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ABHRACT

A classical theorem in mechanics states that a Hamil-

tonian which is invariant under a symmetry group admits addi-

tional integral s of motion. Thi s paper investigates the converse

of the above theorem. If a Hamiltonian admits integrals then

a symmetry can be constructed and the flaw studied on a quo-

tient space. The quotient space is shown to be symplecti c

. and the resulting flow Hamiltonian. The constructions used

ore similar to the recent constructions of "lehoroshev, Marsden

and Weinstein and Meyer.

The general theory presented is used to give an intrinsic

derivation of Hamilton's equations of motion. Al so special

local coord in ot es are given which display the integrals in a

simple form.

Forward. Miss Uei Fong d icd sudden ly before complcling her doctoral research.

Frum her not ex, I was able to complete her di s scrt.at ion and she w a s pusthumous ly

awarded the degree uf Doclor of Philosophy by the Uni"ersily or Cincinnali in .june

CO) This research was supported by NSF Grant GP37620 •

75



11)74. Her thesis along \\ ilh several improvemcnl s and extensions is presented in this paper.

In Miss Fnng's bcha II', I would I ike 1.0 thank the Charles Phel ps Tal'1 Foundation for gra-

nting her a fellowship during her studies at the Universf ty of Cincinnati. K. R. M.

L Introduction: A classical theorem in mechanics states that a Hamiltonian

which is invariant under the action of a group admits additional in te gra la. In [7]

Smale shows that in this case the flow defined by the Hamiltonian restr icted to an

integral surface is invariant under a subgroup of the full group and so the flow is

naturally defined on the quotient space ohtained by identifying orb it s of the sub-

b"roup in an inlegral surface. He uses this reduction to investigate re la t ive equ il i-

br iu m points in the planar n-body probl em, Suhsequently, Nehoroshev [61, Marsden

and 'Veinstein [31, and Meyer [4] have shown that the resulting quotient space is

sym pl ec tic and the resulting flow is Hamiltonian. This result is a generalization

of a theorem of Reeb [91 which states that the orbit space of a Hamiltonian flow restricted

to an energy surface naturally carries a symplectic structure (also see Souriau [81). In this

case the group is the flow itself.

This paper investigates Hamiltonian systems which admit additional integrals

but an apriori group acrion is not given. When the Hamiltonian system admits additional in-

tegrals we again construct a quotient space where the flow Cali be studied. This gives a

global generalization of the classical reduction of a Hamiltonian system of n-degrees of

freedom to a Hamiltonian system of n-k degrees or freedom when k integrals in involution

are known. These general results are developed in section 2.

The third section discusses particular situations in view of the g~neral theo-

ry. In this section we recoup the theorem on systems with symmetries, give spe-

c ia] local coord in at cs , give! an intrinsic derivation of Hamilton's equations or

motion and discuss the characteristic multipliers or a per iod ic orb it in the pre-
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sence of integrals. Our derivation of Hamilton's equations of motion is novel in

that it does not require the Lagrangian formulation as a starting point. The deri-

vat ion proceeds direcr.ly from the Newtonian formulation to the Hami l ton ian for-

mulat ion,

2. Notation and General Results. Throughout this paper all manifolds, functions,

forms, etc. will be COO. The notation of symplectic geometry used here follows

closely the notation given in [1 J. The reader is referred to [1] for the basic theo-

ry of symplectic manifolds and to [51 for the basic theory of distributions. Let

M be a symph~ctic manifold of dimension 2n with symplectic structure 0, ie , 0

is a closed, nondegenerate 2 -form on M, Thus for m SM. Om is a nondege-

nera te skcwsymmc tr!c bilinear form on TmM and so TmM is a symplectic li-

near .;;pace with symplectic inner product Om' Tire symplectic inner product

Om defines an isomorphism ~ : T M ... T* M : u -s u ~ - ° (v ) Let1ll m - m " ,

iI: T*M ... T M: o ... vii be the inverse of ~
1ll m Let s:.;;;: s: (M) denote Ihe SIllO-

oth real valued functions on M, X = :x (M) the smooth vector fields on M and

:x * = :x * (M) the smooth one forms on M, Tllc symplectic structure ° defines

cr GY*the Poisson bracket operator !, I and turns both J and A into Lie a lgebras .

