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SOME TOPOLOGICAL EXTENSIONS OF PLANE GEOMETRY

by
H. BELL
ABSTRACT

Let A be a closed subset of the plane. For a point b in
the plane whose distance to A is d(b,A) let S(b,A)= {z: 1z-b! =
d(b,A)}. Let E(A) be the setof points e for which S(b,A)N A
has at least two points. Let .q'(A) be the set of open intervals
(a,b) for which there is an e€ E(A) and a component of S(e, A)— A
with endpoints a and b. The sets E(A) and Q'(A) are the central
tools in this paper.

It is proven that the set of points equidistant between two
mutually disjoint plane continua is always a connected one
manifold. It is shown that the convex hull of a closed set A can
be written as the disjoint union of sets consisting of A, open
intervals with endpoints in A and open triangular regions with
vertices in A, with the property that every map defined on A
extends to a map defined on the convex hull of A that is linear
on each of the open intervals and open triangular regions. It is
shown that if A is a continuum and e, f £ E(A) are in the same
bounded component of the complement of A then there is a uni-
que arc in E(A) that joins e to f. If e EE(A) is in the unbounded
component of the complement of the continuum A then there is a
unique unbounded topological ray in E(A) with endpoint e. It is
shown that every plane continuum can be approximated ‘from
above by a plane continuum whose boundary consists of a finite
number of simple closed curves that arecontained in the union of
A and the | in t"GA). Arcs in E(A) and intervals in fl'(A) intersect
in a way that permits their use to develop a notion of tangent
lines and normai arcs for arbitrary plane continua that comple-

ments the usual notions.
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In this paper topological methods shall be used to extend some aspects ol pla-
ne geometry that have their roots in analytic geometry. Since we shall restrict
our interest to the plane, all sets will be assumed to be subsets of the plane un-

less othemvise indicared,

Some notation and definitions : f A is a non-emply selt and p is a point then

the distance from p to A d(p,A) is defined to be the inf} Ip—a\ cacAl. A

d(p,B).

I

point 7 is cquidistant from two non-empty sets A and B il d(p,A)
'he set of points equidistant from A and B shall be denoted by E(A.B). S(p.A)
shall denote § x| p-x| = d(p,A) § . and finally E(A) shall denote § x: (S(x. A))
N A has at least two points } . Central 1o all parts of the paper is the set F(A),
where A is a closed set.

Aside from the usual elementary topological notions the paper depends on the
topological characterization of the unit interval as a compact connected, metric
space with exactly two-non-cutpoints and on the consequences of the fact that the
plane is unicoherent, Recall that a topological space X is unicoherent if when-
ever X AU B where A and B are closed connected sets then AN B is

connected.

In this scction the main theorem states that the set of points equidistant from
two closed mutnally disjoint closed connected subsets of the plane is a one ma-
nifold

In section 2 a llalmil_\ of nnllml“) disjuinl open intery als 4 (A) determined ID_\'
a closed set A and related to E(A) is introduced. The main results assert that
for each closed set A there is a family 4 of mutually dispoint open intervals

with endpoints in A that contains § (4) and a family of mutually disjoint open

triangular regions I with vertices in A and edges in 4 such that : (i) The con-
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vex hull of A is covered by A, the JeJ, and the T ¢, and (ii) If / is any
continuous complex valued function defined on A then the extension of £ 1o the

convex hull of A that is linear on cach J =4 and cach T £ J is continuous

The topological part of the Shoentlies theorem follows automatically.

In section 3 the set E(A) and the related family §(A) introduced in section
2 are studied for the purpose of developing a notion of tangent and normal lines
to an arbitrary plane continuum A that complements the usuval notions developed
for nice sets. .'\lung the way it is shown that cach point ol E(A) contained in the
unbounded component of the complement of A is the endpoint of a unique unboun-
ded topological ray contained in E(A), the intersection of a bounded component
of the complement of A and E(A) is connected, any two points in the same com-
ponent of E(A) are the endpoints of a unique are in E(A). and il J € 4(A) se-
parates two points with respeet to the component of the complement of A that
comtains | then any arc in E(A) that joins these points intersects | at exac-

tly one point.

In section 4 methods are d(‘\(-lnpvd to approximate a plam‘ continuum A , wit-
hout cutpoints by a continuum whose boundary is contained in AU (U] Je HA)Y)
and is the union of a finite number of simple closed curves. It should be noted
that the supporting lemmas will be used throughout the rest of the paper, partic -
ularly lemma 1.1 and its corollaries. Lemma 1.1 is well known, [4] | however a
proofl is included here for completeness.

THEOREM 1. Let A and B be non-empty mutually disjoint closed connec -
ted sets. Then E(A,B) is @ one-manifold That is, F(A,B) is homeomorbhic to
a simple closed curve or to the set of real numbers

Theorem 1 shall be proven with aid of the following sequence of lemmas
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LEMMA I.1. Let C be aclosedset and let |: R® 54 for which  p- ((p)

d(p.C) for pr R2. Then if pr R? and g =1 p.rp))then f(q) — f(p).

Proof: p-fp)| - p-ql+ 1q-f(p) | - p-q|  d(g.C) = |p-qi: q-/(q)
p-fq) - d(p.C) p-f(p) . Theretore | p-flq) p-q  q-fla)
Therefore g is on the interval between p and f(g) and on the interval between p
and f(p). Therelore f(p) e [p. flg)] or f(q)€[p. f(p)]. Since |p-[f(p)|-
d(p,C) and f(g) & C we conclude that f(p) = [p.f(a))]. Since g e (p. f(p))
we conclude that f(p) ¢ [ ¢, f(g)]. Again since f(p) € C and lg- f(g) | =

d(g, C) itis elear that f(q) = [(p).

