Revista Colombiana de Matemadticas
Volumen X (1976), pdgs. 75 -81

ON THE ERGODIC THEORY OF CONTRACTIONS

Robert E. ATALLA

SUMMARY

We give a formulation of the ergodic theory of
Banach space contractions which has as a special
case Sine's finite dimension criterion for C(X).
For Grothendieck spaces, a sharper condition for
ergodicity of an operator is given, and a known
mean divergence theorem for G-spaces of type
C(X) is shown to hold (in suitable form) for any
G-space.  Finally we show that for G-spaces er-
godicity of T is closely related to that of the
adjoint A

§ 1. Criteria for mean convergence. Throughout, B will be a Banach space, T
a linear operator on B with HT H < 1, B* the dual space of B, and T* the ad-
joint of T. Some special notations are : A (T)=(1/n)(T +-* “+1"), F(T) ={x €B:
Tx=x},and F(T*) = {meB*: T*m=m}. This paper is concemed with condi-
tions under which T is strongly ergodic, i.e., there exists a projection P ‘such
that H A, (T)x - Px || -0 for all xeB. Our formulation of ergodic theory s

based on the known results quoted in 1.1.

1.1. LEMMA. (a) [51] T is strongly ergodic iff 'F(T) separates points\ of
F(T*), i.e., if m and n are distinct elements of F(T*), then m(x)# n(x) for so-
me x¢€ F(T).
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(b) [LI} For any contraction T on B, there exists a projection Q* on B*
and a net ‘{iAn(a)(T‘) rac A} such that An(a)('l"‘)m(x) ~Q* m(x) for all m eB*
and x €B. Range Q* = F(T*), and T* Q* = Q*T* = Q* . Moreover, the compact-

ness argument of the proof yields the following : if {A )(T) raeAY is any

n(a
net with n(a) -0, then there exists a subnet { An(b)(T‘) :beB} converging to

a projection Q* as above.
1.2. Remark. If Q* is as above, then range Q* = F(T*), and it is easy to
see that ker Q* is a norm closed subspace of B* containing (I- T)* (B*). More

generally, we have v

| (*) norm-closure (1—1')‘(3‘) C ker Q‘C wedk-* closire (I—T).(B‘)" P(I =~ :

Note that if 7 is sirongly ergodic, then Q* is given uniqﬁely as P*, where P is
a projection on B, and ker Q*= F(T)t, by weak-* continuity of Q*.

1.3. PROPOSITION. (a) I(T)" is a bomomoiphic image of F(T*), (b) the ko-
momorphism is an isomorphism iff T is strongly ergodic.

Proof. (a) Since F(T)" is isomorphic to B'/I"(T)l [RI‘ page 91 ], we can
deal with the quotient space. Let 77 B* ~~B"‘/I~'(T)'I~ be the natural map. Ve shall
show that the restriction 77 !F(T') is onto, i.e., for each meB* there exists

ne F(T*) with m-n¢ 1’('[‘)'l . In lact, let #=@*m. Then il xe(T) .

(m=-n)(x) = m(x) - lim An(a)(T')”.l(x)=m(.\')~lim 7”(An(a)(T) (x))=m(x) - m(x) = 0.

(b) By 1.1 (a), T fails to be swrongly ergodic iff there exist m and 7  in
F(T*) with m-n € 1’('1')1' , or 7(m) = 17(n).

1.4. COROLLARY. If dim F(T*) < ©, then dim F(T)< dim F(T*), and equa-
lity holds iff T is strongly ergodic.

(For the case B=C(X), this result is due to Sine, '{'52] and (53] . lle also
relates ergodicity 1o the number of extreme points in the unit hall of F(T*).)

§ 2. Grothendieck spaces. In [(Li], Lin proves that if Ll ‘ l -0, then
|| A (T)-P [| ~0, for some projection P iff (I-T)(B) is closed in B. By Ba-

nach's theorem [RI. page 96 ], this last condition is equivalent to either of

the assertions : (I-T)" (B") is norm-closed, or is weak-*closed. In view of 1.2,
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we may expect an analogous result for strong ergodicity, if only we can locate

ker Q° with more precision. This turns out to be possible if B is a Grothendieck
space. (B is a G-sp-ace if weak -* séquential convergence in B® is equivalent
to weak éequentia] convergence. A reflexive space is a G-space, and C(X) is a

G-space whenever X is a compact F-space [see, Theorem 2.5].)

