Revista Colombiana de Matemáticas Volumen IX (1975), págs, 91-94

A NOTE ON UNIVERSAL MAPS

Ьу

Harold BELL

ABSTRACT

A map d of the *n*-dimension Euclidean unit ball B^n into itself is called universal if every map of B^n into itself agrees with d at at least one point. Theorem. Let d be a map of B^n into itself, let $A = d^{-1}(S^{n-1})$ where S^{n-1} is the boundary of B^n , and let f be the restriction of dto A. Then d is universal if and only if the homomorphism generated by f between the corresponding Čech cohomology groups f^* : $H^{n-1}(S^{n-1}) \to H^{n-1}(A)$ is nontrivial.

A map f from a topological space X into a topological space Y is called universal [1] if every map from X into Y has a coincidence with f, that is for each map g from X into Y there is an $x \in X$ such that f(x) = g(x). In [3] a sufficient condition that a map from the Euclidean *n*-ball B^n into itself be universal was established.

THEOREM 1. (Schirmer). If f is a self mapping of B^n that maps the boun-

dary of B^n , S^{n-1} , onto itself essentially, then f is universal.

In this note a necessary and sufficient condition that a map be universal is established. The author is indebted to Professor Chung-Wu Ho for raising the question of the existence of necessary and sufficient conditions for a self mapping of the 2-ball be universal. The author is also indebted to Professor M. Dold for pointing out Hopf's extension theorem [2] during a conversation, which eventually eliminated a long proof of the two dimensional case and resulted in the completion of the proof of the *n*-dimensional case.

In what follows $H^{n}(X)$ shall denote the nth Čech cohomology group of a space X, with integer coefficients.

THEOREM 2. Let f be a mapping of a space X into B^{n+1} , $A = f^{-1}(S^n)$, and $g: A \to S^n$ such that g(x) = f(x) for $x \in A$. Then f is not universal if and only if the map g extends to a map $G: X \to S^n$

Proof. If f is not universal there is a map b of X into B^{n+1} such that $f(x) \neq b(x)$ for x in X. Let G(x) be the point of intersection of S^n and the open ray that contains f(x) and has b(x) as an endpoint. Clearly G(x) = g(x) for x in A. On the other hand, if there is an extension of g to a map G: $X \rightarrow S^n$ let b(x) = -G(x) for x in X. If $x \notin A$ then $b(x) \in S^n$ and $f(x) \notin S^n$ so $b(x) \neq f(x)$; if $x \in A$ then $b(x) = -G(x) = -g(x) = -f(x) \neq f(x)$. Therefore, f is not universal.

THEOREM 3. Hopf's extension theorem. Let X be a compact metric space of dimension $\leq n + 1$, b a mapping of a closed subset A of X into S^n , and e a generator of $H^n(S^n)$. Then in order that b be extendable over X it is necessary and sufficient that $b^*(e)$ be extendable over X, where $b^*: H^n(S^n) \rightarrow H^n(A)$ is the bomomorphism induced by b.

THEOREM 4. Let f, A, and g be as in Theorem 2. If X is separable metric and the dimension of X is $\leq n + 1$ and $H^n(X) = 0$ then f is not universal if and only if the induced homomorphism $g^* : H^n(S^n) \to H^n(A)$ is the zero homomorphism.

Proof. Suppose there exists a $G: X \to S^n$ that extends g over X. Then $g = G \circ j$ where $j: A \to X$ is the inclusion map. Since by hypothesis $H^n(X) = 0$, $G^* = 0$ and $g^* = j^* \circ G^* = 0$. If $g^* = 0$, then in particular, $g^*(e) = 0$ for any generator e of $H^n(S^n)$ and it follows that $g^*(e)$ can be trivially extended to X. Hopf's extension theorem then asserts that g can be extended over X, by Theorem 2 f is not universal.

THEOREM 5. Let f, A, and g be as in Theorem 2 and let $X = B^{n+1}$. Then f is universal if and only if g is essential.

Proof. If g is not essential then g is homotopic to a constant map c. Therefore, $g^* = c^* = 0$ and by Hopf's extension theorem g can be extended to a map $G: X \to S^n$. f is not universal by Theorem 2. If on the other hand, g is essential, then since all mappings of B^{n+1} into S^n are homotopic to a constant map it follows that g cannot be extended over B^{n+1} . Therefore, f is universal by Theorem 2.

Remarks. (i) The condition $X = B^{n+1}$ in Theorem 5 could have been replaced by the condition "X is compact metric and every map of X into S^n is not essential".

(ii) The use of Čech cohomology could have been replaced by Čech homology but not by singular homology. For example, let $X = B^2$ and let A be the boundary of a neighborhood of the origin that is contained in $||z| : 1/2 \le ||z|| \le 1$ } and has trivial singular homology groups. Let d(z, a) be the distance from z to A. Let $f: B^2 \to B^2$ be defined by f(z) = (2 - d(z, A)) z if $||z|| \le 1/2$, and f(z) = (1/||z|| - d(z, A)) z if $||z|| \ge 1/2$. Then f is in fact universal and $f^{-1}(S^1) = A$.

REFERENCES

- W. Holsztynski, Une généralisation du théorème de Brouwer sur les points invariants. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 12(1964), pp. 603-606.
- 2. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, New Jersey, (1948).
- 3. H. Schirmer, A Brouwer type coincidence theorem, Canad. Math. Bull. vol. 9, no. 4, 1966.

Department of Mathematics University of Cincinnati Cincinnati, Obio, 45221, U. S. A.

(Recibido en noviembre de 1974)