COROILARY 1.1.1:1f C is a non-empty closed set and | p-a| - d(p.C )
Jor some a s C then ((p.a))NVE(C)= .

COROLIARY 1.1.2: Let C beaclosed set and let |: RZ . C he such that
Lp=f(p) | d(p.C) foreach pr RZ . Then if x,y¢ R?-C we have

(Ix, f(x)))0 (Ty, f(3))) =0

or

[x /(x)) [y f) or Ly f(y))Clx fx)).
Proof : Suppose p = ([ x,f(x))n([y./(y) ). then according to temma (1) f(x)
f(y) . The conclusion follows
PROPOSITION 1.1.1 lLet [ be as in corollary 1.1.2. Then E(C) is the sel
of discontinuities of f. urthermore if ] -labl isaninterval that does not
intersect E(C) then [ is monotone on ]. cousequently [(J) is an arc with
endpoints f(a) and f(b) or a single point

DEFINITION : VFor the remainder of this section lix a: E(AB) » A and

b: E(A,B) » B suchthat a(x)e A N Six.A) and b(x) =B NS(x,B). l.et



L(x) = (a(x), x1V U [x,b(x) ). Notice that a and b are not generally unique.

LLEMMA 1.2 : The set E(AB) is connected.

Proof : Clearly E(A.B) separates A from B . Since the plane is unicohe-
reat [10] some component K of E(A, B) separates A from B .

To sce that K = E(A,B) let x be an arbitrary point in  E(A,B) and notice
that the connected set L(x) intersects both A and B and must u('(-ur(lingh in-
tersect K. Letting AU B replace € in the corollary to 1,1.2 it follows that
the only place that L(x) can intersect E(A,B) C E(AU B) is at the point x .
Since K C E(A,B) we have (L(x) )N K (1.(x)) N E(A,B) = {x 1. Therelore
x €K .

As an easy consequence of Theorem 28, p. 156 of [T] we have :

LLEMMA 1.3 : Let C and D be mutually disjoint plane continua that do not
intersect the interior complementary domain of some simple closed curve K.Then

there is a continuum in K that contains C [\ K and does not intersect D .
I.LEMMA 1.4 : E(A,B) is a one-manifold.

Proof : Let g £ E(A,B) and let D be the open circular disk with center
at e and radius less than (d(eo. A))/2. Let J bethe boundary of D.Vor
each ¢ eD N E(A,B) let a’(e) be the pointin JN[e.a(e)) and let b'(e)
be the point in J [e,b(e)). If ecDNE(AB) and we let AU | a'(e),
ate) ) U [a’ (eg). aleg) ). replace C and B U [b’(e) b(e)) L[b"(eg) bleg)),
replace D in lemma 1.3, then lemma 1.3 asserts that there are mutually disjoint
arcs M(e) and N(e) in,J such that a’(e), a’(ey) € M(e) and b'(e),
b'(ep) € N(e) . Accordingly there exists mutually disjoint arcs M and N in J

such that



{d(e): eeDNE B} CM and

tb'(e): e D NE(A B)Y ¢ N.
Siwce (E(A,B) )N D separates (eg+ a' (eg)) /2 from (eg + b (eg))/2 in D
some component K ol (E(A,B)) N D does. Since the connected set
(1 (eo))nl) contains both (eg + a'(eo))/Z and (eg + b’(('o))/Z, (L(eg))N K'#¢.
Therefore ¢g © K’ and the situation depicted in figure | exists. In figure 1, ¢,
€y £ K’ the circular are a'(ez)a' (eo) a'(e,) is contained in M, the circular
arc b’'(e,))b" (ey) b (¢;) is contained in N, and ((a'(ey) a’(eg)a’(ey))] U

[b'(ez) b’ (eg) b’ (eI)J YN E(AB) = ¢ . Let D, be the open shadowed region

l"igur(' |

in figure 1. l.et K, be the component of K N D, thai contains ¢, . Clearly
g I I I 0 )

K, separates (af(e) vO)"_’ from (1)’(e()) teg) ‘2 in I)I Also if
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e (F(A.B))N Dl then (L (e))N D, separates K, and must therefore inter -
secet K Since  [(e) can interseet K,  E(AB) only at ¢ we conclude that
e " K. There fore D, N(E(AB) )= K. Since [.(e) separates K, =
K, U { €r.e) { and (L (e) JNK, tet forevery e« K, it follows that every

e EKI is a cut point of K. Therelore m is a comeccted ,compact
metric space with exactly two non cutpoints. m is therefore a closed are

and DI N E(A,B) is an open curve .

COROLLARY 1.1. E(A,B) is a simple closed curve or each point of E(A,B)

separates E(A,B) into two components each of which is unbounded.
Proof: 'The proof is straight forward and left 1o the reader.

Remark. If 0<r< 1 then {x:d(x, A) = rd(x,B)} isnotin general a one

manifold. For example let A = { (x,y) : x4 ),2 = r2} and B={(x,y): .\‘2‘-, )/2: 14

then (0,0) is an isolated point of b x:d(x, A) = rd(x, B) {.
Question : One might wonder what is true in higher dimensions.

. n
If A and B are mutually disjoint closed connected subsets ol R then
E(A,B) is a closed connected set with an empty interior. In particular the di-
mension of E(A,B) < n-1. Since E(A,B) separates every open scl that it in-
. . <
tersects it follows [3] that E(A,B) has local dimension - » -1 at cach

point.

2 2 2
It A=1(xy.2): .\'2 e yz =1 and z=01} and B = {(xy.2) s X"y + 27 =

=9, or x=0=y and 1< | z]| <3 | then FE(A,B) lails to be a two manilold

at the origin.