2.1. LEMMA. If B is a G-space, then norm-closure (I-T)" (B*) =N {ker Q°:
Q. €S },where S is the set of projections on B’ given as in 1.1 (b) . .

Proof. Suppose meB" and m¢ norm-closure (1-T)"(B*). By Hahn- Ba -
nach there exists F € B** such that F(m) = 1 and F(n-T.n) =0 forall neB”,
or F(n) = F(T'n) forall neB*. This implies that it is not true that An(’l‘.)m
-0 weakly, because F(A”(T')m) = F(m) = 1. Since B is a G-space, il is
not true that ‘A”(T.) m -0 weak-* | and hence there exist x € B, € > 0, and
n(1) < n(2) < * ** such that | A, (k)(T‘) m(x) l > €. By 1.1 (b) there exists
a subnet { An(a)(T‘) :a€A} of the sequence { An(k)(T') } converging in

the specified sense 10 some Q"¢ §. Clearly | Q" m(x) | > €, so médker Q° .

2.2. THEOREM. If B is a G-space, then T is strongly ergodic iff norm -
closure (1-T)"(B") = weak-* closure (I-T)"(B") .

Proof. If T is strongly ergodic, then (as noted in 1.2) Q. is given uniquely,
and ker Q° = weak-* closure. By 2.1 it follows that norm-closure = weak-* clo-
sure. Conversely, if norm-closure = weak-* closure, then any Q'€ S must satis-
fy ker Q° = F(T)* , and range Q"= F(T"); whence F(T)"N F(T') = (0).But
this set is the kernel of the map 77 :F i g -B'/F(T)l , SO th;l 1.3 (b) 'lm‘plies
that T is strongly ergodic.

2.3. Examples. These results can fail for non-G spaces. Before giving exam-

ples, we need a Lemma, the proof of which was kindly supplied by Michael Lin.

LEMMA. Let X be compact, S: X =X a/bomeomorphism such that for some
x € X , the orbit {S"x} is infinite, and T the Markov operator T f(x)= f(Sx)
(fe C(X) ). Then there exist x and y in X such that

Sx' Sy € F(T)J' \ norm- closure (I-T).(C(X).) .
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Proof. If {: x! is infinite, thea !:} compactness there exists y ¢ closure

92554 n n \
{8 %} such that {sx}tn{s yt=d. "ince each element of F(T) is coustant
7
on closure {5 x}, we have 3 -0 € I“(T) . Now for each #, choose f”&' C(X)
1’ .
such thatr [/, || < 1, LVH=T = L cus; n), and [ (S'y) = -1 (i=1,...,n).

Then A (T ) (5 —5 Vi, =2, 80 HA (T )(5 ) H 0. It follows that Sx'
5 i/norm closure (l )" (C(X)").

Now for our first example (from [5'3] ), let x=1[o0,1] , Sx=x2, and Tf(x)=
= [(Sx). T is not strongly ergodic, since T f(x) ~ f(0) if x#1, and T"f(1)~
f(1) . However the sequence {T*"} is convergent in the sense of 1.1 (b), since
T "m ~m [0,1) 8 +m{1} 8; for each meC(X)" Thus @ is unique, and m €
ker Q" iff m [0,1) = m{1} = 0. Clearly, 5-5 'FF(T)*’\ ker Q". If 0<x<y « 1
and {s"x} is dlsjomt from {s” y }, then the Lemma implies § - 3 € ker Q \
norm -closure (I-T)" (C(X) ) Thus 2.1 fails.

For a second example, let X be the unit circle, $:X ~X the map §z = az,
where a is not a root of unity, and Tf(z) = f(Sz). In this case, T is strongly er-
godic, with A (T) f(x) —'jf dm, where m is normalized Lebesgue measure, and
hence ker Q*= F(T)'L. Since F(T) = constant functions, F(T)J' = {n EC(X)‘
n(X) =0}, and by the Lemma there exist x and y such that 5x~8y e F(T)* X
norm-closure. Thus, 2.1 and 2.2 both fail.

2.4. Remark. If § and T are as in the Lemma, and C(X) is a G-space,then
it follows easily form 2.2 and the Lemma that T isnot strongly ergodic, an ess-
entially known result [Sem]. However, we can prove a stronger result.