If H sS: then dH S X' and dH iI = (dHY#S:X. dHii is called the Hamiltonian

vector field whose Hamiltonian is H

For any linear space Y the dual will be denoted by v". Hue Y then lei

UO=!/SY*:j(U)=Olandif UCY* then let UO=!USY:!(u)=O forall

!suI .

Before proceeding with the formal development, cons irlera t iou of the following

situation will help motivate the definitions and lemmas to follow. Let H sS:
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then the Haniiltonian vector field dHIl defincs a flow un M. One method for

analyzing the flow d e l in ed by dHIl is to find all the global integrals for the flow

and then study the rcstriction of the flu\\' on the invariant level sets of these inte-

grals. In general these invariant sets may not be manifolds and even if they arc

manifolds they may not carry a symplectic structure. However, under some mild

nondegeneracy assumptions it will be shown that a quotient space of these inva-

riant sets docs admit a symplectic structure and a naturally defincd flow on t" is

quutient space is Hamiltonian. The set of all integrals for dHIl is the annihilating

suhalgebra of H in 1, i.e , the set of all integrals of dHIl is g = g (H) = IF E 1 :

1 H, F I =0 land g is a subalgebra of 1. In many physical examples is not

known complctely but a subalgebra of g is known.

LEMMA 1. Let V be a symplectic linear space with symplectic inner product

° II °£land we V' a subspace. Tben W/(W n W ) admits a natural symplectic

inner product co defined by w ([ xl, [y 1) = £l (x , y) .

Proof: The proof given here is the same as found in [3] or [4]. If v E WII

and u 'E W , then £l ,v .u ) = ° by definition. Thus if x, y E WO and 1;,17 E WllnWo,
then £l(x+l;,y+ry)=£l(x,y) and so w ls we l] defined. Ifw([w],[y])=O

for all [y] E Wc/( wil n Wo), then £l(x,y) = 0 for all yEW or £l(x,.) E W.

Thus XEWIl or [xl =0. This shows that co is nondegenerate on WOI (Wlln Wo)

Clearly w is skew symmetric.

In order to make a global construction based on the above, some notation

FE G' l, S = S(G')

(SII n SO)
m mU

mEM

G' be a subalgehra of 1, Sm=Sm(G') = !dF(m) ET~ M

U S I. Let s'' = U So; S II = U SII and Siln SO=
m EM TIl m EM m m EM m

Clearly Sm is a linear subspace of T~M and if dim Sm

must be given. Let
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is independent of m then S is a smooth sub-hunrlle of T* M. 'rhe algebra C!

will be said to have rank q if d im S = q for all m EM
m

If (j' has rank q

then S is an involutive d istribul ion of M of rank 2n - q (see [51 Theorem 2.

11.11) .

•
LEMMA 2: Let C! be a subalgebra 01 1 o j r anle q .. Then S# is an in-

volutive dis trib ution and i] dim (S# n Sa ) is independent 01 1Il 10 M then Siln Sam m

is an involutive distribution.

Proal: Let mOEM and IJ •.... lqEC! such t hat dIJ(mO) •. · .. dlq(TllO)

span S;n
o

' Then there is an open neighhorllOod 0 of »o such th a t dl/m), ..

.• dlq(m) spanSm forall mEO. Lei XJ=dl:, ...• Xq=dlq# ~o XiEr

# #and XZ(m), .... Xq(m) span Sm forall m EO. Now [Xi•Xj1 =! dli, dlj 1=

= dl I., 1,1#. Since (j' is an ,tlgehra I II" Il,l E (j' and so dl j., j.l (m} lOS.
I J . I I III

Thus [X" X
I
,1 (m} 10 S# for all 111100. Thus S# is an vi nvo lut ivr' rl is tr ibu t inn ,

I m

Clearly if the intersection of t\\'o in vo lut ive d istr ihu t iou« has constant d imcn s ion

then the interscction is an involutive d istr ihut io n. Thus the so c on d part of the

lemma is now ohvl ou s .