Yhen is E(A.B) and n-1 manifold 7 Will ““approximations’ of A and B. A’,

B’ alwavs be found so that E(A’, B*) isan (n-1) manifold 7
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In [2] Morton Brown proves some interesting theorems about the closely related
sel (')E (A) =} xeR" :d(x,A) =€ |,

Section 2 : Let A denote a closed set with convex hull CH(A) . Notice that
it § is a continuous family of mutually disjoint opcu intervals cach contained in
the complement of A and cach having endpoints in A, then any map defined on
A can be extended linearly to each J €9 1o obtain a map defined onUt J:J €4}U A.
In this section such a family of open intervals is defined with the added property
that every component of CH(A)—( utyJ:J ed(A)} U A) isa*nice’” open con-
vex set. This allows for the extension of § (A) to a larger continuous family of
disjoint family of disjoini open intervals having endpoints in A, §(A), such that
each component of CH(A) - (U{J:Je9(A)} U A) is a wriangular disk whose

boundary consists of three elements of g (A) and three elements of A .

If a map f defined on A is extended linearly to each JE "‘l (A) and to each
component of the complement of  CH(A)— (U {Jj:7c¢ f] (A)} U A) then the ex-
tension is continuous. If A happened to be a simple closed curve and f happe -
ned to be a homeomorphism of A onto the boundary of the circular unit disk then
the extension automatically maps the bounded component of the complement of A
homeomorphically onto the interior of the unit disk.

DEFINITION. l.et A be a closed set. For each e € E(A) let :jA(e) be
the set of open intervals (a,b) for which there is a component of S(e,A)- A
with endpoints @ and 5. Lel gr(A) = U { .‘“4(0) serE(A) Y. Let 4(A) be the
set of open intervals (a,b), that do not interseet A, and for which there is  a
sequence | (a, b)) { in 1°(A) suchthar a = lim a; and b= limb;. We shall

say that the sequence } (ai, bi) } converges o (a,b) and il in addition
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(a,b) # § (A), (a,b) will be called a limiting interval. (Lemma 2.4 shall show
that the condition thai (a,b) not interscet A is redundant).

I.LEMMA 2.1. Let N and M be distinct closed circular disks and let K and
] be distinct open intervals contained in N and M respectively. If K n] 7 b,
then the interior of N contains and endpoint of | or the interior of M contains

an endpoint of K.

Proof. : The cases MC N, NCM,NNM=1{x}, and NOM = ¢ are clear.
In all other cases the boundary of M intersects the boundary of N at exactly
two points say p and gq. [,(;l L=[p.ql. Write MUN as the union of two
topological two-cells M’ and N’ where M CM ., N CN and M’'NN" = L . Con-
sider and dismiss the cases J = L and K = L. The cases JNL #¢, KNL#p,
JCM - ,and KCN' - L once considered are clear. The remaining ' ease
JCN -L and KCM' =1 is not possible since by hypothesis' JNK # ¢ .

LEMMA 2.2 : If J, K are Histinct intervals in $(A) then ] K = ¢ .

Proof: If ], KE&!A(e) for some e €'E(A) then clearly JNK =6, I
] EgA(eO) and K € .“A(el) where eg 7 €] lemma 2.1 asserts that either
J NK = ¢ or some endpoint of ] is in the inl‘(‘rior of the disk bounded by
5(91,A) or some endpoint of K is in the interior of the disk bounded by S(eo,z\),
Since the endpoints of J and K are in A the last two cases are impossible, it
follows that JNK = ¢ .

If cither K or J is a limiting interval then clearly KN J # & implies
K'NJ’ # ¢ fora pair of intervals K* and J* ol (4.

LEMMA 2.3 : Let A be a closed set, let B be a compact set, and let M =

WUiJ: ] edyle) forsome e eBN (E(A)) { U A) Then M is closed.
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. Fs N » Q s limi H 3 ) e are N nees g ) il ! .
Proof: Let x be some limit point of M. Il there are sequences fx i da 4 ih 501 and
|
) = ! .t > PP - N ’s » =
-1 where cach x; € ((1[., h,.) jl.s—glA(,)l.) the x;'s converge 1o x,, the a;/s con
corge 1o a point @, the b/s converge to a point b, cach e; is in B, and
the (‘l-'s converge to some point ey Since the distance function d is continu-
s d = ]i . = limle.~a. | = li o= B azal - s -
ous dle,,A) = limd(e;, A) = lim |e;~a; | = lim | e;-b;| = | e,=a,| =|e,~b, | .
Therefore e, € (E(A))NB . If TEE for ail but a finite number of 7 then
Jearlv - o = A p ] Y av el v ASS N P
clearly X, (ﬂo, ho) (a;. /;1) C M for large 7. We may therefore assume that
the e/s are distinet. Let € and C, be the components of S(e ,A) -{ao,boi,
If C; or Cy does not intersect A then x  €(a,, b, )CM and our proof is fi-
nished, To see that this is indeed the case let x €Cyq, let xy ECy, and let
L= [x'l, eo] U [eo,le . Now for sufficiently large i either [ei, ai] inter-
sects [, or [ei.bi‘ intersects L, thus by Corollary 1.1.2 either X g A or

x5 & A. Since x, and x5 were chosen to be arbitrary points in C ‘and C
2 1 2 Yy P 1 2

it follows that either €, or €, does not intersect A .