2.5. DEFINITION. If B is a Banach space, a  sequence {p }C B' is said
to have disjoint supports if | ZI ty P I = 1 tn | - H,% H for any finite

set of scalars {tI,...,tR}.

2.6. THEOREM. Suppose T is a contraction on a G-space B such that for
some p¢ B*, { T*",o} have disjoint supports, and inf I I T'",oH > 0. Then
T is not strongly ergodic.

This Theorem follows from the following Lemma. For point functionals in a

compact F-space, the Lemma was proved in [RZ] and [G-K], and more ge-
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nerally for compact spaces such that C(X) is a G-space in [Sem]. (I owe"/‘dns
last reference to W.D. Stangl, who proved in his 1974 Lehigh thesis the more ge-

neral result that such a compact space contains no ‘heavy points’ in the sense of

A. K. Snyder.)

2.7. LEMMA. Let B a G-space, {,D Yc B® with disjoint supports, Hp H
< M, and inf | | p | | > 0. Then there exists x€B such that the sequence

{,0 (x) }  is not Cesaro summable.

Proof. Let {c”} be a bounded real sequence which is not Césaro summable.
Ii follows from page 86 of [D-S] that there exists F ¢ B"* such that F(éz) e
for all . Let m, = (1/n) (,0 G i +,o) Then {F(m )} is a divergent sequen-
ce, so that {m } isnot a weakly convergent sequence in B". Since B isa G-
space, the sequence is not weak-* convergent, so there exists x €B such that»
{mn(x) } diverges, i.e., { pn(x) } is not Césaro summable. (We note that in the-
se results C&saro summability may be replaced by any regular mairix method.)

3. Ergodicity of . U T is strongly ergodic, then T® is weak-* grgodic ;
but may not be strongly ergodic. (For example, let B=C [o,1/2] énd Tf(x) =

f(x 2).) In G-spaces we can again do better.

3.1. THEOREM. Let T be a contraction on the G-space B. Then (a) implies
(b) implies (c), where

(a) T is strongly ergodic,

(b) T" is weak-* ergodic,

(c). Tf is strongly ergodic.

Proof. That (a) ihplies (b) is obvious. Assume (b) holds, i.e., there exists
a projection P on B’ such that for each p € B®, An(T') o~ P p weak-*. To pro-
ve T is strongly ergodic, it is enough to show that if Ge F(T") n F(T‘)'L ,
then G=0. (Cf. 1.3 and the proof of 2.2.) If G # 0, then there exists p€ B’
with G(p)-# 0. Then An(T.) p—~Pp weak-* , where Ppe€ F(T"). Since B is
a G-spade, convergence is weak as well, so 0 # G(p) = A,,(T")G (0 =
G(A,,(T.);O)“_ G(i’ﬁ)’-‘o. since . Ge F(T.)'L and Ppe F(T'). Thus we have a

contradiction. *
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3.2. COROLLARY. Let T be a contradiction on a Banach space B, and ass-
ume that B' is a G-space. Then (c) implies (a).

Proof. If T is strongly ergodie, then 3.1 implies that T"" is s!rongly' er -
godic. Since B is a norm-closed subspace of B"", it follows that T is strongly
ergodic.

3.3. Example. To show that the hypothesis in 3.2 is really needed, we give
an example where T is strongly ergodic while T is not. Define T on cof =
null sequcnccs)' by (Tx); = xg and (Tx),,=x,_; for n> 1. For each x¢ (-
the sequence { (T x) : k> 1} converges to (x;, x;, Xppees ), which is not in

¢, if x; 7 0. Itis easy to check that the adjoint §= T" is given for y e?lby

Sy = iy oy iy e )
y(yl Yy ¥y Yy )

k 1
The iterates § y converge pointwise and in { -norm to (2;%;.0,0,...). (Note
that the projection so defined is norm but not weak-* continuous on f . )

It is apparently not known whether there exist non-reflexive spaces such that
both B and B" are G-spaces (D, page 105] , so it is not clear whether 3.1 and
3.2 have non-trivial joint applications.

4. Final Remark. Corollary 1.4 has been proved independently by Michael Lin,

for a semigroup of contractions. His proof embeds the 77-invariant vectors in the

dual of the 77*-invariant vectors. I am grateful to Lin, as well as to Robert Sine,

for correspondence on this and other matters,
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