. For f, $g \in K$, $z \in E$, we have [3] that f'(z) and g'(z) are in the image of E by the mapping $w = 1/(1-z)^2$. Hence, we have

 $| arg \ b(z) | \le | arg \ f'(z) | + | arg \ g'(z) | \le 4 \ arcsin \ |z|$.

This implies $\Re\{b(z)\}$ > 0 for $z \in E$. For sharpness, let f(z) = z/(1-z)

and $g(z) = z/(1 + e^{i\phi}z^{i})$, $-\pi < \phi \le \pi$. Then $b(z) = (1 + e^{i\phi}z)^{2}/(1-z)^{2}$. The function $\{b(z)\}^{\frac{1}{2}}$ maps E onto a half-plane bounded by a line through the origin with angle of inclination $(\pi + \phi)/2$. Hence, for each $\alpha > 1/4$ there is a choice of ϕ , $-\pi < \phi < \pi$, such that $\Re \{b(z)\}^{\alpha} < 0$ for some $z \in E$.

For the second result in the theorem we use the fact [8] that |arg f(z)/z| < arcsin |z|, $z \in E$, when $f \in K$. Thus, if f and g are in K, then |arg H(z)| < 2 |arcsin||z| so $\Re \{H(z)\} > 0$ for $z \in E$. Sharpness is verified using the same functions as in the previous part of the theorem.

3. Proof of Theorem 2. The function $f \in S^*$ if and only if $F(z) = \int_0^z (f(t)/t) dt$ $\in K$. It follows from Theorem 1 that $\Re_e \{H(z)\}^{1/4} > 0$, $z \in E$ and that this result is sharp.

For the other part of the theorem, we have

$$|arg h(z)| = |arg f'(z) - arg g'(z)|$$

$$\leq \left| arg \frac{z f'(z)}{f(z)} \right| + \left| arg \frac{z g'(z)}{g(z)} \right| + \left| arg \frac{g(z)}{f(z)} \right|.$$

Now by the first part of the theorem $|arg\{g(z)/f(z)\}| < 2\pi$, $z \in E$. Since $|arg\{zf'(z)/f(z)\}| < \pi/2$, $z \in E$, whenever $f \in S^*$, we conclude from (2) that

$$| arg \ b(z) | \leq \frac{\pi}{2} + \frac{\pi}{2} + 2\pi = 3\pi$$
.

Thus, $\Re \{b(z)\}^{1/6} > 0$, $z \in E$. To establish the sharpness, let $f(z) = z/(1-z)^2$, $g(z) = z/(1+e^{i\phi}z)^2$, $-\pi < \phi \le \pi$. Then $b(z) = AB^3$ where $A = (1+z)/(1-e^{i\phi}z)$ and $B = (1+e^{i\phi}z)/(1-z)$. For $z = e^{-i\phi/2}$ and

for $\alpha > 1/6$, there is a ϕ , $\pi/2 < \phi < \pi$, such that

$$\alpha \operatorname{arg}(AB^3) = \alpha \frac{\pi - \phi}{2} + 3 \alpha \left(\frac{\pi + \phi}{2}\right) = (2 \pi + \phi) \alpha > \pi/2.$$

Indeed, select any ϕ in the interval $-\pi/2$ α - 2π < ϕ < π . It follows that $\Re_{\mathbf{e}} \left\{ b(z) \right\}^{\alpha} > 0$ for some $z \in E$ when $\alpha > 1/6$ and $b(z) = AB^3$.

4. The typically-real case. The first part of Theorem 3 is proved using the result of Rogosinki [6] that states $f \in T$ if and only if there is an analytic function p in E such that p(z) is real for real values of $z \in E$, p(0) = 1, $\Re_{e} p(z) > 0$ for $z \in E$, and $f(z) = zp(z)/(1-z^2)$. It follows that the function H(z) = f(z)/g(z), where $f, g \in T$, can be expressed as the ratio of two normalized functions, each with positive real part in E. Hence, $\Re_{e} \{H(z)\} > 0$ for $z \in E$. The sharpness is established by setting $f(z) = z/(1-z)^2$ and $g(z) = z/(1+z)^2$.