I FMMA 2.4 . let A be aclosed set and let ! tl[-f " fbl-i . {]lf . and | €4 !
be sequences such that ((11-,/1’- Jom Jui® 4rcA), c;EJ; lim a;=pp. lim bi =P

and lim c; = p3 e A. Then p3=py or p3 = pyp-

Proof: W py - py the lemma is trivial. Assume p, 7 by andlet L be
ihe line that contains the points p . py and p3 . Let e, 8 E(A) be such that
J; € E‘A(el.) . Notice that 1. cannot contain ¢ for more than a finite number
of 7.
as the union of two open hall planes U and V

Write the complement of L

where e cU for infinitely many 7. If the sequence e; has a cluster point e
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\ , " > ¢ i . ¢ >
then by lemma 2.3 (p;, p5) £ 4 (A) . Therelor pye AN [/;l,pZ] . {pl,pz b o

If ’?ig has no cluster point then every point in U is conizined in the inte -
rior of some disk D, ol radius | e;-a;| and center at €, S that ANU = &.
For n=1,2, and 3 let P be the ray in U, perpendicular to the line 1, that
contains the point b, Since every point on P is closer to 0, than to  any
other point of A it follows from Corollary 1.1.2 that [ei. ai] U [ei’bil cannot
intersect Py, Py, or Pj. Since py=lima; and py= limb; this is impossi-

ble unless P3 coincides with Py or with 1’2.

COROLLARY 2.4.1: If (a; b,) e 4 (A), lima;=a, limb;= b, and a# b

then (a,b) € 4(A) .
COROLLARY 2.4.2 : Lemma 2.4 holds even if ] € 4(A) for each i.

COROLLARY 2.4.3 : Let A be a compact set and let M=U}J:J€4(A){U A.

Then M is closed.

LEMMA 2.5 : Let A be a compact set and let B be the boundary  of the
convex bhull of A, CH(A). Then each component of B-A is some ] ¢ J(A)

Furthermore if J € 9(A) is a limiting interval then ] is a component of B-AL

Proof : let K=(ab) be a component of B-A and let I. be the line that
comains K . Write the complement of [ as the union of two open half planes
U and V where ANU=¢. Let P(l and Py be the rays in U . that are
perpendicular o L, such thai Pz has endpoint a and Py, has endpoint b .
let C={x¢e A:lx-a|<|x-b| Vandlet D = {xsA: | x=b < |x-a
Since E(C,D) separates P from Py there exists a sequence )e/% in the
convex region bounded by P . B and K such that each ¢; € E (C,D) and

a

limje;| =0, Let a;f S(e; )N C and let b, € 5((’,'.0)n D . Clearly



a=lima; and b = lim b, which shows that e, ¢ E(A) for large i. We may
therefore, for large i, find J;:F (‘i'di) £ )‘A(ei) such that c; EC and (// =D,
Again we have Iim c;,=a and Jimd; = b. Thus by corollary 2.4.1 K= (a.b) ¢
(A) .

Let J be a limiting interval and let . be the line that contains  J. Suppose
J = 1lim J; and each J,€§  (e;). According to lemma 2.3 lim le;l = . The-
refore every point in one of the components of the complement of I. must be con -
tained in some S(ei, A) . This clearly shows that J is contained in B .

THEOREM 2.1 : Let A be a closed set and let M = U] :Je §(A) U Alf
f: Ao R2 is continuous and g is the extension of [ to M that is linear on

each ] 4 (A) then g is continuous .

Proof: Let meM and let | m;} be a sequence in M that converges to m.
We may assume without loss of generality that either each m; €A or each
m; € (al., b)=]; € 4(A). a= lima; exists, and b = lim b; exists. If each
m; A then clearly m A and lim g(mi) = lim ]‘(m,.) = f(lim mi) = flm) = g(m).
We assume then that miooagt;4 b’. (1+1;) for some L with 0 < ;s 1.
H meA thea by lemma 2.4 m=a or m= bh. Assume m-a. Then a=bhbor
lim B 1. In either event
g(m)=gl(a;t; v hi(1-1;)) = flap)t; + f(b;) (1~1;)
lim | f(a;)1, LA R h A
¥

If a#b and m £ (a.b) which by corollary 2.4.1 is in §(A) . Write m ~(a-b)t

4+ b where t= lim ’; - Accordingly g(m) = f(a) - f(b))1 + f(b) = lim((f(a;) —
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[(6;)) t;+ f(b;)) = lim g(m;) .

DEFINITION : For A a closed set let E'(A) be the set of points in E(A)
for which S(e, A) N A has at least three points. Let C(e¢) be the interior of the
convex hull of S(e, A) N A. Notice thai the boundary of C(e) is the simple clo-

sedcurve Ut J:Jed (e)fU (S(e,A)NA).

LEMMA 2.6. Let A be a compact set, let p be a point in the convex hull of
A, and let q=(a,b) ¢ ] ¢ §(A). If the half open interval from p to gq, [p,q)

intersets no | € §(A) then there is an e € E (A) such that Jo E$|A (e) .

Proof : Let L be the line that contains J, and write the complement of L.
as the union of two open half planes U and V where p U . Since p is inthe
convex hull of A thereis a z’¢ A NU. Let { ]} be a sequence in §"(A) that
converges to J . Notice that J; cannot be contained in U for more than a fi-
nite number of i since otherwise some J; would intersect [p, ¢] . After ba-
rring the possibility that J; = J = for some positive integer 7 i follows that v

must contain an endpoint of some J, say z,since J, is contained in the

interior of the convex hull of { z*, z, a. b} ‘the result follows from lemma

2.5.

THEOREM 2.2 : Let A be a compact set with convex hull CH(A) and let
M=U1J:7e4(A) U A. Then each component of CH(A) =M is a C(e) for
some e € E'(A) .

Proof : Let K be a component of CH(A) - M. In order to prove that K is

some C(e¢) we consider several cases.

. . o DB 2 .
Case 1+ A is contained in an interval. In this case lemma 2.5 assures  us



CH(A) = M and there is nothing to prove.
Case 2 : The boundary of K is entirely contained in A . In this case let
¢ bhe a point in K whose distance to A is maximal. Clearly e ¢ E(A) and the

boundary of K is in fact S(e,A) . It follons that K = C(e).

