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ABSTRACT

A classical theorem in mecharics states that a Hamil-
tonian which is invariant under a symmetry group admits addi-
tional integrals of motion. This paper investigates the converse
of the above theorem . If a Hamiltonian admits integrals then
a symmetry can be constructed and the flow studied on a quo-
tient space. The quotient space is shown to be symplectic
.and the resulting flow Hamiltonian. The constructions used
are similar to the recent constructions of Nehoroshev, Marsden

and Weinstein and Meyer.

The eneral theory presented is used to give an intrinsic
g YP 9

derivation of Hamilton’s egquations of motion. Also specia!

local coordinates are given which display the integrals in a

simple form.
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1974. Her thesis along with several improvements and extensions is presented in this paper.

In Miss Fong's behalf, 1 would like to thank the Charles Phelps Talt foundation for gra-
nting her a fellowship during her studies at the University of Cincinnati. K.R. M.

1. Introduction : A classical theorem in mechanics states that a Hamiltonian
which is invariant under the action of a group admits additional integrals. In [7]
Smale shows that in this case the flow defined by the Hamiltonian restricted to an
integral surface is invariant under a subgroup of the full group and so the flow is
naturally defined on the quotient space obtained by identifying orbits of the sub-
group in an integral surface. He uses this reduction to investigate relative equili-
brium points in the planar #-body problem. Subsequently, Nehoroshev [6], Marsden
and Weinstein [3], and Meyer [4] have shown that the resulting quotient space is
symplectic and the resulting flow is Hamiltonian. This result is a generalization
of a theorem of Reeb [9] which states that the orbit space of a Hamiltonian flow restricted
to an energy surface naturally carries a symplectic structure (also see Souriau [81). Inthis
case the group is the flow itself .

This paper investigates Hamiltonian systems which admit additional integrals
but an apriori group action is not given. When the Hamiltonian system admits additional in-
tegrals we again construct a quotient space where the flow can be studied. This gives a
global generalization of the classical reduction of a Hamiltonian system of n-degrees of
freedom to a Hamiltonian system of zn-k degrees of freedom when & integrals in involution
are known. These general results are developed in section 2.

The third section discusses particular situations in view of the general theo-
ry. In this section we recoup the theorem on Systems with symmetries, give spe-
cial local coordinates, givé an intrinsic derivation of Hamilton’s equations of

motion and discuss the characteristic multipliers of a periodic orbit in the pre-



sence of integrals. Our derivation of Hamilton’s equations of motion is novel in
that it does not require the Lagrangian formulation as a starting point. The deri-
vation proceeds directly from the Newtonian formulation to the Hamiltonian for-

mulation.

2. Notation and General Results. Throughout this paper all manifolds, functions,
forms, ete. will be C* . The notation of symplectic geometry used here follows
closely the notation given in [1]. The reader is referred to [1] for the basic theo-
ry of symplectic manifolds and to [5! for the basic theory of distributions.  Let
M be a symplectic manifold of dimension 2» with symplectic structure Q | ie. Q

is a closed, nondegenerate 2-formon M. Thus for m e M, Q' is a nondege -

"
nerate skew symmetric bilinear form on M and so T, M isa symplectic  li-
near space with symplectic inner product Q. The symplectic inner product
. . . R ‘ X
Qm defines an isomorphism b : TM>T M:vsv? = Q,,.) . Let
#2 T;IM «»TmM sv->v# be the inverse of ® . Let =3 (M) denote the smo-
oth real valued functions on M, X = X (M) the smooth vector fields on M and
P j'(M) the smooth one forms on M . The symplectic structure Q defines
the Poisson bracket operator {, } and turns both $ and X into Lie algebras .
: T o * #_ #e X A iy salled amiltoni:
If HeS then dH ¢ X and dH” =(dH) X . dH” is called the Hamiltonian

vector field whose Hamiltonian is H .