Since SO is an invol u t ive d is tr ihut io n for each mO t: M thr-rc is a un iquc

max ima l connected integral manifold N of SO through mo' That i,.., 1110 10 N ,

N is a ('onnl'eted subm an iio ld of tiL T N = SO for all III EN auel N i,.. ma-m III

xirnul with respect to the"" properties. Let mo 10 til 1)(' l'ix('(1 aud N the maxi-

mal integral manifolds of' 50 through mO' Since S# n SO is all in vo lu t iv e

distrihution on M anel S# n SO C T N for each III EN one can consider
m 111 111

II 0 - # 0
S n S as an il\volut ive distribut ion on N. Let S = (5 n S ) I N U

mEN

(S II n sO ) For eneh 111 10 N Ie t LIII. Ill' the max ima I integra I man ifolds of S
111 . m • .
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in N. If m and m'EN then define m - m'ELm . Clearly - is an equivalence relation on N.

Let B be the quotient space of N modulo this equivalence relation and TT: N -e B the pro-

jection map. In general B may not be a manifold so some additional assumptions must be made.

THEOREM 1. Let Ci' be a s ub aig ebra of J of rank q and mO ENe M as
# 0

above. Let dim (S n S ) b . d d fm m e tn epen en t 0 mEN so that TT: N -> B is de f·

ine d . tf B is a manifold and TT: N -> B a fiber bundle then B is a symplectic

manifold with symple ctic structure w. Moreover, Q i N = TT' wand if TT (m}> b

. 0 # 0
then D TT: 1 N = S . -e TbB has kernel S r,S

III m m ' m

Remark: For any 1110 EM there is an open neighborhood 0 of 1110 such that N-'iB

is a trivial disk bundle over a disk (see [61, Theorem 2.11.8).

Proof. : Lei 111 EN be such thai TT (111) = b. Then DTT: T N = 50 -e Tb Bm m

is s urj ect ive and has kernel 5# n 50 by construction. Thus TbB is isomor-
III III

0#0
ph ic to 5m / (Smn Sm) and so by lemma Lrh e space TbB has a symplectic

inncr product. However, lids inlier product must be shown to bc independent of

-1 S . . 1
m E TT (b). incc N is connected it is enough to show rhat lor each m ETT (b)

there is a neighhorhood 0 of m such that the symplectic in ncr product defined

o # 0 0 /I 0
by 5 / (5 n S ) and 5 / (5 n 5 ) on TbB are the same for all rEO.

m TIl m r r r

This will be shown hy constructing a symplectic isomorphism f: TmM -> TrM
o 0 # 0 # 0

such that f (5 ) = 5 and f (S n S ) = 5 n 5 . This symplectic isomor-m r m m r r

ph ism will 'be constructed as the derivative of the time one map of a Ham iltonian

vector field on M wh ich leaves Nand Lm invariant.

Let the dimension of N be a = 2n -q and the dimension of Lm he (3. Let Ubean open

neighborhood of m in M and x l' ... ,x2n a coordinate system at m such that 1) m has COOl"-

I
dinates x1= ... =x2n=O, 2) U is given by IXil < 1 for ir l, ... Zn , 3)N n U is given by

I Xi I < 1 for i = 1, ... ,a and Xa+ 1= ... = X'2n=0, and 4) the leaves of
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5 in N n U are given by [xi I < 1 for i=1, ... , [3, x.=a .. for i= [3+l, .. ,a
1 1

(ai's constant such that 1 a·1 < 1) and
1

x =0i for i = a + 1, ... , 2n. Such a

coordinate system exists by theorem 2.11.8 of [5) but it need not be symplectic.