For the second part of Theorem 3, we use a result of Merkes [4] that states $f \in T$ if and only if there exists a nondecreasing function $\gamma(t)$, $\gamma(1) - \gamma(0) = 1$, such that

(3)
$$F(\zeta) = \int_{0}^{1} \frac{\zeta \, d \, \gamma(t)}{1 + \zeta \, t}$$

where $\zeta=4z/\left(1-z\right)^2$ and F is defined by $4f(z)=F\left(\zeta\right)$. By an elementary argument it is easily proved that $|\arg F'(\zeta)|<\pi$ for $\Re \epsilon \zeta>-1$, indeed, for $\Re \epsilon \zeta>-1$, we have

$$-\pi < arg \left(1 + t \zeta\right)^{-2} \le 0 \qquad \left(\mathfrak{I}_{\mathsf{m}} \zeta > 0\right),$$

$$0 \le arg \left(1 + t \zeta\right)^{-2} < \pi \qquad \left(\mathfrak{I}_{\mathsf{m}} \zeta < 0\right)$$

Thus, for $\Re \zeta > -1$, $\Im \zeta > 0$, we have by (3) $-\pi \leq \arg F'(\zeta) = \int_0^1 \arg (1+\zeta t)^{-2} d\gamma \ (t) \leq 0$. Similarly, for $\Im \zeta < 0$, $\Re \zeta > -1$ we have $0 \leq \arg F'(\zeta) \leq \pi$.

Now, for f, $g \in T$, we have

$$\frac{f'(z)}{g'(z)} = \frac{F'(\zeta)}{G'(\zeta)}, \quad z \in E, \quad 15500 \text{ oddo hamoval}$$

where $\zeta = 4z/(1-z)^2$ and $4f(z) = F(\zeta)$, $4g(z) = G(\zeta)$. If $\Re \zeta > -1$, i.e., if $z \in D$, where D is defined by (1), then

$$\frac{1}{4} \left| arg \frac{f'(z)}{g'(z)} \right| \leq \frac{1}{4} \left(\left| arg F'(\zeta) \right| + \left| arg G'(\zeta) \right| \right) \leq \frac{\pi}{2}$$

Thus, $\Re_{\mathbf{e}}\{b(z)\}^{1/4} > 0$ for $z \in D$. To establish the sharpness, let $f(z) = z/(1-z)^2$ and $g(z) = z/(1+z)^2$. For these functions, $b(z) = (1+z)^4/(1-z)^4 = (1+\zeta)^2$, and, hence, $\Re_{\mathbf{e}}\{b(z)\}^{\alpha} > 0$ for $z \in D$ if and only if $\alpha \le 1/4$ when $\alpha > 0$.

REFERENCES

- 1. W. M. Causey and E. P. Merkes, Radii of starlikeness of certain classes of analytic functions, J. Math. Anal. Appl. 31 (1970), 579-586.
- 2. T. H. MacGregor, Functions whose derivative has a positive real part, Trans.

 Amer. Math. Soc. 104 (1962), 532-537.
- 3. A. Marx, Untersuchunung über schlichte Abbildungen, Math. Ann., 107 (1932), 40-67.
- 4. E. Merkes, On typically real functions in a cut plane, Proc. Amer. Math. Soc., 10 (1959), 863-868.
- 5. Z. Nebari, "Conformal Mapping", McGraw-Hill, New York, 1952.

6. W. Rogosinski, Über positive harmonische Entwicklungen und typisch reelle Potenzreihen, Math. Z., 35 (1932), 93.121.

the state of the s

I if and only it there expans a number require from their with yill- willies it

I. H. MacGregor, Fanctions whose derivative bus a positive real var. Track

Department of Mathematics University of Cincinnati Cincinnati, Ohio, 45221

(Recibido en agosto de 1974).