For any linear space V the dual will be denoted by v . If UvCV then let

v = tf ev' : f(v) = 0fandif UC v thenlet U ={ucV:fu) =0 for all
fevud .
Before proceeding with the formal development, consideration of the following

. g
situation will help motivate the definitions and lemmas to follow. Let H &S



then the Hamiltonian vector field dH” defines a flow on M . One method for
analyzing the flow defined by dH” is 1o find all the global integrals for the flow
and then study the restriction of the flow on the invariant level sets of these inte -
grals. In general these invariant sets may not be manifolds and even if they are
manifolds they may not carry a symplectic structure. However, under some mild
nondegeneracy assumptions it will be shown that a quotient space of these inva -
riant sets does admit a symplectic structure and a naturally defined flow on this
quotient space is Hamiltonian. The set of all integrals for dH” is the annihilating
subalgebra of H in F, i.e. the set of all integrals of dH# is §=4H) ={Fed :
{H,F} =0} and § is a subalgebra of . In many physical examples § is not

known completely but a subalgebra of § is known.

LEMMA I. Let V be a symplectic linear space with symplectic inner product
(e] .
Q and WCV* asubspace. Then WO/(Wﬁr N W ) admits a natural symplectic

inner product « defined by o ([x],[y1) =Q(x,y).

Proof : The proof given here is the same as found in [3] or [4]. If v e W/
and uweW, then Quv,u) = 0 by definition. Thus if x,y €W’ and &, 7 eW/NW’
then Q(x+ &, y+1)=Q(x,y) and so o is well defined. If o([w],[y])=0
forall [y] e W /(W NW), then Q(xy)=0 forall ye W or Q(x..)eEW.
Thus x¢ #” or [x]=0. This shows that o is nondegenerate on W°| (W W)
Clearly o is skew symmetric.

In order to make a global construction based on the above, some notation
must be given. Let (@ be a subalgebra of §, s =5 (@) ={dF(m) eT, M

Fe@i,s=5(@ = Ush. Lee s%= U s0.s%= U s} andsNs’
mE E

#
M” meM meM ™

= mUPM (S’i"ﬂ Smo) . Clearly s, isa linear subspace of T:”M and if dim S,
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is independent of m then § is a smooth sub-bundle of T'M. The algebra
will be said to have rank ¢ if dimS =g forall mem. If ( has rank ¢
then § is an involutive distribution of M of rank 2n-¢ (see [5] Theorem 2.
11.11) .

LEMMA 2: Let @ be a subalgebra of § of rank q. Then s* is an in -
volutive distribution and if dim (Sf” n S:”) is independent of m EM then sins’

is an involutive distribution.

Proof : Let mye M and f], 8555 fq = ( such that df] (mo), o d/q (mgy )
span S;”O. Then there is an open neighborhood 0 of m; such that (/f](lll). e

= d/#.. X =dff so X;eX

7 dfq(m) span S, forall m 0. Let X 1 s Xy 4 i

1
and X - B £ : T T e i
an I(m), o Xq(m) span Sm for all m 0. Now [‘\1' ‘\/] { t/fl,, dfj {
A # 3. ", > N . )
=dif,, f.}7 . Since (@ is an algebra Vf e and so diyf..f.{(m)eS .
1 ] 1’7 [ | m
T ' 4 r '7 p Lg A ‘” . . . . . .
I'hus [.\i, ‘\jl (m) €S, forall m 0. Thus " is an involutive distribution.
Clearly if the intersection of two involutive distributions has constant dimension
then the intersection is an involutive distribution. Thus the second part of  the

lemma is now obvious .

Since §0 is an involutive distribution for each my = M there is a unique

maximal conneeted integral manifold N of s¥ through mg. Thatis, mg= N
N is a connected submanifold of M, T N = S?" forall m =N and N is ma-

ximal with respect to these properties. Let mg e M be fixed and N the maxi-

mal integral manifolds ol s0 through mg - Since §7 NsY isan  involutive

# 0 .. . : A
distribution on M and S B il N for each m ¢ N onec can consider
# 0 E . e # 0 o
s"Ns” as an involutive distribution on N . Let § =($ ns) N=U

meN

# 0 ) . i . - <
SN Sp)e For each m € N let L, bethe maximal integral manifolds of $

(



in N.If m and N then define m-m’ceL,, . Clearly - is an equivalence relation on N.
Let B be the quotient space of N modulo this equivalence relation and 7:N-B the pro-
jection map. In general B may not be a manifold so some additional assumptions must be made.
THEOREM 1. Let ( be a subalgebra of § of rank q and my € NC M as
above. Let dim (Sf” ﬂsgl) be independent of m €N sothat 7w: N > B is de/-
ined. If B is a manifold and 7 : N >B a fiber bundle then B is a symplectic

manifold with symplectic structure « . Moreover, Q| N = 7w and if w(m)=b

0

| 0 :
then Dmg:T N = Sma T,B bhas kernel Sans,,

m

Remark : For any m, €M there is an open neighborhood O of my such that N»B

0
is a trivial disk bundle over a disk (see [6], Theorem 2.11.8).