The neighborhood 0 is given by 0 = L n u. In these coordinates L n U =0m m

is given by 1\1<1 for i=l, ... ,[3 and xi=O for i;'[3+1, ... ,2n. Let

rEO=LmnU have coord inates xi=bi for i r ), ... ,[3. The vector field

Y = bi ri/Jx
1 + .•• + b[3 J/Jx[3 will be considered as defined on N n u . As

such it is clear that Y is tangent to N and to the leaves of s. Moreover the

solution of Y through m at t = 0 passes through r ~hen t = 1

Let e = y ~ so e is a one form defined on N n U - - however it may take

values in the cotangent bundle of M n U = U . Thus we consider e: N n U -e T*U

with the usual projection property. If X is any vector field on M which is tan-

gent to N then es(Xs) = 0s(Ys,Xs) = 0 for all

/I 0
and Ys E 5 n 5 . Thus in the above coordinatess s

Define G: U --> R by thc formula

ie· (x , ... , x ) X
1 1 a

/I
so th at dG I (N n U ) = e or Y = d GIN .

Thus wc have extended the vector field Y which was only defined on
/I /I

to a Hamiltonian vector field dG defincd on U. By construction dG

/I
tangent to Nand Land the solution of d Gm

NnU

is

t = 1. Let

through m at t =0

/I
¢ be the flow defined by dG so ¢ (m}

t 1

passcs

through r at = r
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D¢ ;T M-->T MI. m r

/ n SO. Thus !/J
r r

o 0 ,II 0
is symplectic, D ¢ (S ) = S a nd D ¢ (S n v

• 1m r ]m m

D¢l is the desired symplectic isomorphism.

THEOREM 2: Let the notation and hypotheses 0/ 'theorem 1 bold. LeI

H E:t be such that .1 H, (f 1= 0, ie., IH, / 1=0 for all / E (f. Thus
#.

dH

each

/ E (f is an integral 0/
II

by dH . T'b en H is

and N is an invariant m arii jol d for the flow defined

be de lin ed by h

-1 rrc on s tan t on TT (b) for all b E B and so h E :f (./3) may

-1 . . II.
= H ,TT • Also each trajectory 0/ the flow de/wed by dH tubicb

IIlies in N is mapped unto a trajectory of db' by the map TT. Also TT pr e s er>

u es parametrization 0/ the trajectories.

Proof: Use the same not at ion and coordinate systcm as in the proof of the

. . II II ~
prcv ioua t heore m. By hvpo th c s is 0 = !H,II = O(dH ,d/) for all /EU and

II II II
so 0 (dH , S ) = O. The vector field dG constructed in the previous sectilMl

has the prolwrty that dG'I(s) E S~ for all s EN. Thus o.s(dH'I(s), dGII(s)) = 0 for
II

all sEN or H is an integral for the flow de liued 'lJy dG restricted 10 N,

II
Since H is constant along the trajectories or dG in N we have Him) = H(r).

But r was an a rb itrary point of Lm near m and Lm is connected. Thus H

is constant on Lm•

In order to establish the rest of the theorem it is enough to show that

II II •
DTT (d H (m)) = d h (m) when TT im} = b. But th is follows at once from TT h =

H I N or TT· dh = d (H IN) and TT· W = n IN.

3. Miscellaneous Remarks and Applications.

a) Symmetries: In (3 ] , [41 and [6] Hamiltonian systems which arc

invariant under the action of a Lie group are studied and a reduction which mo-
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tivated the results of the previous section is given. Here we shall show how the re.-

sult.s given above apply to this case. Let G be a connected Lie group, A its

algebra and .p :GxM~M:(g,m)~.p(g,m)=gm au act ion of Ga on M

such that .p(g,.): M --> M is a symplectic diffeomorphism for all g lOG Let

a lOA and eat he the one parameter subgroup of G generated hy a. Then

.t, at,'Pa:RxM~M:(t,m) ~.p(e i m )

is a Hamiltonian flow on M and so is generated by a local Hamiltonian vector

field Xa on M. Xa is a local Hamiltonian vector field in that X~ is a elo-
~

sed one form. Let us assume that for each a lOA t he form Xa is exact i.c ,

Xa is a global Hamiltonian vector l'ield. (This is always the case if n is

1/
exact, sec [3] ). Then X a = dF a where P a: M ~ R is a function wh ieh

is determined up to an additive constant. The map which a s soc iat es to each

a lOA the vector field Xa is a Lie algf'bra homomorphism from A into :X.Jn

genera! it is not pns s ih] e 10 clioo se the add itive constants so that there is a

Lie algl'lna homomorphism from A into :J wh ich lakes a into J~ where

This problem is discussed in dcta i l in [I:Il but will not concern

us here. Let Ci' C:J be tile scI of all functions I' a : M -c R such ih at X a =

:t at at I E I I a>dF a genf'rates -a flow If (e ,171) = e 111 'or some a 10 A .' ve n I lOug 1 U

ma:-' not be a homomorphic image uf A. hUI it is a lin it o d inu-n s ion a l suhal gc-

bra uf :J.