Case 3 : The boundary of K is not entirely contained in A . In this case
there is a polygonal arc P that intersects both K and the complement of K
and does not intersect A. Lemma 2.5 and corollary 2.4.3 guarantec that K is
open so that K 1 P contains a half open interval [p,q) with ¢ notin K. It
follows from ('orn”ary 2.4.3 that ¢ is on some J = (a,b) ¢ §(A). Lemma 2.6
)iolds that J is in ;'IA(E) for some e & E(A) .

Let I be the line that contains | and write the complement of L as the
union of two half planes U and V where pelU.

Case 3.1: U contains an gk E(A) for which [ ¢ ‘L‘A (eo) : SiFl(-e CH(A)
and therelore A interseets U there is an e’ = E(A), such that J € .“A(e') ]
whose distance to J is maximal. It e’ £ E*(A) then pe C(e’) and it follows
that K = C(¢'). To see that this is indeed the case suppose Ste’,A) N A=}abi

and let v, and W, be mutually disjoint compact neighborhoods of a and - b.

let § e; { be a sequence in E (W” n A, W/) NA) that converges to e’ and con-
tains no points in the perhaps  degenerate triangular region bounded by la,e’]
[.«'. b], and lab ], Now lor large i, d(e;. W, Nnaj:- die;, A) = d(('l.. W, NA)
so that there is a scquence Hﬂi' bi' } = Sjlf such ||lili J;€ ‘(‘A (('i) for large
i,a;e W, NnNA and /;,. eEW,Nn A. Now since (a,¢’)U e’ b) cannol intersect

((1,', ei]. U | e; bi) for large 7, it follows that for large 7 cither a; €U or

bl. £ U . Since the J; converge lo ] this would force the [, to intersect (p.q)
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for large 7, contradicting the fact that [p, ¢)C K .

Case 3.2 : There isno e = E(A)N U such that J =4y (e) o In this case let
e’ ©E(A) NV suchthat J& :‘_A‘(e') and the distance from ¢’ to J is mini -
mal. The proof now proceeds similarly 1o the prool in case 3.1 with the noted ex-
ce ption that the sequence ieii is chosen inside the interior of the triangle hou-

nded by [ae’], fe’,b], and [abl,

DEFINITION : For A a closed set let §(A) :rzgl f(" be a family of mutually
disjoint open intervals defined using finite induction as follows : Let (le (A) = 4(A).
Suppose that g (A) has been defined. For each component K of the complement
of CH(A)-U{J: ] F,‘]n(A) }U A , that is not a circular disk or an open triangu-
lar region, add two intervals to the family f]” (A), (a,p) and (b, p), where
(a,b) € (‘]n (A) is contained in the boundary of K and has maximal diameter, and
p is a point of A on the boundary of K whose distance to the perpendicular bi-

-

sector of @ and b is minimal : if K is a ciccular disk add one interval ]

(a,b) C K where | @a-b| is maximal .

LEMMA 2.7 . Each component of CH(A)-U1{]: ]« JeA iU A isa trian-

gular open disk whose boundary is the union of three | in Y (A) .

Proof : Let K be a component of CH(A) - U {7790 1tU A Forcach
positive integer 2 let K, be the component of cnA)-Uty:J=4,(A1UA
that contains K . Notice that if K, = Ky for some positive integer 7 then
K =K, and the lemma follows. To see that this is indeed the case suppose not
Then for each positive integer n, K” contains two open intery als ({I”, 0, and
(b, p,) in “(,“ 1(A) \\h(';(' J = (@ b ) € :(”(‘\) and ||b,-a,|| is maximal,

Now a('('or(ling to theorem 2.2 Ky is contained in C(¢) for some e ¢ E'(A) .Sin-
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interval [p, ¢)CD -g(B) where qe(g(B) )N D . Clearly ¢ = g(z) for some
z B (a,k} =4 (A) . Let L be the are in s that joins g(a) to g(h) aud is
such thai the bounded complementary domain of (gfa), ¢(4) ) U L, D, contains
[p.q) . Let B, be ithe bhounded complementary domain ol J U g_l(l.) . I By
contains a sequences of points { z;: i=1,2,... %t where each z; € ]l. € ] (A)
and lim z; = z then the J; conmverge to J, and the g(J;) converge to g(] ).
Since g(J;) CD; foreach 7 it follows that (¢(J;)) N[p.q) # ¢ forlarge i,
contradicting the assumption that (g(D) )N [pq) = ¢ . I no such sequence
exists then there is a point z’ in g-I(L) such that (a, z’) and (b,2") £ (A)
and the open triangular region bounded by ., [a,z’], and [£ 2’1, Q is a
component of CH(A) -U ] :Jed(A)tU A, Clearly (¢(Q)N{p.q) 7.
To see that g is 1-1 let u,v be distinct clements of B . W « and v are
contained in the same ] £ §(4) or in the closure of the same component of
CHA)-UtJ:Je f] (A) YU A then clearly g(u) # g(v) . If wu=] '—‘:1(,4) and
v#9(A) and v£ ] then AU J contains a simple closed curve B, whose
bounded complementary domain contains . Clearly, g(v) is contained in the
bounded complementary domain of g(B,). If « isin some component of CH{A)-
Uty:Je }] (A)} U A. K, and v £ K then as a consequence of the Jordan cur-
ve theorem, some [ ¢4 (A) contained in K separates u from v in B. Clear-

|) g(J) separates g(u) from g(v) in D .