Proof. ¢ Let m &N be such that 7 (m) = b. Then Dz :T N = S?ﬂ Ty B
is surjective and has kernel Sf;l n 5’2 by construction. Thus TbB is isomor -
# 0
phic to Smo/ (s,N S, ) and sobylemma 1 the space T,B has a symplectic
inner product. However, this inner product must be shown to be independent of
-1 - 1
men (b). Since N is connected it is enough to show that for each m ez (b)
there is a neighborhood 0 of m such that the symplectic inner product defined
0 # 0 0 # 0 s f 1
by S,/ (s, ns,) and §_ /(Sr NS, ) on T,B arc the same for a 1l r£0.
This will be shown by constructing a symplectic isomorphism ¢ : T M > T M
0 0 # 0 £ B o
such that ¢ (s, ) =5, and (S ns,)=s, ﬂSr . This symplectic isomor-

phism will be constructed as the derivative of the time one map of a Hamiltonian

vector field on M which leaves N and L, invariant .

Let the dimension of N be 0= 2n-g and the dimension of I, be 5. Let Ube an open

neighborhood of m in Mand x, ..., x,, a coordinate system at m such that 1) m has coor-
}

dinates e T 2) U is given by |x;| <1 fori=1,...2n, 3)N N U is given by

|x;] <1 for i=1...,0 and  x, =...= %,,=0, and 4) the leaves of
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§ in NNU are given by |*;1<1 for i=1,..., B, x;=a, for i= B+1,..,0
(a;’s constant such that |ai| < 1) and xl.=0 for i=0+1,...,2n. Such a
coordinate system exists by theorem 2.11.8 of [5] but it need not be symplectic.
The neighborhood 0 is given by 0 = Lmn U . In these coordinates L, NU=0
is given by ]xi |<1 for i=1,..., B8 and x;=0 for i=B+1,...,2n. Let
re0 =1L, NU have coordinates x; =54, for i=1,...,8. The vector field

1 1

Y = bi a/0 x1+ Nider bB 0/0 xﬁ will be considered as definedon NNU. As

such it is clear that Y is tangent to N and to the leaves of §. Moreover the

solution of Y through m at #=0 passes through r when ¢=1.

Let =Y so 8 ié a one form defined on NNU - - however it may take
values in the cotangent bundle of MAU = U . Thus we consider 6 : N Nu-TU
with the usual projection property. If X is any vector field on M which is tan-
gentto N then 6 (X )= Q. (Y, X;)=0 for all s ENNU since XSESOS

#~ 0 ;
and Y_€ Ssn S - Thus in the above coordinates

2n .
0:2 0'(x1,...,xol)dxl

i
i=0+1

Define G : U > R by the formula

so that dG| (NNU) =6 or Y =dG | N.
Thus we have extended the vector field Y which was only defined on NN U
# . ~q .
to a Hamiltonian vector field 4G defined on U . By construction dG is

#
tangent to N and L, and the solution of dG  through m at =0 passes

#
through r at t=1. Let (bt be the flow defined by 4G so (,SI(m) =7
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Dé T Mo T. M is symplecti o0 A 0
q $TyM- T, is symplectic, D ¢1(5m)— S, and l)qSl(Sm n Sm ) =

B :
S’ ﬂsr . Thus v =D él is the desired symplectic isomorphism .

THEOREM 2 : Let the notation and hypotheses of Theorem 1 kold. Let
HeSF besuch that {H, A} =0, ie., {H,f1=0 forall fe{d. Thus each
feW is an integral of dH;J and N is an invariant manifold for the flow defined
by dH: . Then H is constant on ﬂ_I(b) for all beB andso b eF (B)may
be defined by bh = H o I! Also each trajectory of the flow defined by dn* which
lies in N is mapped onto a trajectory of db” by the map w . Also m preser-

ves parametrization of the trajectories.

