Revista Colombiana de Matemáticas Volumen IX (1975), págs, 91-94

A NOTE ON UNIVERSAL MAPS

by

Harold BELL

ABSTRACT

A map d of the n-dimension Euclidean unit ball B^n into itself is called universal if every map of B^n into itself garees with d at at least one point. Theorem. Let d be a map of B^n into itself, let $A = d^l(S^{n-1})$ where S^{n-1} is the boundary of $Bⁿ$, and let f be the restriction of d to A . Then d is universal if and only if the homomorphism generated by f between the corresponding \check{C} e ch cohomology groups \check{C} : $H^{n-1}(S^{n-1}) \rightarrow H^{n-1}(A)$ is nontrivial.

A map f from a topological space X into a topological space Y is called universal $\begin{bmatrix} 1 \end{bmatrix}$ if every map from X into Y has a coincidence with f, that is for each map g from X into Y there is an $x \in X$ such that $f(x) = g(x)$. In [3] a sufficient condition that a map from the Euclidean n -ball $Bⁿ$ into itself be universal was established.

THEOREM 1. (Schirmer). If f is a self mapping of $Bⁿ$ that maps the boun-

dary of B^n . S^{n-1} , onto itself essentially, then f is universal.

In this note a necessary and sufficient condition that a map be universal is established. The author is indebted to Professor Chung-Wu Ho for raising the question of the existence of necessary and sufficient conditions for a self mapping of the 2-ball be universal. The author is also indebted to Professor M. Dold for pointing out $\text{Hopf's extension theorem}$ $[2]$ during a conversation, which eventually eliminated a long proof of the two dimensional case and resulted in the completion of the proof of the n -dimensional case.

In what follows $H^{n}(X)$ shall denote the nth Cech cohomology group of a spa ce X, with integer coefficients.

THEOREM 2. Let f be a mapping of a space X into B^{n+1} , $A = f^{-1}(S^n)$, and $g: A \rightarrow S^n$ such that $g(x) = f(x)$ for $x \in A$. Then f is not universal if and only if the map g extends to a map $G: X \rightarrow S^n$

Proof. If f is not universal there is a map b of X into B^{n+1} such that $f(x) \neq b(x)$ for x in X. Let $G(x)$ be the point of intersection of $Sⁿ$ and the open ray that contains $f(x)$ and has $b(x)$ as an endpoint. Clearly $G(x) = g(x)$ for x in A . On the other hand, if there is an extension of g to a map $G:$ $X \rightarrow S^{n}$ let $h(x) = -G(x)$ for x in X. If $x \notin A$ then $h(x) \in S^{n}$ and $f(x) \notin S^{n}$ so $b(x) \neq f(x)$; if $x \in A$ then $b(x) = -G(x) = -g(x) = -f(x) \neq f(x)$. Therefore, f is not universal.

THEOREM 3. Hopf's extension theorem. Let X be a compact metric space of dimension $\leq n+1$, b a mapping of a closed subset A of X into S^n , and e a generator of $H^n(S^n)$. Then in order that h be extendable over X it is

necessary and sufficient that $b^*(e)$ be extendable over X, where $b^*: H^n(S^n) \rightarrow$ $H^n(A)$ is the homomorphism induced by h.

THEOREM 4. Let f , A , and g be as in Theorem 2. If X is separable metric and the dimension of X is $\leq n+1$ and $H^{n}(X) = 0$ then f is not universal if and only if the induced homomorphism $g^*: H^n(S^n) \rightarrow H^n(A)$ is the zero homomorphism. From the local and the state of the local distribution o

Proof. Suppose there exists a $G: X \rightarrow S^n$ that extends g over X. Then $g = G \circ j$ where $j : A \rightarrow X$ is the inclusion map. Since by hypothesis $H^n(X) =$ 0, $G^* = 0$ and $g^* = j^* \circ G^* = 0$. If $g^* = 0$, then in particular, $g^*(e) = 0$ for any generator e of $H^n(S^n)$ and it follows that $g^*(e)$ can be trivially extended to X . Hopf's extension theorem then asserts that g can be extended over X , by Theorem 2 f is not universal.

THEOREM 5. Let f, A, and g be as in Theorem 2 and let $X = B^{n+1}$. Then f is universal if and only if g is essential.

Proof. If g is not essential then g is homotopic to a constant map c. Therefore. $e^* = c^* = 0$ and by Hopf's extension theorem g can be extended to a map $G: X \rightarrow S^n$. *f* is not universal by Theorem 2. If on the other hand, *g* is essential, then since all mappings of B^{n+1} into S^n are homotopic to a constant map it follows that g cannot be extended over B^{n+1} . Therefore, f is universal by Theorem 2 .

Remarks. (i) The condition $X = B^{n+1}$ in Theorem 5 could have been replaced by the condition "X is compact metric and every map of X into S^{n} is not essential".

(ii) The use of Cech cohomology could have been replaced by Cech homology but not by singular homology. For example, let $X = B^2$ and let A be the boundary of a neighborhood of the origin that is contained in $\{z: 1/2 \le |z| \le 1\}$ and has trivial singular homology groups. Let $d(z, a)$ be the distance from z to A. Let. $f: B^2 \rightarrow B^2$ be defined by $f(z) = (2 - d(z, A)) z$ if $|z| \le 1/2$, and $f(z) = (1/|z| - d(z, A)) z$ if $|z| > 1/2$. Then f is in fact universal and $f^{-1}(S^1) = A$.

REFERENCES

- 1. W. Holsztynski, Une généralisation du théoreme de Brouwer sur les points invariants, Bull, Acad, Polon, Sci, Ser, Sci, Math, Astronom, Phys. 12(1964), pp. 603 - 606.
- 2. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, New Jersey. (1948).
- 3. H. Schirmer, A Brouwer type coincidence theorem, Canad. Math. Bull. vol. 9, no. 4, 1966.

Department of Mathematics University of Cincinnati Cincinnati. Obio, 45221, U.S. A.

(Recibido en noviembre de 1974)