Revista Colombiana de Matemáticas Volumen X (1976), págs. 69-73

A NOTE ON PERFECT MODULES OVER CROSSED PRODUCTS

Ьу

James OSTERBURG

Let R be a ring with identity. We denote the Jacobson radical of R by J(R)and assume throughout that R/J(R) is Artinian.

We assume that G is a finite group of automorphisms of R that induces a completely outer group of automorphisms on R/J(R). See Y. Miyashita [3, p. 126]. The crossed product \triangle of R with G is $\sum_{\sigma \in G} Ru_{\sigma}$ with $(xu_{\sigma})(yu_{\tau}) = xy^{\sigma}u_{\sigma\tau}$ for $x, y \in R$.

The fixed rings S is the set of $r \in R$ such that $r^{\sigma} = r$ for all $\sigma \in G$. In this way, R becomes a bi- Δ -S module. The Jacobson radical of Δ , R and S are denoted by $J(\Delta)$, J(R) and J(S) respectively.

Let M be a left \triangle module; by $J(\triangle M)$, respectively J(RM), we mean the radical of M, as a \triangle module, respectively, as an R module.

Since $J(\Delta) = J(R)\Delta = \Delta J(R)$ by [5, Proposition 1, p. 187] we have

PROPOSITION 1. If P is a projective left \triangle module, then $J(\triangle P) = J(\triangle) P = J(R) P = J(RP)$.

By ℓ . dim ΛM , we mean the projective dimension of M.

PROPOSITION 2. G acts as a Galois group for R if, and only if, ℓ . $\dim_{\Delta} R < \infty$. **Proof:** If G acts as a Galois group on R, then R is Δ projective. See [5, Proposition 2, p. 188]. Now \triangle over R is a Frobenius extension. Hence by [4, Theorem 8, p. 97] ℓ . $\dim_{\triangle} R = \ell$. $\dim_{R} R = 0$. So by [5, Proposition | 2, p. 188] G is a Galois group for R.

PROPOSITION 3. Let P and P' be projective left \triangle modules. Then:a) If P is the R projective cover of P/J(R)P and there is an R monomorphism from P/J(R)P to P'/J(R)P', then there is a \triangle monomorphism from P to P' which splits. b) If P' is the projective cover of P'/J(R)P' and there is an R epimorphism from P/J(R)P to P'/J(R)P', then there is a \triangle epimorphism from P to P' which splits. c) If either P is the projective cover of P/J(R)P or P' is the projective cover of P'/J(R)P' and P/J(R)P is R isomorphic to P'/J(R)P', then P and P' are \triangle isomorphic.

Proof: Assume *M* is a completely reducible left \triangle module. Now $R/J(R) = U_1^+ \dots + U_k$, where the U'_i s are minimal *G* invariant two sided ideals of *R*. Thus $\triangle/J(\triangle) = \triangle(U_1:G) + \dots + \triangle(U_k:G)$, where $\triangle(U_i:G)$ is the crossed product of U_i and *G*.

Let r_i be the number of isomorphic irreducible \triangle components of $\triangle(U_i;G)M$. Each such component is \triangle isomorphic to an irreducible left ideal of $\triangle/J(\triangle)$. Now each irreducible left ideal of \triangle in $\triangle(U_i;G)$ is a direct sum of R modules, which are decomposed into a_i irreducible R modules. The numbers $r_i a_i$ of mutually isomorphic R irreducible components of M are determined by the R-structure. From $r_i a_i, r_i$ can be found. Hence the Rstructure of M determines the \triangle structure.

If N is a completely reducible \triangle module, which is the R epimorphic M, then by the above M is \triangle epimorphic to N.