Proof: Use the same notation and coordinate system as in the proof of the
previous theorem. By hypothesis 0 = {H. f{= Q (dH#, d/'ﬁ) for all fed and
so () ((/Hx, S:) = 0. The vector ficld d(;‘ﬁ constructed in the previous section
has the property that dG*(s) & Sﬁ for all s eN. Thus Q (dH"(s), dG"(s) =0 for
all s&N or H is an integral for the flow defined by d(y'# restricted to N .
Since H is constant along the trajectories of d(:g in N we have H(m)=H(r).

But r was an arbitrary point of L, near m and L, is connected. Thus H

is consta -
onstanl on lm

In order to establish the rest of the theorem it is enough to show that

# # *
Dz (dH (m)) = db (m) when =(m) = b . But this [ollows at once from 7 b =

HIN or m*dh=d(H|N) and 7'¢, = Q[N .

3. Miscellaneous Remarks and Applications.

a) Symmetries : In [‘3 ].[4] and [6] Hamiltonian systems which are

invariant under the action of a Lie group are studied and a reduction which mo-
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tivated the results of the previous section is given. [fere we shall show how the re-
sults given above apply to this case. Let G be a connected Lie group, A its
algebra and t,[/a tGxMo>M:(g,m) >y (g,m)=gm an actionof G on M
such that ¢(g,.) : M > M is a symplectic diffeomorphism for all g G . Let

at " m
a€A and e” be the one parameter subgroup of G generated by a. Then

at
(e

l//a:RxM >sM:(t,m) >y L om)

is a Hamiltonian flow on M and so is gencrated by a local Hamiltonian vector

field X, on M. X, isa local Hamiltonian vector field in that X, isa clo-

a

sed one form. Let us assume that for each a4 A the form X, is exact i.e.

Xa is a global Hamiltonian vector field. (This is always the case if Q is
A : # ] . . .
exact, see [3]) ., Then X,=dE, where Fy,:M >R isa function which

is determined up to an additive constant. The map which associates to cach
a €A the vector field X  is a Lie algebra homomorphism from A into .In
a g I
general it is not possible 1o choose the additive constants so that there is a
. . r . (79 . . "

Lie algebra homomorphism from A into S which takes @ into F, where

; A — .. iFs . e | .

‘Xa = dl‘a . I'his problem is discussed in detail in [8! but will not concern

us here. Let A CF be the set of all functions F,:M-R such thar X =
# . at at . R R >

a'l"a generates a flow V(e ,m) =e m for some a£A . Even though (

may not be a homomorphic image of A, but itis a finite dimensional subalge-

il
bra of 5.

Let meM be fixed. Then U(-,m):G->M and D di(em) : A =

T(,G > TmM . Since

A # d t .
‘\a('”) = dl-'a (m) =—d7u(0a m) e = l)lu((l,m) (a)



# ;

we see that S, = D dr(e,m) (A). Let us assume, as in the previous section
; : 0

that there exists an integral manifold N through = for § . Let Gy=lgeG:

gN = N {. Clearly Gy is a closed subgroup of G and hence a Lie subgroup .

Let Ay = A bethe algebra of Gy . Let fe( and since f is constant on’

N

b at : at . ; o
N it follows that f(e m) = f(V(e ,m) ) is constant for cach a EAN - I'hus

0=-4 f(pe®m)| =a/D Yle.m (@)
dt 1 1

or 0
I)IL//(e,m) (AN) C Sm 3

Since D, Ule,m) (A N C D, U (e,m) (A) = S,z we can combine the-
se results to give

D (em) (4y) € ST 0 57

To show the inclusion in the opposite direction let g e be any element

such that dg(m)“‘“ € S?n n S,f,. [.et a £ A be such that L/,((am, m) is the flow gene-

rated by dgx . The opposite inclusion will follow once it is shown that a €Ay
or that the flow d/(eal,m) leaves N invariant. This follows from {/gl(r) = 0
forall /e({ and all € N which in turn follows from d{f g} =0 on N and {fgl(m) = 0.
But {/,g} (m) = 0 since dg(m)#€ Srgﬂ S:I and d{/g! =0 on Nsince {fg}c ({ and the
elements of ({ are constant on N. Thus combining the above

0 #
l)]dj((),m)(AN)i Smnsm

X 0 # o .
Thus the integral manifold of $NS" on N through m is just the orbit of
m under the action of Gy on N. Thus the results of the previous section are

natural generalizations of the results of [3],[4] and [6].

b) Local Coordinates : If @ ¢ ¥ is a linite dimensional subalgebra then a
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classical theorem of Lie [2] can be used in many cases to choose local coordin -

ates on M so that the functions in ({ have a simple form.