Section 3+ A theorem of Motzkin ([81 and [9]) states that a closed set
A in convex if and only if E(A) = ¢. That is, A is convex if and only if the -

re is a continvous function M : R%2 5 A suchthat [mi(x) - x| d(x, A) for

every x in the plane. If m is such a function and x £ A then the ray that
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passes through x and has m(x) as an endpoint is said to be normal to the con-
vex set A at the point m(x) . If L is aray that is normal to A at the point b
then the line perpendicular to L that passes through the point & is said to  be
a tangent line to A ai the point b,

It is not the purpose of this paper to survey or develop the standard notions
of normal or tangent lines for ““nice’’ closed sets but rather to develop similar
notions that will enable us to deal with closed sets that are not nice. The devel~
opment is not meant to replace the standard treatment but to work in conjunction
with the usual concepts. In fact the substitutes to be developed for tangent and
normal lines are mosi m('aningful only in the cases where the usual notions are
least meaningful.

It should be noted that some of the theorems in the section were stated with -
out proof in [11 for the purpose of adding geometric intuition to an apparently
non-geometric development. For completeness they will be restated and proven
here

DEFINITION : Vor ¢ s E(A) let ‘&)A(e) be the set of (a,e] Ule,b) such
that (a,b) * :i" (¢).

DEFINITION : Il e is a point and B is a set whose closure does not con-
tain e let ’I'(} (B) be the smallest closed set that contains B, does not cont-
ain ¢, and has a connected complement. If B is a bounded set let T(B) be the
smallest compact set that contains B and has a connected complement.

Notation : For the remainder of section 3 A will denote a fixed continuum .

For each bounded component of the complement of A, K, let e(K) be a point

in K whose distance to A is maximal and let ¥ = Tg (K) If K is the unb-



ounded component of the complement of A let (el

DEFINITION : lL.et < be arelation defined on E(A) by ;< e il ¢
and ¢, are both on the same component K of the complement of A and cither

ep=e (K) or there is an [ ¢ y,;("z) such thai 'I'K(L U A) contains the

point €. Ior e & E(A) let L, o x< e ki

LEMMA 3.1: The relation < is a partial order, furthermore if e € E(A) then

the set L, is totally ordered by the relation < .
Proof : The proof es straight forward and is left 1o the reader.

LEMMA 3.2 : If e €E(A) is wn the unbounded complementary component of
A and A is asimple closed curve then L., is an unbounded topological raywith

endpoint e .

Proof: Let V ¢ AS‘)A(e) with endpoints @ and b. Let w and z be dis-
tinct points common to the boundary of the convex hull of A and to A . Accor-
ding to [5] there exists rays Ru. and R, with endpoints w and z such that
every point in R is closer to w than to any other point of A and every point
in R, is closer to z than to any other point in A . Let the closed are that is
the intersection of the boundary of T(V, U A) and A be denoted by A . Clear-
ly w and z areon A;. Let 4, be the open arc contained in A with end-
points w and z. Then Al - Ay is the union of two (possibly degvn(*ml(-)('h.—
sed arcs Az and A, . According to Theorem 1 E(A3, Ay) is aone manifold.
Since E(A3, Ay) is unbounded and therefore not a simple closed curve it is, by
the corollary to theorem 1, the unbounded homeomorphic image of the set of real

numbers. Clearly L isa topological ray contained in FE(A3 Ay) with endpoint
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LLEMMA 3. 3 : If e € E(A) is in a bounded component of the complement of
A, K, and A is asimple closed curve then cither ¢ = ¢ (K) or L, isaclosed
arc from e to e(K).

Proof : Supposce e # ¢ (K). Let Ke % £ ((e) with endpoints @ and b, and

zl(“
let VK £ S‘)A (e(K) ) with endpoints ¢ and d. Let D be the simple closed

curve in AU Ve U Vk that contains both e and e(K). Then D-(V,UVg)
is the disjoint union of A and A2 where each A; isa closed arc or a single

yoint. Theorem | assures us that E(A;, A,) is a one manifold. Clearly L s
| 142 Y . be

the intersection of E(A;,Ay) and T(D), which is a closed arc .

THEOREM 3.1: Let e € E(A). Then L, is the unbounded homeomorphic
image of the non-negative real numbers if e is in the unbounded component of

the complement of A. If e is in a bounded component of the complement of A

then L, is an arc from e to e(K).

Proof : The theorem shall be proven in the case e is in the unbounded com-

ponent of the complement of A . The other case is similar.

\s is well known there is a sequence of simple closed curves SI)” { such that
ov

1(,) for cach positive integer » and T(A) = n T, . We also

D ;<
2 n=1

make the assumption that no T(D,) irtersects the interior of S(e, A) .

_ For cach positive integer # let D replace A in lemma 3.2 to obtain  a
topological ray L _(n) . It is swraight forward to show thay L is the topologi-
cal limit superior of the 1. (n) . (The set of points such that every neighborhood
intersects L (n) for infinitely many »). Therefore L, is closed connected

unhounded and, by lemma 3.1, totally ordered by the relation x < y il ~ - e

or x separates e [rom y.
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L = (c,d) then the result follows from corollary 1.1.1. Suppose then also  that
L. U (c.d) is the boundary of a triangular disk T . Since L U A separates  a
from b it seems clear that the interior of T must contain some point of [(a.b).
say p. Write L(a,b)  1(a.p)U L(p.h). Since I(a,p) N (LU (c.d)) # ¢ and
L(p.b) N (LU (c,d))#¢ and L contains only one point of E(A) > L(a.b) . it
follows that L (a,b) must intersect (c,d) . To see that IL(a.b) N (c,d) has ex-
actly one point let e,f€ L (a,b) N(c,d), Ve fA(e) and V’ ¢ £A (/) such that
VUA and V' U A each separate a from & . Since ncither V or V’ can in-
terseet the interior of T it follows that if V # V’ there is an are Q from a to
b in the complement of A suchthat VN Q=¢ or V'NQ =¢ . Accordin-
gly V=V and e = /.

DEFINITION : W J. ], . and J, € 4(A) are all on the same component of
the complement K of A then J will be said to be between J; and Fpo M
JU A scparates [ from [, and cither K is bounded or K is unbounded and
JOT(,UA U T(,UA).