We now show b). Since P/J(R)P and P'/J(R)P' are completely reducible left \triangle modules, we can find a \triangle epimorphism f from P/J(R)P to P'J(R)P'. Let $\pi: P \rightarrow P/J(R)P$ and $\pi': P' \rightarrow P'/J(R)P'$ be the natural maps. Since P. is \triangle projective, we can find a \triangle map g from P to P' such that $\pi'g = f\pi$. Now P'is the projective cover of P'/J(R)P, hence J(R)P' is R small in P'. See G. Azumaya [1, Proposition 4]. Thus g is a split epimorphism.

Proof of c). Assume π^* is a minimal R epimorphism ; hence minimal Δ epi-

70

morphism. It follows from the above that there is a \triangle isomorphism / from P/J(R) P to P'/J(R)P'. f can be lifted to a \triangle episorphism $g: P \rightarrow P'$. Also f^{-1} can be lifted to h. Thus $bg(x) - x \in ker \pi = J(\triangle)P$. By [(2, Theorem 3, p. 233] bg is an injection, hence g is a injection.

Proof of a). Assume there is an R monomorphism from P/J(R)P to P'/J(R)P'let f be the Δ monomorphism from P/J(R)P to P'/J(R)P'. Let $\pi:P - P/J(R)P$ and $\pi': P' - P'/J(R)P'$ be the natural maps. Since P is projective there is a Δ map g: P - P' such that $\pi'g = f\pi$. Let \overline{g} be the obvious map from P/J(R)P to P'/J(R)P'. Then $\overline{g} = f$. Since $\Delta/J(\Delta)$ is artinian f splits, say bf = the identity on P/J(R)P. Let k be a left Δ map from P' to P such that $\overline{k} = b$. Now $\overline{bg} = \overline{b} \overline{g}$ is the identity on P/J(R)P. Since P is the projective cover of P/J(R)Pwe can use the above proof of c) to conclude bg; is the identity on P.

A projective module P is called semiperfect if every homomorphic image of P has a projective cover, while P is perfect if every (infinite) direct sum of copies of P is semiperfect. See G. Azumaya [1] • Now E. A. Rutter and R. S. Cunningham in [7] have shown P is perfect if and only if P/J(P) is semisimple and J(I) is left T nilpotent, where I is the trace ideal and J(I) is the Jacobson radical of I as a submodule (ie. not as a ring).

Obviously, Proposition 3 can be used if P or P' is a semiperfect left \triangle module.

PROPOSITION 4. Assume P is a projective left \triangle module such that P, as an R module is perfect. Then P as a \triangle module if perfect.

Proof: Since P is \triangle projective $J(\triangle P) = PJ(\triangle)P = J(R)P = J(_RP)$. Thus $P/J(\triangle P) = P/J(R)P$ which is completely reducible as an R module, hence as a \triangle module. See [5, p. 188]. We will denote by $tr_{\triangle}P$ (resp. tr_RP) the trace of P as a \triangle module (resp. the trace as an R module). Of course, $J(tr_{\triangle}P)$ (resp. $J(tr_RP)$) will denote the Jacobson radical of $tr_{\triangle}P$ as a \triangle submodule (resp. as an R submodule). Since P is \triangle projective $tr_{\triangle}P \cdot P = P$. So $J(\triangle P) = J(\triangle) \cdot P = J(\triangle) \cdot tr_{\triangle}P \cdot P$. Now $tr_{\triangle}P$ is a homomorphic image of a direct sum of copies of P. In fact, $tr_{\triangle}P/J(\triangle) \cdot tr_{\triangle}P$ is a homomorphic image of $P/J(\triangle) P$; hence $tr_{\triangle}P/J(\triangle) \cdot tr_{\triangle}P$ is radius of the trace of P. We now show $J(tr_{\triangle}P)$ is T nil-

potent. Since $J(tr_{\Delta}P)$ is a two-sided deal of Δ , $tr_{\Delta}P = (tr_{\Delta}P \cap R)\Delta = \Delta \cdot (tr_{\Delta}P \cap R)$. Thus $J(tr_{\Delta}P) = J(\Delta) \cdot tr_{\Delta}P = J(R) \cdot tr_{\Delta}P = J(R) \cdot (tr_{\Delta}P \cap R) \cdot \Delta \subseteq J(R) \cdot tr_{R}P \cdot \Delta \subseteq J(tr_{R}P) \cdot \Delta$. Now $J(tr_{R}P) \cdot \Delta$ is left T nilpotent. Take any left Δ module M. then $J(tr_{R}P)\Delta \cdot M = J(tr_{R}P) \cdot M \neq M$, since $J(tr_{R}P)$ is left T nilpotent. Thus P is Δ perfect.

