ON THE MIXTURE OF SOME CONTINUOUS DISTRIBUTIONS

Ьу

G. S. LINGAPPAIAH

SUMMARY

In this note three aspects of the mixture of continuous distributions are considered. Firstly, a finite mixture of densities involving $\phi(\alpha_1,\alpha_2)$, ..., $\alpha_n:\beta:\lambda_1\times\ldots\lambda_n\times$) is considered and the distribution of the sum of independent variables, each from such a mixture, is obtained. Secondly, characterization of a mixture of k. Gamma distributions is attempted. Finally, non-central chi-square and doubly non-central F is discussed in relation to a finite mixture of normal distributions.

1. Introduction. Analysis of mixture of distributions has received attention for some time as can be seen in [17]. Many of the recent works on the mixture have been mainly on the problem of estimation of the parameters and the problem—of identification which are illustrated in [13], [14], [15] and [16]. Various me-

thods, such as methods of moments [17] and the method of maximum likelihood in a grouped data [13] and [14] and other techniques are used for this purpose. Also, this author [4] has recently considered the distribution of the sum of independent variables, each with a finite mixture of Exponential distributions their densities. In $[2^1]$ for example, analysis of variance is discussed in relation to a mixture of two normal populations. Here, in this note, three aspects are dealt in relation to a finite mixture. Firstly, distribution of the sum of s independent variables each from a finite mixture involving the hyper-geometric function $\phi_2(\alpha_1,\alpha_2,\ldots,\alpha_n;\beta;\lambda_1x,\ldots,\lambda_nx)$ is considered and it is shown that the results of [1] are the particular cases of this general situation. Incidentally, interesting applications of the General functions including hyper-geometric functions can be found in [3], [5], [6], [7] and [8]. Secondly, a mixture of k-Gamma distributions is taken up and the characterization of such a mixture is attempted in terms of Inverted Dirichlet's distribution. Further it is shown that this is the general result of particular case of [9]. Finally a finite mixture of K -normal populations is considered and the non-central chi-square and doubly non-central F distributions are dealt in relation to this mixture.

2. Distribution of the Sum. Consider a density

$$f(x) = \sum_{j=1}^{k} \theta_{j} f_{j}(x) \quad 0 \leq \theta_{j} \leq 1 \cdot \sum_{j=1}^{k} \theta_{j} = 1$$
 (1)

where

$$f_{j}(x) = \prod_{i=1}^{n} \left[\left(1 - \frac{\lambda_{i}}{a} \right)^{\alpha} ij \right] e^{-ax} x^{\beta_{j} - 1} a^{\beta_{j}}$$

$$\cdot \phi_{2}(\alpha_{1j}, \alpha_{2j}, \dots, \alpha_{nj}; \beta_{j}; \lambda_{1}x, \dots, \lambda_{n}x) / \Gamma(\beta_{j}), \qquad (2)$$

$$x > 0$$
, $a > \lambda_1, \lambda_2, \ldots, \lambda_n$; $a > 0$, $\lambda_1, \ldots, \lambda_n \ge 0$

and ϕ_2 is the hyper-geometric function [11] . The characteristic function of x using [10] is

$$\psi(t) = \sum_{j=1}^{k} \theta_j \psi_j(t) . \tag{3}$$

where

$$\psi_{j}(t) = \prod_{i=1}^{n} \left[\left(1 - \frac{\lambda_{i}}{a}\right) \middle/ \left[1 - \frac{\lambda_{i}}{a\left(1 - \frac{\theta t}{a}\right)}\right] \right]^{\alpha} \cdot \frac{1}{\left(1 - \frac{\theta t}{a}\right)^{\beta_{j}}}$$
(4)