LEMMA 3.4 0 If ] is between J; and J5. Jel (e), Jedq(e;), and
Joed4(ey) thenm el (e;,ey).

Proof: The prool is straight forward and is lelt 10 the reader.

DEFINITION : Let W be the set of (c.d) such that there is an ¢ ¢ E(A)
and distinet J, K ¢ ;‘A((‘) such that ¢ e E(A)N ] and de E(A)N K. For
a,b on the same component of  E(A) let L’(a,b) be the are (L (a.b) - U} L(c,d):
c.de L(ab) and (c,d) e W)U (Uilcd):c.de L(ab) and (c.d) e W}) .,

LEMMA 3.5: Let L(ab) be an arc in E(A) with a¢ ], & $(A) and

be J,¢ §¢A). Then I(ab) and 1.' (a,b) ecach intersect each | ¢ §(A) between
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]1 and ]2 at exactly one point. Furthermore L[.'(a,b) intersects only those

J =4(A) that are between Jp and J,.
Proof: The proof is straightforward and is left to the reader .

4

Section 4 : Approximating plane continua. As in section 3 A will denote a
fixed plane continuum. In order to simplily the statements and preofs of some  of

the theorems it will be assumed that A has no cutpoints.
The next lemma is an extension of lemma 3.5,

LEMMA 4.1 : If |, K€ 4(A) and there is an 1. between J and K  then
there is an arc S, from a point a on | to a point b on K, that intersects eve-
ry L between | and K at exactly one point and intersects no other I in

dea) .

Proof : Let U be the component of the complement of A that contains |
and K. Write U- (JUK) = U, UU,U U3 where JCU,, JUKCU,.KCUj;
and each U,; is a component of U-(JUK) Ifboth l—'l and ES intersect
E(A) then there is an arc in E(A) that joins a point in l_'l to a point in l_‘;.
Such an arc must intersect both J and K. in which case the result follows [rom
lemma 3.5. Assume then that PI does not intersect E(A) . According to the-
orem 3.1 Uy is bounded. Since U, is also bounded, J is not contained in the
boundary of the convex hull of A, and is, according to lemma 2.5, not a limit in-
terval, If F,JA(e) for some e in U3 then let § be the closed subinterval ol
the closed interval joining ¢ to the midpoint of ], that joins the midpoint of J
to a point of K. Again the.result follows.

The only remaining possibility is that ] ¢ "A (e;) for some ¢ in Uy If

K contains a point of E(A), ey, let S be the union of the c¢losed interval



from the midpoint of J to e; and L'(e;,ep). Otherwise K€ E‘A (e; ) for so-
me e, U,. In this case let § he the union of the closed interval from ey to
the midpoint of K, the arc L’ (ej.e5), and the closed interval from e;to the
midpuinl of I

DEFINITION : For J, K, €4(A) let D(J,K) be the union of those L in
§(A) between J and K and those C(e) (as in theorem 2.2) whose boundary con-
tains an L between J and K.

THEOREM 4.1: If | and K are in 4(A) and there is an L between |

and K then D(]J,K) is the interior of a closed topological two cell .

Proof : The complement of A contains a closed arc S from a point on J to
a point on K that intersects every L between J and K at exactly one point
and intersects no other L in J(A). As a consequence of corollary 2.4.1 two mo-
notone maps @ and b, defined on S, may be found such that if ses§ N L whe-
re I.€§(A) then L = (a(s), b(s)) and if §’ is a component of some sNCc(e)
then @ and 5 map S’ into the boundary of C(e).

Clearly the boundary of D (J, K) is the union of the ares J, a(s), K and
b(s) .

COROLILARY 1 : lLet ]o = (a,b) € $(A) be contained in the boundary of
the convex hull of A and let §' CJ(A) be finite. If each | € 4" is contained
in T(]o U A) and there is a K between | and ]O then Ny - U {D(]o, i
JE § | is the interior of a closed topological two-cell. Furthermore, CH(A) =
‘Wo U V where V is a closed topological two-cell for which Mo nv is a

closed arc from a to b.

COROLLARY 2: Let [, ¢ $(A) andlet § C §(A) be finite. If for each
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£ ; ’ ree credtt
]c:l there is a [ ed(A) between J and j() then MU U“”]o’])‘ ]r,‘ {
is the interior of a closed topological two-cell .

LEMMA 4.2 : Let 8 be an infinite subset of {(A) each of whose members
bas diameter greater than or equal 1o some fixed positive wvumber 6 . Then the-
re are | and 1. in §, both in the same component K of the complement of A
su'cb that Ty(] UA) DL.

Proof : Since § is infinite there is an infinite sequence | I} in g that
converges to a ]O in 4(A). Clearly there isa ]’ in §¢A) for which D (jo.]')
contains J . for infinitely many 7. Given any three such J,; . none ol which con-
tains e (K), some pair out of the three will satisly the conclusion of the theo -
rem,

LEMMA 4.3 : If J = (a.b) £ $(A) is contained in a component K of the

complement of A, e(K) £ ], and T, (] U A) contains no 1. ¢ §(A) other than

], then 'I‘K (JU A) - Tg(A) NA isacircular arc from a to b .

Proof: l.et U and V be the components of K-] where e(K) = U il K
is bounded and U is unbounded if K is unbounded Notice thar ] is nota li-
mit interval since if J = lim J; then for large 7 cither [, T (JUA) or
JCTg(J; U A). The hypothesis disallows the first possibility and the sccond
possibility implies that J is not contained in boundary of the convex hull of A,
a must for limit intervals.

Now consider the following two cases :

Case 1 : There isan e = (E(A)) ﬂ.\-" such that | ¢ i‘:\((‘) . Inthis  case
let ¢, be such an e whose distance 1o ] is maximal. Write Sl Ay Ya b

as the union of two open ares  C and €, where C) - ACU and CH-A"V.