COROLLARY. If R is left perfect, \triangle is left perfect.

PROPOSITION 5. Let M be a projective left \triangle module and N a projective \triangle submodule of M. Assume N/J(N)N bas a projective cover, as an R module. If N, as an R module, is a direct summand of M, then N is a \triangle direct summand of M.

Proof. Follows from Proposition 3b).

COROLLARY. Let N be a projective \triangle submodule of a projective \triangle module M. Then if N, as an R-module, is semiperfect and a direct summand of M, then N is a \triangle direct summand of M.

The Warner christians i High Miles der

COROLLARY. Let R be a left perfect ring. If every finitely generated projective submodule of a projective R module is an R direct summand, then every finitely generated projective \triangle submodule Q of a projective \triangle module P is a direct summand.

Proof. Now P is R projective and Q is a finitely generated projective R module ; hence Q is an R direct summand.

Since Q is finitely generated, Q is the projective cover of Q/J(R)Q. Thus Q is a \triangle direct summand.

By [2, Theorem 5.4, p. 480] we have : if the left annihilator of a finitely generated proper right ideal of R is always nonzero, then the left annihilator of a finitely generated proper right ideal of \triangle is always nonzero.

Let P be a left \triangle module. Assume P as an R module is projective and $P/J(_RP)$ has a projective cover, as an R module. By $J(\triangle P)$ (resp. $J(_RP)$) we mean the Jacobson radical of P as a \triangle module (resp. as an R module).

PROPOSITION 6.a) A left \triangle submodule Y of P is small as a \triangle module if

and only if Y is small as an R module.

b) If P has a projective cover as a \triangle module, then P is \triangle projective.

Proof of a). Since $\Delta/J(\Delta) = \Delta/J(R)\Delta$ is Artinian, $J(\Delta P) = J(\Delta)P = J(R)P = J(R)P = J(R)P$. Now J(RP) is R small in P; hence $J(\Delta P)$ is Δ small in P. See [1, Proposition 4]. We assume Y is Δ small, hence Y is contained in every maximal left Δ module. Thus $Y \subseteq J(\Delta P)$, which is R small.

Proof of b). Let $f: Q \to P \to 0$ be the \triangle cover of P. Then the kernel of f is \triangle small, hence by 1) ker f is R small. Since P is R projective, f splits. Thus ker f=0. Hence P is \triangle projective.

COROLLARY. Every left \triangle module P which has a \triangle cover and when viewed as an R module is semiperfect, is \triangle projective.

References

- 1. G. Azumaya, Characterizations of semiperfect and perfect modules, to appear.
- 2. I. Beck, Projective and free modules, Math. Z. 129(1972), p. 231-234.
- Y. Miyashita, Finite outer Galois theory of non-commutative rings, J. Fac.Sci. Hokkaido Univ. Ser. 1 19(1966), pp. 114-134.
- T. Nakayama and T. Tsuzuku, On Frobenius Extensions I, Nagoya Math. J. 19 (1961), p. 127-148.
- J. Osterburg, Completely outer groups of automorphisms acting on R/J(R), Proc. Amer. Math. Soc. 46(1974), pp. 187-190.
- 6. _____, Completely outer Galois theory of perfect rings, Pac. J. of Math. 56(1975).
- 7. E. A. Rutter and R. S. Cunningham, Perfect Modules, to appear.

Department of Mathematical Sciences University of Cincinnati Cincinnati, Ohio 45221. USA

(Recibido en enero de 1976).