A k-tuple (f1,. S 'fk) of functions on a symplectic manifold (M, Q) is cal-
led complete if the differential dfl i, d/k are independent and if there exist

k
functions Ui]-:R - R (1 <i,j<k) suchthat

{/1'/]¥:U1](f1"'//€) fOl' l:l,]

IA

k .
The matrix (Uij) of functions is called the structural matrix .

LIE'S THEOREM: Let (f,....f,) and (f; ,...,/k') be complete k-tuples
on the symplectic manifolds (M, Q) ) and (M’, Q’) respectively and dim M =
dim M’ . Suppose that /l.(x) = /i' (x*) for some x €M and x' =M’ . Then
there exists a diffeomorphism & from a neighborbood of x onto a neighborbo -
od of x* such that & Q*=Q.@fi=f; if and only if the two k-tuples have the

same structural matrix .

In the special case when the U_. are linear more information can be obtain-

&

ed. Assume that -

b
Vi ;= Cij fy

where C’.. are constants, the structural constants. (In this subsection the usual

1]
conventions of tensor analysis are employed). Then since { .} is skew symme-
tric (‘ij + ('ij = 0 and Jacobi’s identify for {. 1 gives

8. p .8 P o B _

: : 2n
Let ¢ 1., s q”. p oo P, be the usual symplectic coordinates in R and

1



define

g B
I*l (,l,'B q p{x
Then
a B a b
{ Eil =t Cig q Py Cipap, {
a a
- CigCiptap, ap,}
« a B
= C, y L
i (‘fb[ aBpaq aabq &
m B n
= [- C8i Cin- CRjCpi Ipmq
B m n
- CijCgnty, 1
s 2B
(,l-l- I‘B
Thus the k- tuples (/1 ,,,,, fk) and (FI, iV Fk) have the same struc-
tural constants. Thus if x €M is such that dfl(x) N d/k (x) are indcpen—
dent and «x’ ERzn is such that /i(x) = Fi(x’) and dl-i (%°); i v dl“k(x') are
independent there exists a symplectic coordinate system ¢,p about x such

that in these coordinates fi (q.9) = F;(q.p) .

For example if fI, f2'f3 £ S are such that | fi’/j § = fk when (i,j7,k)
is an even permutation of (1, 2, 3) and | fi,/jiz oy when (i, j, k) is an

odd permutation of (1, 2, 3) then the corresponding functions FI ,F_ ,F. are

257

F_ = ? 3
1“1”3“11’2

3
F: -
2 99 qu

1 2
F. = <
y 48 - 42
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These are the usual forms of angular momentum in R

¢) Holonomic Systems : Here we shall use the general results of section 2

to give a derivation of Hamilton’s ¢quations of motion for a holonomic system.

The derivation is unique in that it proceeds directly from the Newtonian formul —

ation to the Hamiltonian formulation without the historical intermediate Lagran-
.

gian formulation.

Let F = (fI" s 1) & R Rq, 1< g < n-1, be asmooth function such
q
-1
that 0 ¢ Rq is a regular value and so p=F (0) isa regularly  embedded
submanifold of R” of dimension 7 = n-g . In the physical system the func -

tion I represents the constraints and P the configuration space .

1 n : . n 7 )
Since TR is naturally diffeomorphic to R x R we shall use coordin -
n o n ¥ : g : -

ates (x,y) € R x R where x is considered as a coordinate in the position space R” and
y is considered as a coordinate in the velocity space T, R”. Let G be a positive defin-
1 . ) T g B il , .

ite symmetric matrix and K=(1/2)y Gy = (1/2)quy y ", Consider K as a Riemannian

" n " g g /

metric on R and the kinetic encrgy of the physical system. We shall take G as constant
i.e. independent of x in order to simplify the calculations given below. Define a symplec-

¥ n
tic structure on TR hy

T a B
Q=dx Nd(Gy) = ¢ dx ANdy .
ap

n . ,
In the natural way consider F ,... F as functions on TR and since they

1
are independent of 'y they are involutions . That is |} E;. l"/- t=0 forall 7
and j where {, | is the Poisson bracket operator defined by .Q . Let
0cC Rn be an open neighborhood of P such that dl-"l ..... dF are inde-

q
n - o
pendent at all points of 0 and M=0x R . Let (& be the algebra genc rated



by F...., F . By the definition of M it is clear that ( has rank ¢ .