149



If C,-A=g¢ there is nothing more to prove. If not the hypotheses implies that
(‘V.Z N A = ¢ . Inthis case there are points in VN E(A) that are close 10 "
and are not contained in the convex hull of [a, eO] Ule,blUJ. If ¢ is
such a point and Fye E‘A (ey) then clearly J1C€T( U A). This contradicts
the hypotheses.

Casell: ] £ f‘A(e) for any e £V . In this case choose e, €U so tha
Je gA (eo) and a'(eo,] ) is minimal. The proof now proceeds as in case | ex«
cept that e, is chosen in the interior of the convex hull of [a, e, ] U ey
U8 %

THEOREN 4. 2 : Let U be an open set that contains A, let 4=1 ]
J€3(A) and JC UYL, andlet D be the boundary of T(Uf{j:Jedl UA)
Then D is a simple closed curve. If K is a bounded -component of the comple -
ment of A and e(K) # U then the boundary of TK( U !] b1 € jitua, I)K. is
likewise a simple closed curve.

Proof : It will be proven here that D is a simple closed curve. The proof
for Dy is similar.

Suppose it can be shown that for cach J = (a,b) £ §(A), contained in the
boundary of CH(A) . and not in T(D) , CH(A) can be writien as the union of
o topological two cells D(J) and H(J) where D C D(]) and D(J) N H(])is
an arc $(J) C D, with endpoints @ and b . Since as a consequence of lemma
4.2 only finitely many of such J exist, say [, ]y, ..., J 421 T(R) .= nt D(];):

i=1,2, ..., n}. Since A has no cutpoints it follows that the S$(J) are mu-

lu'd”y (lisjuint and T(D) is a two cell.

‘
To see that this is indeed the case let / (a,b) as above. Let § be the
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set of J in g (A) that are not contained in the interior ol T(D) , are contained
in T(], U A) . and are not between I, and anv 1 in 1(A) that is not con -
tained in the interior of T(D). Since A is compact each | ¢ 4" has diameter
greater than or equal to some fixed 5 - 0. 1t follows from lemma 4.2 thay 4" is
finite.

According to corollary 2 to theorem 4.1 M (] ) = UiD (], . ]): ]+ "} s
the interior of a closed two cell. Corollary 1 to theorem 4. 1 states that there is a

closed topological two cell V such that CcH(A) =V U M, ) and VOM(( )

0

is an arc with endpoints @ and 6. If V. AM(J ) D there is nothing more
to prove. If not a modification of the sets vV and \W; can be obtained 1o do
the job as follows : For & i et D'(J,.J)=D(,.)) it jco. W JgD.
then L.Z T(JU A) when L € 4(A) . According to lemma 4.3 there is a circu-

lar arc in A Q(J) whose endpoints are the endpoints of J . Let D(J . J) be

the interior of T(D(J,. DU Q(J) ). Let W) - UID (J,.]):] = 0", et
D(,) be the complement of To um- g, . and let H (]U) be the closure of
M, .

LEMMA 4.4 : Let [ £4C3(A) ., let K bea component of the complement
of A that contains | and suppose e(K) 7 U_W——]T‘—! Then there is a
unique L(]J) € §(A) that satisfies : (i) 1f | * § and ] 'I'K(j' U A) then
JOTRW (DU A, and (i) 1f 1 = $(A) satisfies (i) then L(]) < T(1 U A).

Proof : The prool is slruighl forward and is left to the reader .

THEOREM 4.3 : Let $9(A), let K be acomponent of the complement of

A and suppose e(K)# ULV [J: ] ¢ §i, iy Mm=UtJ:]¢ §4U A contains a

simple closed curve D such that T, (D) A then the boundary of T (M) is a



“simple closed curve .

Proof : For each J in J not contained in Tg@D) let L(J) be as in Lemma
4.4 . L.et » be a homeomorphism of the unit circle s1'guto . W L () has
cndpoints @ and b let S(J) be the component of sr. 3/v—1(a) } b-l(b) b for
which A (S(J) ) is contained in the interior of 'I'K (L(J) UD). Define A’ on
sl by h’(z) = b(z) if z isonno S(J) and b’ maps each S(J) homeomorphi-

’

cally onto L(J). Lemma 4.2 can be applied to show that 4’ is continuous .
COROLLARY : If A is a simple closed curve, $C §(A) and e (K) éUI—]?

-]-_m then the boundary of TK( Ui J e JIU A isa simple closed curve .

Furthermore if A bas [inite length then the length of the boundary of TK(U{ I

J £ 84U A) is less than or equal to the length of A .

THEOREM 4.4 : Let B be a compact set for which the interior of T (B)
contains A, let §=1]:] € 44 (e) for some e €B}, andlet M=U1{ |
J = 83U A. Then the boundary of T (M) is a simple closed curve ﬁrovid«d
that ¢ (K) £ M .

Proof :  Since A is compact there isa &> 0 for which Us = {x:d(x,A)

<& | is contained in the interior of Ty (B) .. Let ¢ = {]:JedA) and
J TK (LU 4) forsome L e§}.Let M =U{ i AE I > 4I} UA. Cl(‘arly
TK(W) = TK (M) . By theorem 4.2 the boundary of Ty) tj:7 ed(A) and

JC Uy fU A) is a simple closed curve that satisfies the hypothesis of theorem
4.3. Therefore the boundary of 'I'K(M‘) is a simple closed curve .

COROLI.ARY 4.4.2: lLet B be a compact set whose interior contains  A.
Then there is a continuum M C B whose boundary consists of a finite number of

mutually disjoint simple closed curves contained in U {J: J ¢ $(A)}UA.
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