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A NOTE ON PERFECT MODULES OVER CROSSED PRODUCTS
by

James OSTERBURG

Let R be a ring with identity. We denote the Jacobson radical of R by J(R)

and assume throughout that R/J(R) is Artinian.
We assume that G is a finite group of automorphisms of R that induces a com-
pletely outer group of automorphisms on R/J(R). See Y. Miyashita [3, p. 126 L. The

crossed product A of R with G is e Ru\,f with (xuo Nyu,) = xy”u for

oT
g€aG

x,y €ER.
The fixed rings § is the set of reR such that 7= 7 forall o€ G. In this
way, R becomes a bi-/\-S module. The Jacobson radical of A, R and § aredeno-

ted by J(A), J(R) and J(S) respectively.

Let M be aleft A module; by J(AM), respectively J(gM) , we mean the ra-

dical of M, as a A module, respectively, as an R module.
Since J(A) = J(R)A = AJ(R) by [5, Proposition 1, p. 187 ] we have

PROPOSITION 1. 1f P is a projective left [\ module, then J(pP) =](/) P =
J(R)P = J(pP) .

By (. dimpM , we mean the projective dimension of M .
PROPOSITION 2. G acts as a Galois group for R if, and only if, [. dimAR <

Proof: If G acts as a Galois group on R, then R is A projective. See (5,
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Proposition 2, p. 188 ] . Now A over R is a Frobenius extension. Hence by (4,
Theorem 8, p. 97] ¢ . dimpR = {.dimg R = 0. So by [5, Proposition|2, p. 188] G

is a Galois group for R .

PROPOSITION 3. Let P and P’ be projective left /\ modules. Then:a) If P
is the R projective cover of P/J(R)P and there is an R monomorphism  from
P/J(R)P to P'/J(R)P’, then there is a \ monomorphism from P to P* which
splits. b) If P’ is the projective cover of P’/J(R)P* and there is an R epimor-
phism from P/J(R)P to P’/J(R)P’, then there is a \ epimorphism from P to P’
which splits. c) If either P is the projective cover of P/J(R)P or P’ is the pro-
jective cover of P’'/J(R)P* and P/j(R)P is R isomorphic to P'/J(R)P’ , then
P and P* are /\ isomorphic.

Proof: Assume M is a completely reducible left A module. Now R/J(R) =
Uyt...t Uy, where the Ujs are minimal G invariant two sided ideals of R .
Thus A/J(A) = AU;:6G)+ -+ AUy:G) . where A(U;: G) is the crossed
product of U; and G .

Let 7, be the number of isomorphic irreducible A components of A(U;:G)M. Each
such component is A isemorphic to an irreducible left ideal of A/J(A). Now each irreduci-
ble left ideal of A in A(U;:G) is a direct sum of R modules, which are decomposed into
a; irreducible R modules . The numbers r;a; of mutnally isomorphic R irreducible compo-
nents of M are determined by the R-structure. From r;a;,7; can be found. Hence the R-
structure of M determines the A structure.

If N is a completely reducible A module, which is the R epimorphic M, then
by the above M is A epimorphic to N . + '

We now show b). Since P/J(R)P and P*/J(R)P* are completely reducible left
A modules, we can find a A epimorphism f from P/J(R)P to P’J(R) P’ . Let
7: P =P/J(R)P and 7°: P* = P*/J(R)P* be the natural maps. Since P. is A pro-
jective, we can find a A map g from P to P’ such that 77°g = f7: Now P’
is the projective cover of P*/J(R)P, hence J(R)P’ is R small in P’ . See G.
Azumaya [ 1, Proposition 4 ] . Thus g is a split epimorphism.

Proof of ). Assume 7° is a minimal R epimorphism ; hence minimal A epi-
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morphism. It follows irom the above that there is a A isomorphism / from 2[R P

P*/J(R)P’. f can be lilted 10 a /\ epiracrphism g: P- P’ Also 7 * can be lifted 1o A. Thus
i - = T{) , [ . iy s A 9997 . a % . s .

bg(x)-x < ker 1=J(A)P. By {2, Theorem 3, p-233] bg is an injection, hence g is a injec-

tion.
Proof ¢f a) . Assume there is an R monomorphism from P/J(R)P to P'/J(R)P’

let / be the A monomorphism from P/J(R)P 10 P'/J(R)P*. Let 1:P ~P/J(R) P
and 77" : P’ = P'/J(R)P’ be the natural maps. Since P is projective there isa A
map g: P ~P’ such that 7°g = f77. Let T be the obvious map from P/J(R)P to
P'/J(R)P’. Then g =f. Since AN/J(L) is artinian f splits, say bf = the id-
entity on P/J(R)P. Let k be aleft A map from P’ 1o P such that k= b. Now
I;g_= ;E is the identity on P/J(R)P . Since P is the projective cover of P/J(R)P
we can use the above proof of ¢) 1o conclude hg: is the identity on P.

