Revista Colombiana de Matemáticas Volumen X (1976), págs. 51-55

LOCALIZATION OF THE COHOMOLOGY OF A FINITE GALOIS GROUP IN A DEDEKIND DOMAIN

Ьу

Marco F. SUÁREZ

Let us take a Dedekind domain A with field of fractions K, L a finite Galois extension of K with Galois group G and B the integral closure of A in L, then B is a G-A-module and the cohomology groups of G in B, denoted by $H^i(G,B)$ for i any integer, are A-modules. Throughout this note we will denote by Q (resp. by P) the set of non-zero prime ideals q of B (resp. p of A). \hat{L}_q (resp. \hat{K}_p), with $q \in Q$ (resp. $p \in P$), stands for the q-adic completion of L (resp. p-adic completion of K) and \hat{B}_q (resp. \hat{A}_p) is the corresponding ring of integers of \hat{L}_q (resp. \hat{K}_p); also for $q \in Q$ lying over p in P, G_q will denote the decomposition group of q in L/K which is known to be Galois group of the Galois extension \hat{L}_q/\hat{K}_p . Our main aim is to prove :

THEOREM: If Q' is a subset of Q containing exactly one divisor q of each $p \in P$, then for any $i \in \mathbb{Z}$

$$H^{i}(G,B) \cong |_{\oplus} H^{i}(G_{q},\hat{B}_{q}) \quad (q \in Q')$$
.

First we will consider some auxiliary results.

LEMMA 1: If N^i denotes de annihilator of $H^i(G,B)$ in A (i any integer) and $S:L\to K$ is the trace, then for any $i\in \mathbb{Z}$, $SB\subset N^i$; in particular, $SB=N^0$.

Proof: It is clear that the multiplication in B induces a cup product

$$u: H^{i}(G,B) \times H^{j}(G,B) \rightarrow H^{i+j}(G,B)$$
 $(i,j \text{ in } Z);$

from the properties of the cup product ([1], 4-1-9, 4-2-6), it follows that $H^O(G,B)$ is a ring and for any $i \in \mathbb{Z}$, $H^I(G,B)$ is a $H^O(G,B)$ -module; moreover, the isomorphism of groups $\vec{k}: A/SB \to H^O(G,B)$ induced by the epimorphism $k: A \to H^O(G,B)$ ([1], 2-2-6) is actually an isomorphism of rings.

Let us take now any $a \in A$ and any $\alpha \in H^i(G,B)$ represented by an i-cocycle g, then a, α is represented by a, g and $ka \cup \alpha = a$, α ([1], 4-3-6); in particular, if $a \in SB$ we get $a \alpha = 0$, i.e., $a \in N^i$.

COROLLARY 1: Suppose that K is a local field, i.e. K is complete with respect to a discrete valuation. Then if L/K is tamely ramified we have $H^i(G,B)$ =0 for any $i \in \mathbb{Z}$.

Proof: L/K tamely ramified implies SB = A ([2], I-5 Thm 2) so, by Lemma 1, $N^i = A$ and therefore $H^i(G, B) = 0$ for any $i \in \mathbb{Z}$.

COROLLARY 2: For any $i \in \mathbb{Z}$, $H^{i}(G_{q}, \hat{B}_{q}) = 0$ for all but finitely many $q \in \mathbb{Q}$.

Proof: Given any $i \in \mathbb{Z}$ if $q \in Q$ is such that $H^i(G_q, \hat{B}_q) \neq 0$, then, by Corollary 1, \hat{L}_q/\hat{K}_p is not tamely ramified so it can not be unramified either, and then q divides the different $\hat{D}_{L/K}$ ([3] ch. III, § 5); thus q lies in the

finite subset of Q consisting of divisors of $\mathcal{P}_{L,K}$

PROPOSITION: If V_L is the ring of restricted ådeles of B, $B_p = \Pi \hat{B}_q$ $L_p = \Pi \hat{L}_q$, where $p \in P$ and $q \in Q$ lie over P, then

- (i) V_L , B_p and L_p are G-module;
 - (ii) $H^{i}(G, V_{I}) = 0$ for any $i \in \mathbb{Z}$

Proof: (i) It is clear from the fact that given any $\sigma \in G$ it induces an isomorphism

$$\sigma_q:\hat{L}_q\to\hat{L}_{\sigma_q} \text{ such that } \sigma_q:\hat{B}_q=\hat{B}_{\sigma_q}$$

(ii) L_p is a vector space over \hat{K}_p of dimension n=[L:K] ; let us define the \hat{K}_p -linear map

$$S_{L_p/\hat{K}_p}: L_p \to \hat{K}_p$$
 by $S_{L_p/\hat{K}_p}(x) = \sum S_{L_q/\hat{K}_p}(x_q)$