Let 111 10 ~l be fixed. Then .p(-,m):G~M and D11f(e,m):A

83



II
we SPC that S1I/ = DzljJ(C',m) (A). Let us aSSUIIlC, as in tl.., previous section

that there exists an integral ma nifol d N through
o

m for S. Let

g = N I. Clearly GN is a c l osed suhgrollp uf G and he nce a Lir- slIhgrollp .

LeI ANC A bethcafgd.raol' GN, Let It:cr and since I iseon",tant un

at at
N it [o l lows thai 1(1" Ill) = 1(1jJ (C' ,m)) is c-ou st au t for each a €AN. Thus

o = _f!.. 1(<jJ(eat,m)).1 = dl(D IjJ (e .rn) (a))
d t t= 0 j

ur

Since
II

D j IjJ (e,m) (AN) C Dj IjJ ( e .ra} (A) Sm we can combine the-

se results to gh e

To sho\\' the inclusion in the upposite direction let g Ell be any element

such that dg(m)!I € S~n 5;, Let a € A be such that IjJ (e at, m ) is the flow gene-

rated by dg
ll

The opposite inc l us ion will 1'0110\'\ uncc it is shown that a €AN

or th a t the flow ljJ(eat,m) leaves N in\arianl.ThisfollOI'\'sfrum I/,g\(r)=O

for all I e (1 and all !e N which in turn follows from d I f, g I =0 on N and I f,g I(rn) = o.
But it.« I(m) = 0 since dg (m/ € 5 On 511 and d!l,g l =0 on N since If,g l € (1 and them m

elements of (:j' are constant on N. Thus combining the above
o II

DjljJ(e,m) (AN) = 5mn5m '

. 0 II
Thus the integral manifold of S n 5 on N through m is just the orb it uf

m under the action of GN on N. Thus the results of the prcvious section are

natural generalizations of thJ results of [31 , [4] and [6].

b) Local Coordinates: ]I' (1 C s: is a finite dimensional subalgebrathen a
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classicalthcorem of Lie [21 can be used in many cases to choose local coordin-

ates on M so that the functions in (f have a simple form.

A k -tup le (f1"'" fk) of functions on a symplectic manifold (M, n) is cal-

led complete if the differential dfl, ... , dfk are independent and 'if there exist

funct ions
k

V ij : R -e R (l .s i , i : k) such that

The matrix (Vij) of functions is called the structural matrix.

LIE'S THEOREM: Let "r :: fk) and (fi " ..• f ~) be complete k-tuples

on the symplectic manifolds (M, n) and (M·. n') re spectively and dim M =

dim M'. Suppose that f.(x) = f' (x') for some x EM and x' EM'. Then
t i

there exists a diffeomorphism -sb from a neighborhood of x onto a neighborho-

* *ad of x' such that ¢ n' =>1.1, ¢ f;= fi if and only if the two k-tuples have the

same structural matrix.

In rhe s pec ial case when the V,, are linear more information ca n be obtain-
lJ

ed, Assume that

where
h

C .. arc cons tants, thestrucl.ural c on st ants , (In this suhs ect ion the usual
t J

convcu t ion s of tensor ana lys is are employed). Thcn since I, I is skew symme-

tr i«
h h

C .. +C .. =O
XJ t J

and Jacobi's identify for I, I gives

Let q 1, ... ,
2n

IH' Ihe u"nal symplectic coordinates in Rand
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definc