Hence the characteristic function of the sum of s independent variables each having (1) as its p.d.f., is

$$\dot{\psi}^{S}(t) = \Sigma \left(l_{1} \dots l_{k} \right) \theta_{1}^{l_{1}} \dots \theta_{k}^{l_{k}} \left(1 - \frac{\theta t}{a} \right)^{-\beta}$$

$$\vdots \prod_{i=1}^{n} \left(1 - \frac{\lambda_{i}}{a} \right) / 1 - \frac{\lambda_{i}}{a(1 - \frac{\theta t}{a})} \right]^{\alpha_{i}} i$$
(5)

where $\alpha_i = \sum_{j=1}^k l_j \alpha_{ij}$, $\beta = \sum_{j=1}^k l_j \beta_j$ and $\sum_{j=1}^k l_j = s$ and $\sum_{j=1}^k l_$

$$\begin{split} f(u) &= \Sigma \left(t_1, \dots, t_k \right) \, \theta_1^{l_1} \dots \, \theta_k^{l_k} \quad \prod_{i=1}^n \left(1 - \frac{\lambda_i}{a} \right)^{\alpha_i} a^{\beta_i} \\ &\cdot e^{-au} \cdot u^{\beta_i - 1} \cdot \phi_2(\alpha_1^{-1}, \alpha_2^{-1}, \dots, \alpha_n^{-1}; \beta_i; \lambda_1^{-1} u, \dots, \lambda_n^{-1} u) / \Gamma(\beta) \ , \ u \geq 0 \end{split}$$

where $u = \sum_{i=1}^{s} x_i$; now it is easy to see the result of [1] is the special case of (6).

3. Mixture of Finite Number of Gamma distributions. Now, consider

$$f(x) = \sum_{j=1}^{k} \theta_j \phi_j , \quad x > 0 , \qquad (7)$$

where $\phi_j(x) = e^{-x}$. $x = \frac{a_j - 1}{1 - (a_j)}$ and the θ_j 's are as before. We state below a a characterization of (7) as follows.

THEOREM. Necessary and sufficient condition that a set of independent random variables $x_1, x_2, \ldots, x_{n+1}$ possess the density (7) is, that a set of variables $y_j = x_j / x_{n+1}$ $j=1, \ldots, n$, follow the distribution

$$f(y_1, y_2, \dots, y_n) = \sum_{i=1}^{l_1} \frac{l_k}{l_i} \sum_{j=1}^{k} \theta_j D(a_{1r_1}, a_{2r_2}, \dots, a_{nr_n}; a_{n+1,j})$$
 (8)

where

$$D(a_{1}, \dots, a_{n}; a_{n+1}) = \frac{y_{1}^{a_{1}-1} \dots y_{n}^{a_{n}-1} \Gamma(a+a_{n+1})}{\left(1+y_{1}+\dots+y_{n}\right)^{a+a_{n+1}} \cdot \Gamma(a_{1}) \dots \Gamma(a_{n}) \Gamma(a_{n+1})}$$

$$y_{1}, \dots, y_{n} > 0 \quad \text{and} \quad a = a_{1} + \dots + a_{n}.$$
(9)

The description of the two sums in (8) and the notation $a_{jr_j}{}'s$ are described below.

Necessity: The joint density of x_1, \dots, x_{n+1} is

$$\prod_{i=1}^{n+1} f(x_i) = \prod_{i=1}^{n+1} \sum_{j=1}^{k} (\theta_j \phi_{ij}(x))$$
 (10)

where

$$\phi_{ij}(x) = e^{-x_i} \frac{a_{ij} - 1}{x_i} / \Gamma(a_{ij})$$
 (10a)

Now (10) can be written in the form

$$[\Sigma \theta_1^{l_1} \dots \theta_k^{l_k} \Sigma \phi_{1r_1} \phi_{2r_2} \dots \phi_{nr_n}] [\sum_{s=1}^k \phi_{n+1,s}]$$
 (10b)

where r_j 's can take values $1.2, \ldots, k$. Further the distribution of the r_j 's depend on l_j 's and the second sum in (10b). For example, if l_1 -n, then all r_j 's are equal to 1. If l_k =n then all r_j 's are equal to k. If n 3 and k 2, we have, for example, the coefficient of θ_1^2 θ_2 as

$$(\phi_{11} \ \phi_{21} \ \phi_{32} + \phi_{12} \ \phi_{21} \ \phi_{31} + \phi_{11} \ \phi_{22} \ \phi_{31}) \tag{10c}$$