In summary we have used the constraint F ..., F and the kinetic energy

K 1o define a symplectic manifold (M, Q) and an algebra of functions d of

rank ¢ . This is precisely the data necessary for the theorems of section 2.

LEMMA : There is a naturally defined symplectic diffeomorphism between

the quotient space of Theorem 1 and the cotangent bundle of P .

Proof : W( use (t to d("lll(‘ S ’ S cte. as lll(' revious section. ll 1S
p
n

2 1 0
clear that P x R" = U TYR is an integral manifold of §  and let it be
seEP

called N .
. . # # 0
Since 0 =} I‘i, F. }=(dF ) _l dF, then SmC Sm . Let meN have
: i

] /
coordinates (u,v). A direct calculation yields

d F. i # aB O F.
dI:i (m) = —= (u) dx!  and dF (m) =g & bt f) __’9_6
()X] g () xa (’) y
-1 aB, . 0 4 . _
where G ~ =1z |. Thus the spaces \ T o and S, are independent of

#

" #
v and so we may consider s, asa subspace of 7 1 R” and §, =L, . Thus
! n, . i =7 )
B =N/~ :pléP(TpR | Qp) where yEQpC R, if y=G w where w z=0

forall ze T, P

b

Now construct the map ¢ : B > 'P by sending [y! - /y where /y(z) =
y TGz. First ¢ is well defined since [y! =[y+k] when k= G ' where
u.Tz =0 forall z¢ TpP apd /y + k(z) = yTGZ+ kTGz = yTGZ+ wTGG;I -

T A L a
y Gz = [y (z) when z¢€ TpP. I'he map is clearly one -to-one and since the

dimensions of the two vector spaces are the same, ¢ is an isomorphism. Thus
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* .

¢: B> T P is adiffeomorphism. Also it is clear that ¢ takes the simplectic
. d ” . J .

structure of B 1o the nawral symplectie structure of T P and so ¢ is a sym-

plectic diffeomorphism.

Now let us consider a system of parlivles whose position and velocity are
; n n n ) . i
givenby (x,y) &R xR = TR and let the system be subjected to *‘ideal for-
: B -1 :
ces’ which constraint it to move on P=F (0). Let the kinetic energy of  the

T
system be K=(1/2) y G_ and the external forces be derived from the potential

y
encrgy U . The assumption that the forces of constraint are “ideal” means in
" " y # #
this notation that the equations of motion for the system is of the form b =dH
” ' . - ~ d
0 where H=K+ U, 6 is a smoothone form such that 6 (m) ¢ S for all

m and # is with respect to the symplectic structure defined above. Since the mo-

tion is to take place on P you must have h(m) €§

o forall m and <o b _ddr-
i

# #
b _.Idl"l- JdQ =0 or tH, I:i { =0 on N . Thus the previous theory applies |
m . g #
i.e. Theorem 2, and so the flow defined by 5 may be carried down 10 B and

.
) . -
across by & to T P . 'This gives rise to Hamilton’s equations ol motion on T P.

d) Characteristic Multipliers of a Periodic Solution : In [4" Meyer gave a ge -
neralization ol an inequality by Poincare on the algebraic multiplicity of the cha-
racteristic multiplier + 1 of a periodic solution. The hypotheses given there were
far too strong and the proof y iclds a better theorem. Since the statement of the im-
provided theorem uses the notation of this paper we shall give it here but refer the

reader 10 (4] for the proof .

Using the notation of section 2, { is an algebra of integrals for the Hamilto -

A : el 0 #
nian vector field X = (dH) Sm =4dF(m): F ¢}, and S and S, are as

before. In constrast to the previous results it is best to include H as an element
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of (. Let the solution of X through m be periodic of least non negative pe-

riod T . (Note we include the case of an equilibrium point) .

THEOREM 3 : The geometric multiplicity of the characteristic multiplier + 1
of the periodic solution through m is greater than or equal to dim S . The al-
gebraic multiplicity of the characteristic multiplier +1 of the periodic solution

2 S ¢ 0 i
through m is greater than or equal to dim S, + dim (S, NS, ).
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