A projective module P is called semiperfect if every homomorphic image of P
has a projective cover, while P is perfect il every (infinite) direct sum of copies
of P is semiperfect. See G. Azumaya [1] -Now E. A. Rutter and R. S. Cunning-
ham in [7] have shown P is perfect il and only il P/J(P) is semisimple and J(I)
is left T nilpotent, where I is the trace ideal and J(I) is the Jacobson radical

of I as a submodule (ie. not as a ring).

Obviously, Proposition 3 can be used if P or P’ is a semiperfect left A modu-

le.

PROPOSITION 4. Assume P is a projective left /\ module such that P, as
an R module is perfect. Then P as a /\ module if perfect.

Proof : Since P is A projective J(zP) = PJ(A)P = J(R)P = J(gP). Thus
P/J(pP) = P/J(R)P which is completely reducible as an R module, hence as -a
A module. See [5, p. 188] . We will denote by tr \P (resp. tr pP) the trace of
P as a /A module (resp. the trace as an R module). Of course, J(raP) (resp.
J(trpP) ) will denote the Jacobson radical of tr\P as a A submodule (resp. as
an R submodule). Since P is A projective trpP*P=P . So J(pP) = J(L)'P =
J(2) *trpPP. Now trpP is a homomorphic image of a direct sum of copies of P.
In fact, trpP/J(D) “trpP is a homomorphic image of P/J(J) P ; hence trpP/J(1):
tr AP is semisimple. Thus J(rpP) = J(B) trpP. We now show J(#rpP) is T nil-
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potent. Since J(1rpP) is awo-sidedfideal of A, trAP=(trAPNR)A=A(trpP NR).
Thus J(trpP) = J(L) * trAP = J(R) *trpAP = J(R) “(trpP NR) -0 C J(R) trpp oA ¢
J(trgP) - A. Now J(trpP) -A is left T nilpotent. Take any left A module M.
then J(trpP)A "M = J(trpP) “M # M, since J(trpP) is left T nilpotent. Thus
P is A perfect . )

COROLLARY. If R is left perfect, A is left perfect.

PROPOSITION 5. Let M be a projective left /\ module and N a projective
A submodule of M. Assume N/J(N)N has a projective cover, as an R module.lf

N, as an R module, is a direct summand of M, then N is a [\ direct summand of
M.

Proof. Follows from Proposition 3b) .

COROLLARY. Let N be a projective /\ submodule of a projective /\ module
M. Then if N, as an R-module, is semiperfect and a direct summand of M, then N
is a A direct summand of M .

COROLLARY. Let R be aleft perfect ring. If every finitely generated pro-
jective submodule of a projective R module is an R direct summand, then every
finitely generated projective [\ submodule Q of a projective [\ module P is- a
direct summand

Proof. Now P is R projective and Q is a finitely generated projective R
module ; hence Q is an R direct summand .

Since Q is finitely gencrated, Q is the projective cover of Q/J(R)Q. Thus Q
is a /A direct summand.

By [2, Theorem 5.4, p. 480 ] we hove : if the left annihilator of a finitely ge-
nerated proper right ideal of R is always nonzero, then the left annihilator of a
finitely generated proper right ideal of A is always nonzero.

Let P be aleft A module. Assume P as an R module is projective and
P/J(xP) has a projective cover, as an R module. By J(AP) (resp. J(pP)) ~we
mean the Jacobson radical of P as a /A module (resp. as an R module ) .

PROPOSITION 6 .a)|A left [\ submodule Y of P is small asa A module if
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and only if Y is small as an R module.

b) 1f P bhas a projective cover as a /\ module, then P is [\ projective.

Proof of a). Since A/J(A) = AN/ J(R)/\ is Artinian, J(AP) = [(M)P = J(R)P=
J(gP). Now J(gP) is Rsmallin P ;hence J(pP) is A small in P.  See
[1, Proposition 4] . We assume Y is A small, hence Y is contained in every
maximal left A module. Thus Y C J(AP) . which is R small.

Proof of b). Let f: Q~ P .0 be the /A coverof P. Then the kemél of
fis A small, hence by 1) ker f is R small. Since P is R projective, / splits.
Thus ker f=0. Hence P is N nrojective

COROLLARY. Everyleft A\ module P which has a /\ cover and when vie -

wed as an R module is semiperfect, is /\ projective.
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