F.
I

I F.,F. I
I J

{3 m 11

Cij C {3 n Pm q

c.f3 F
If {3

Thus the k-tuples (1
1
, .... Ik) and (~""" rk) have the same struc-

tura~ constants. Thus if x EM is such that d ] (x) •... , d] (x) are indcpen-
1 k

d d' 2n.ent an x ER IS sud that I. [x) = F(x') and dF t x ' }, .... dFk(x') are
I I 1

in depende nt there exists a symplcctic coordinate system q,p about x such

that in th ese coordinates li(q, p) = Fi(q,P)·

For examplc if I , I ,I E:f are such that I/i,IJ· I = Ik1 2 3
is an ev n permuta ti on of (1, 2, 3) and 1/.,I.l = - Ik wh en

. I J

odd pcrmutation of (1, 2, 3) then the corresponding lunct ions

wh e n (i, j,k)

(i, i. k) is an

are

2 3
F q P3 q P21

F 3 1
2 q P1 q P

3

F3
1 2

q P2
q P1
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These are the usual forms of angular momentum in 1/.

c) Holonomic Systems: Here we shall use the general results of section 2

to give a derivation of Hamilton's equations or motion for a /lOlonomic systcm.

The derivation is unique in that it proceeds directly from thc Newtonian formul-

a ti on to the Hamiltonian formulation without the historical in term ed iatc Lagran-
•

gian [ormu lat ion.

Let F =

thut 0 E R
q

n q .
(j1 .... , I ) : R ...,R , 1 ~ q ~ n-l .

q -1
is a regular value and so p = F (0)

bc a smooth functiun such

is a regu larly embedded

submariifolJ of Rn of d imcns ion I = n-q. In the phy s ic a] system the [unc -

t ion F represcnts the constraints and P the configuralion space.

n . . n n
TR is natura l ly diffeomorphic to R x R we shall use coordin-

( n nL dd d nates x,y) E R x R wnere x is consi ere as a coor inate in the position space Rand

Y is considered as a coordinate in the velocity space TxRn. Let G be a positive defin-

ite symmetric matrix and K = (l12) YT Gy.= (l12)ga13yay 13. Consider K as a Riemannian

n
metric on R and the kinetic encrgy of the physical system. We shall take G as constant

i.e, independent of x in order 10 simpl ify the calculations given below. Define a symplec-

n
tic structure on TR by

Tn = dx II d(G y)
a (3

g dx II dy •
af3

I I. I '<1 r r <Is functions onn t. c natura way con si er -1"" < q

are iudcpcn<lcnt of y thcyarc involutions. That is

TRn and since they

and j where I, I

IF., r . I= 0 for a II i
t J

is the Poisson hracket operator defined by. n. Lcl

11

pendent at all points of 0 and M = Ox R . Let

d F .... , d Fare indc-
1 q

Ci' be the algebra gencratcd

o c 1/ he an opcn neighborhood of P ,-nch thai
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by l~, ... ,r~. Bythc d,·l'illilion of M ili"'elearlhal (j' hasrallk q ,

111 summary WI' have used t he c onstru in t Fl .... ' ['q and tl- c kinetic energy

K 10 de I lne a sympieci ic manifold (M, [2) and an algehra of funetion,,; (j' of

ran ] q. This is prc('isely the (lata nceessary for the rhc orems of s ce t ion 2 .
•

LEMMA: There is a naturally defined s ym ple c t ic diffeomorphism between

the quotient space of Theorem 1 and the cotangent bundle of P .

elear that
n

P x R = u
s E P

11T Rs

1/
S, S c rc , as in the previous section. lt i,,;

is an inlcgral man ifulrl of SO and let it be

Proof: We usc (j' 10 dc iinc

called N

Since 0 = 1 F., F. 1= (d F 1/ ) J d F. II. en
I 7 j I

coordinates (It,v). A d irc ct ca lcul at ion yields

Let mEN havc

a F· j
dF. (m) = L (u} dx

I a)
1/

and d FJm)
I

-1 af3 0
where G =! g I. Thus the spaccs Sm' Sm

1/
v and so we may consider Sm as a subspace of

n
B =N/- = U (TpR I Qp) where y EQpC RnpEP
for all z.E Tp P.