Looking at (10c), we can notice that the first subscript of ϕ corresponds to the observation number while the second subscript corresponds to the parameter within the observation. In general in (10b), l_1, r_j 's are l, l_2, r_j 's are 2 and so on. Now if we make the transformation $y_j = x_j/x_{n+1}$, $j=1,2,\ldots,n$ and setting $x_{n+1} = u$, we have the Jacobian of the transformation as u^n and (10b) reduces to

$$f(y_1, y_2, ..., y_n; u) = \sum \theta_1^{l_1} ... \theta_k^{l_k} = \frac{\sum_{j=1}^{n} u y_j a_{1r_1}^{-1} ... y_n^{-1} a_{nr_n}^{-1}}{\Gamma(a_{1r_1}) ... \Gamma(a_{nr_n})} u^a$$
(11)

$$\cdot \left[\sum_{j=1}^{k} \theta_{j} e^{-u} u^{a_{n+1}} \cdot j^{-1} / \Gamma(a_{n+1, j}) \right]$$

where $a = a_{1r_1} + \cdots + a_{nr_n}$. Now integrating out u in (11), we get (8).

(ii) Sufficiency: To prove this part, we shall use the result of [12] according to which, if x_1,\ldots,x_{n+1} , are independent, positive variables, then the characteristic function of $\log y_1,\ldots,\log y_n$, determine the characteristic function of $\log x_1,\ldots,\log x_{n+1}$, up to a term $e^{\theta tb}$, provided the characteristic function of the latter do not vanish at any point. Hence, if the characteristic function of

 $\log x_j$ is $\psi_j(t_j)$ then it is easy to see that

$$\psi(t_1, t_2, \dots, t_n) = \psi_1(t_1) \dots \psi_n(t_n) \ \psi_{n+1} \ (-\frac{\sum_{j=1}^n t_j}{\sum_{j=1}^n t_j})$$
 (12)

where $\psi(t_1,t_2,\dots,t_n)$ is the characteristic function of $\log y_1,\dots,\log y_n$. Now from (10a), we can see that

$$\psi_{j}(t_{j}) = \sum_{s=1}^{k} \theta_{s} \left[\Gamma(a_{js} + it_{j}) / \Gamma(a_{js}) \right]$$
 (13)

and

$$\psi_{n+1}(-\sum_{j=1}^{n}t_{j}) = \sum_{s=1}^{k}\theta_{s} \left[\Gamma(a_{n+1,s} - \sum_{j=1}^{n}it_{j}) / \Gamma(a_{n+1,s}) \right]$$
 (13a)

Now using (8), we get $\phi(t_1, t_2, \dots, t_n)$ as

$$\Sigma \theta_1 \dots \theta_k^{l} \Sigma \sum_{s=1}^{k} \theta_s \frac{\Gamma(a_{1r_1} + it_1) \dots \Gamma(a_{nr_n} + it_n) \Gamma(a_{n+1,s} - \sum_{j=1}^{n} it_j)}{\Gamma(a_{1r_1}) \Gamma(a_{2r_2}) \dots \Gamma(a_{nr_n}) \Gamma(a_{n+1,s})}$$
(14)

This is exactly what we get for $\psi_1(t_1)\dots\psi_n(t_n)\psi_{n+1}(-\Sigma t_j)$ using (13) and (13 a) and hence the sufficiency follows. Note again that the second sum in (14) is on r_j 's which are controlled by l_j 's which in turn depend on the first sum. Now if $a_{jr_j}=a_j$, then in (8) every term has $y_1\dots y_n^{a_n-1}$ and hence (8) reduces to (9) which is described in [9]. Further a comment on (8) is in order now. Actually, we have considered an intermediate situation. That is, we have taken $\alpha=1$; in $e^{-\alpha x}\alpha(\alpha x)^{a_{ij}-1}/\Gamma(a_{ij})$ we could have let α change instead α . Then (8) will be even simpler. In such an event a part of (8) will be

$$[y_1^{a_1-1} \dots y_n^{a_n-1}] \cdot \frac{(\alpha_{1r_1} \dots \alpha_{nr_n} \cdot \alpha_{n+1,j})^a}{(\alpha_{n+1,j} + \alpha_{1r_1} y_1 + \dots + \alpha_{nr_n} y_n)^{(n+1)a}}$$
(15)