(for q lying over p), where $x = (x_q) \in L_p$ and $S_{L_q}^2 / \hat{K}_p$ is the local trace. If w_1, \ldots, w_n is a basis for L/K we get a complementary basis w_1^*, \ldots, w_n^* and since for $x \in L$ we have $S_{L_p} / \hat{K}_p(D_p(x)) = S_{L/K}(x)$ (see [2], ch 2 § 9), where D_p is the diagonal imbedding of L in L_p , then

(1) $S_{L_p/\hat{K}_p}[D_p(w_i), D_p(w_j^*)] = S_{L/K}(w_i w_j^*) = \delta_{ij}$ (i.j. are integers between 1 and n.);

it follows that the $D_p(w_i)'s$ are linearly independent over \hat{K}_p , i.e they form a basis for L_p/\hat{K}_p . We define now a map

$$s_{V_L/V_K}: V_L \to V_K$$

by $(S_{V_L}/V_K^{-}(x))_p = S_{L_p}/\hat{K}_p^{-}(x_p)$, where $x = (x_p) \in V_L^{-}(p \in P)$ and for each $p, x_p = (x_q) \in L_p^{-}(q)$ lying over p); then by (1), each $x \in V_L^{-}$ can be written as $x = \sum_{i=1}^n |S_{V_L}/V_K^{-}(x,D(w_i^*)),D(w_i)$,

where D is the diagonal imbedding of L in V_L . Moreover, if $\sum_{i=1}^n a_i D(w_i) = 0$ with $a_i \in V_K$, then for any i, $a_i = 0$; in other words,

(2)
$$V_L = V_K D(w_1) \oplus \ldots \oplus V_K D(w_n)$$

finally, since L/K is a finite Galois extension the basis w_1, \ldots, w_n can be chosen to be normal and this, together with (2) and ([1], 3-1-3), completes—the proof of (ii)

LEMMA 2: If $p \in P$, then for any $i \in \mathbb{Z}$, $H^i(G, B_p) = H^i(G_{q_0}, \hat{B}_{q_0})$ where q_0 is any fixed element in Q lying over p. In particular, the cohomology groups $H^i(G_q, \hat{B}_q)$ for all q lying over p are canonically isomorphic.

Proof: If we take for G the coset decomposition $G = \bigcup \tau_i G a_o$ $(1 \le i \le r_i)$ then $B_p = \prod \hat{B}_q$ $(q_i) \text{ lying over } p) = \prod \hat{B}_{\tau_i} q_o^* = \prod \tau_i \hat{B}_{q_o}$; hence by Shapiro's Lemma, applied to $\{G, G_{q_o}, B_p, \hat{B}_{q_o}\}$ (see [1], 3-7-15), the isomorphism follows.

COROLLARY: For any $i \in \mathbb{Z}$, $H^{i}(G, L_{p}) = 0$.

LEMMA 3: If $V_B = \prod \hat{B}_q$ ($q \in Q$) then

(i) For any $i \in \mathbb{Z}$, $H^i(G, V_B) = \bigoplus H^i(G_q, \hat{B}_q)$ ($q \in Q'$) where Q' is a subset of Q containing precisely one divisor q of each $p \in P$.

(ii)
$$V_B + D(L) = V_L$$
.

Proof: (i) Note that the direct sum makes sense because of Corollary 2, and since $V_B = \prod_{q=0}^{\infty} (q \in Q) = \prod_{p=0}^{\infty} (p \in P)$ then (i) follows from Lemma 2 and the fact

that the cohomology of finite groups commutes with direct products. (ii) follows from the Approximation Lemma ($\begin{bmatrix} 3 \end{bmatrix}$, c^{\dagger}_{2} , $1 \S 3$).

Proof of the Theorem: Let us consider the exact sequences of G-modules

If we look at the two induced long exact sequences of cohomology groups, and since $H^i(G,L)=0=H^i(G,V_L)$ for any $i\in \mathbb{Z}$, then $H^i(G,V_L,D(L))=0$. On the other band

$$V_B/D(B) = V_B/V_B \cap D(L)$$

$$= V_B + D(L)/D(L) = V_L \cdot D(L) \quad \text{(by Lemma 3 (ii))};$$

therefore

$$H^{i}(G, V_{B}/D(B)) = 0$$
 (for $i \in \mathbb{Z}$),

and so $H^{i}(G,B) = H^{i}(G,V_{B})$. Lemma 3 (i) completes the proof.

REFERENCES

- [11 Weiss, E.: Cohomology of Groups. Academic Press (1969).
- [21 Cassels, J. W. S. and Frolich, A.: Algebraic Number Theory, Thompson (1967).
- [31 Serre, J. P.: Corps Locaux, Hermann (1968).

Departamento de Matemáticas Universidad del Valle Ciudad Universitaria Cali, Colombia, S. A.

(Recibido en septiembre de 1975)