and S~ are independent of

n 1/
T u Rand Sm = Lm· Thus

-1 T
if y=G w where w z=o

~ow construct ihe map c/>: B -s T* P by send ing [y 1 -> fy where fiz) =

-1
is well defined since [yl = [y+kl when k=G w where

T T T T-1
z E Tpp ard fy + k(z) = y Gz+ k Gz"- Y Gz+ w GGz

T I~y G'z , 'irst c/>
T

w z = 0 for all

T
y Gz = f

y
( z) when z E TpP. The map is clearly one - to-one and since the

dimen!">ions of the two vector spaces are the same, c/> is an isomorph.ism. Thus
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¢ : B..., T P i" a lJiHeomorphi,,;m. Also it is c lr-ar that ¢ lakes tilt' simplcl'tic

structure of B 10 t hc natural sympkclic s trnr-turc of T* P and so ¢ is a sym-

p lcc tic diffeomorphism.

Now lei us consider a system uf p art ic les whose pusition and ve loc ity are

11 n n
given by (x, y) E R x R = TR and let the syslem lit' s ubjc c tcd tu "ideal for-

ce s" which c onstr a int it 10 move on P = P-
1

(O), Lc t thr- k ine t ir- energy of the

T
system be K = (1/2) Y Gy anti the cxrcmal Iorcc s be d er ivr-rl from the potential

energy U, The assumption that the forces uf c-ou st rain t art' "ideal" m eans In

/I /I
Ihis notation th at the equations or motiun for the syslem is uf ihr- form h =dI-I -t-

/Ie where II = K + U, e is a smooth one form sUl'h t hat e (111) E S1I/ for all

III an d /I is wit h rc:spec~t10 th e sympketil' siruciure' defined above. Sinel' Ihe mo-

k I I /I 0 #.J //
tion is 10 ta I' P ace on P you m us t lave h(1II; E Sill for all III and so b dt, =

I

/I /I
h .J dF . .J 0 = 0 or 1 I/ , t: I = 0 on N

t t

i.e. Thr-orc.m 2, anrl'so Ihe [lo-v cll'fint'd by

. Thus the prc viou s tllt'ory applic·,o.; ,

/I
b may bl' carried dO\\1l 10 Band

*
aero.ss by ¢ 10 T P, This givc,s ri"l' 10 lIamilton's e quu ti ous of m o t ion 011T*P,

d) Characteristic Multipliers 0/ a Periodic Solution: In [41 ~k)"r g,l\e a 1!('-

ncrul izati un.of an inl'qualily hy P"incarl' on tIll' algehrail' lIIultiplicilV of till' C'h01-

raelerislir' lIIultiplier + I of a p"riodie solulion. TIIf' hypothesl's gi"'11 Ihl,rt, \\I'n'

far too sirong and Ihe proof yields a beller t1]('orem. Sinl'e the slall'lIlt'nl of Ihl' 1111-

prel\ilkd Iheorem n"es Ihe nolaliun of Illis papc'r \.\t. shall gin' il l1I'rl' hUI refer Ihl'

n'mll',r lu [,1'1 for Ihe proof.

Using II", 1I0taiion of s('clion 2, Ci' is an algcbra of inll'grals for tI](' lIalllillo-

nian \eclor fic·ld
/I

X = (dI/) ,S7Il IdP(m) : FECi' I, alld

bdore'. In conslraSI 10 Ihe prcvious results' it i's hesl to include I-I as an e1ellll'nl
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or Ci'. 1,1'1IIIl' sollliioll or x Ihroll!!h m he periodic or lra s t 110111I,,!~ali\l' IW-

riod T. (Noll' IVt' inclu dc tl ... l'aSI' or all vqu il ibr ium po in t ) •

TIIEOI<'[;M 3: Tb e gf'ometTic multiplicity 0/ t be cb ara c t e ri s t ic multiplier + 1

0/ tb e pc rio dic solution tb;'ough m is greater tb au or e qna l to dim Sm' Tbe al-

g e brai c multiplicity 0/ t b e c bara c teris t ic multiplier + 1 0/ tb e periodic s olut ion
o .1/

through m is greater tba n or equal to dim SIf! + dim (S If! n Sm ) .
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