Similarly at the other end, we could have let both α and α change in which case part of (8) will look like

$$\frac{\begin{pmatrix} a_{1r_{1}} & a_{nr_{n}} & a_{n+1,j} & a_{1r_{1}}^{-1} & a_{nr_{n}}^{-1} \\ \alpha_{1r_{1}} & \alpha_{nr_{n}} & \alpha_{n+1,j} & y_{1} & \dots & y_{n} \end{pmatrix}}{(\alpha_{n+1,j}^{+} & \alpha_{1r_{1}}^{+1} & y_{1}^{+1} & \dots & \alpha_{nr_{n}}^{-1} & y_{n}^{-1})^{a+a_{n+1,j}}}$$
(16)

where $a = a_{1r_1} + \cdots + a_{nr_n}$

4. Non-Central Chi-Square and doubly Non-Central - F in relation to the mixture. Now let

$$f(x) = \sum_{j=1}^{k} \theta_j f_j(x)$$
 (17)

with same conditions as θ' s as before and

$$f_j(x) = exp\left[-\frac{1}{2}(x-\mu_j)^2\right] \sqrt{2\pi} \cdot -\infty \cdot x \le \infty.$$

Then the joint density of n-independent variables is

$$\prod_{i=1}^{n} \sum_{j=1}^{k} \theta_j f_{ij}(x_i) \quad ,$$
(18)

where $f_{ij}(x_i) = exp\left[-\frac{1}{2}\left(x_i - \mu_{ij}\right)^2\right]/\sqrt{2\pi}$ and (18) can be written as,

$$\Sigma \quad \theta_1^{l_1} \dots \theta_k^{l_k} \quad \Sigma \quad f_{1r_1} \dots f_{nr_n} = f(x_1, \dots, x_n)$$
 (19)

where again first subscript corresponds to the observation number and r_j 's take values $1, 2, \dots, k$. Let $u = \sum_{i=1}^{n} x_i^2$, then the characteristic function of u is

$$\psi(t) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) \exp\left(it \sum_{i=1}^{n} x_i^2\right) dx_1 \dots dx_n$$
 (20)

which from (19) reduces to

$$\psi(t) = \sum \theta_1^{l_1} \dots \theta_k^{l_k} \sum (e^{-\lambda} \cdot \lambda^s / s!) (1 - 2it)^{-\left(\frac{n}{2} + s\right)}$$
(21)

where $\lambda = (\mu_{1r_1}^2 + \dots + \mu_{nr_n}^2) / 2$ For example, the component f_{jr_j} gives

$$exp\left[-\frac{1}{2}(x_{j}-\mu_{jr_{j}})^{2}+itx_{j}^{2}\right]$$
 (21a)

on completing the square in (21a) and integrating out x_j , we get

$$exp[-\frac{1}{2}\lambda_{j}^{2} + \lambda_{j}^{2} / (1-2it)]/(1-2it)^{\frac{1}{2}}$$

where $\lambda_j = \mu_{jr_j}$

Inverting (21), we get

$$f(u) = \sum \theta_1^{l_1} \cdots \theta_k^{l_k} \sum \sum_{s=0}^{\infty} e^{-\lambda} \cdot \lambda^s g(u) / s!$$
 (22)

where λ is as above in (21) and

$$g(n) = e^{-n/2} \frac{(\frac{n}{2} + s - 1)}{\Gamma(\frac{n}{2} + s)} \frac{\frac{n}{2} + s}{2}$$
 (22a)

u > 0

For example if n=2, k=2, we get

$$f(u) = \left[\sum_{s=0}^{\infty} \theta_1^2 e^{-a_{11}} a_{11}^s + \theta_1 \theta_2 \left(e^{-a_{12}} a_{12}^s + e^{-a_{21}} a_{21}^s\right) + \theta_2^2 e^{-a_{22}} a_{22}^s\right] g(u)/s!$$
(23)

where

$$a_{11} = (\mu_{11}^2 + \mu_{21}^2) / 2, \qquad a_{21} = (\mu_{12}^2 + \mu_{21}^2) / 2$$

$$a_{12} = (\mu_{11}^2 + \mu_{22}^2) / 2$$
, $a_{22} = (\mu_{12}^2 + \mu_{22}^2) / 2$

and
$$g(u) = e^{-u/2} \frac{s}{u} / 1 (s+1) 2^{s+1}$$

It is to be noted again that in (22), the second sum runs over $\lambda = \mu_{Ir_I}^2 \cdots + \mu_{mr_N}^2$. Now if we consider two independent variables $|\nu|$, |u|, each having p.d.f. (22) and if we set $|F| = [|(u/m)/|\nu|/n)|^4$ and integrating out $|\nu|$ in $|f(\nu)| f(F \cdot \nu + \frac{m}{n})$, we get the resulting distribution as

$$f(F) = \sum \sum \theta_1^{l_1 + m_1} \cdots \theta_k^{l_k + m_k} \sum \sum exp[-(\lambda + \delta)] \cdot \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \frac{\lambda^s \delta^r}{s! r!} g(F), F > 0 (24)$$

where

$$g(F) = \frac{\frac{m}{2} + s \frac{m}{F^2} + s - 1}{B(\frac{m}{2} + s, \frac{n}{2} + r) (1 + \frac{m}{n}F)^{\frac{m+n}{2} + r + s}}$$
(24a)

where in (24), first two sums are on l_j 's and m_j 's and second two sums are on μ_{jr_j} 's and δ_{jr_j} 's. (22) and (24) are respectively the mixture of non-central chi-square and doubly non-central F distributions. The non-centrality-parameter varies from term to term according as the second sum in (22). Further, probability integral from (24) is easy to compute using [18]. Only thing new is the evaluation of the non-centrality parameter at each step

REFERENCES

- [1] Saxena, R.K. and Sethi, P. L. (1973) Certain properties of bi-variate distributions associated with the generalised bypergeometric functions. Canadian Journal of Statistics, Vol. 1, pp. 171-180.
- [21 O'Subramaniam, Kocherlakota; Subramaniam, Kathleen, and Messeri, J.Y.(1975)

 On the robustness of some tests of Significance in Sampling from a Compound Normal population. Journal of American Statistical Association Vol. 70,
 pp. 435-38.

- [3] Lingappaiah, G. S. (1975) On Some distributions involving General Functions.

 Revista Colombiana de Matemáticas, Vol. 9, pp.
- [4] _____ (1975) On the Mixture of Exponential Distributions. (Sub-
- [5] McNolty. Frank (1967) Application of Bessel Function Distributions. Sankhya, Series-B, Vol. 29, pp. 235-48.
- [6] _____ (1962) Kill Probability when the weapon bias is randomly distributed. Operations Research, Vol. 10, pp. 693-701.
- [7] McNolty and Timsky, J. (1972) Some properties of Special functions Bi-variate Distributions. Sankhya, Series-B, Vol. 34, pp. 251-64.
- [8] Holla, M. S. (1968) On a non-Central chi-square distribution in the analysis of weapon system effectiveness. Metrika, Vol. 14, pp. 9-14.
- [9] Yassaee, H. (1974) Inverted Dirichlet's distribution and multivariate logistic Distribution. Canadian Journal of Statistics, Vol. 2, pp. 99-106.
- [10] Erdelyi, et. al., (1954) Tables of Integral Transforms. Vol. I, McGraw-Hill, Co., New York.
- [111 ____(1954) Tables of Integral Transforms. Vol. II, McGraw-Hill, Co., New York.
- [12] Kotlarsky, Ignacy (1966) On characterizing the chi-square distribution by the student's law. Journal of American Statistical Association, Vol. 61,pp-976-80.
- [13] Hasselblad, Victor (1966) Estimation of parameters for a mixture of Normal Distribution. Technometrics, Vol. 8, pp. 431-44.
- [14] _____ (1969) Estimation of finite mixture of distributions from the Exponential Family. Journal of American Statistical Association, Vol. 64, pp. 1459-71.
- [15] Blischke, W. R. (1964) Estimating the parameters of mixture of Binomial distributions. Journal of American Statistical Association, Vol. 59, pp.510-28.

- [16] John, S. (1970) On Identifying the population of origin of each observation in a mixture of observations from two Normal populations. Technometrics, Vol. 12, pp. 545-52.
- [17] Rider, Paul (1961) The method of moments applied to a mixture of two Exponential distributions. Annals of Mathematical Statistics, Vol. 32, pp.143-47.
- [18] Harter, L. and Owen, D. B. (1974) (Editors) Selected Tables in Mathemati-

Department of Mathematics Concordia University Montreal. Canada

(Recibido en octubre de 1975).