Revista Colombiana de Matemáticas Volumen X (1976), págs. 75-81

ON THE ERGODIC THEORY OF CONTRACTIONS

Robert E. ATALLA

SUMMARY

We give a formulation of the ergodic theory of Banach space contractions which has as a special case Sine's finite dimension criterion for C(X). For Grothendieck spaces, a sharper condition for ergodicity of an operator is given, and a known mean divergence theorem for G-spaces of type C(X) is shown to hold (in suitable form) for any G-space. Finally we show that for G-spaces ergodicity of T is closely related to that of the adjoint T^{*}.

§ 1. Criteria for mean convergence. Throughout, B will be a Banach space, T a linear operator on B with $||T|| \leq 1$, B* the dual space of B, and T* the adjoint of T. Some special notations are : $A_n(T) = (1/n)(T + \cdots + T^n)$, $F(T) = \{x \in B:$ $Tx = x\}$, and $F(T^*) = \{m \in B^* : T^*m = m\}$. This paper is concerned with conditions under which T is strongly ergodic, i.e., there exists a projection P such that $||A_n(T)x - Px|| \to 0$ for all $x \in B$. Our formulation of ergodic theory is based on the known results quoted in 1.1.

1.1. LEMMA. (a) $[S_1]$ T is strongly ergodic iff F(T) separates points | of $F(T^*)$, i.e., if m and n are distinct elements of $F(T^*)$, then $m(x) \neq n(x)$ for some $x \in F(T)$.

75

(b) [L1] For any contraction T on B, there exists a projection Q^* on B^* and a net $\{A_{n(a)}(T^*): a \in A\}$ such that $A_{n(a)}(T^*)m(x) \rightarrow Q^*m(x)$ for all $m \in B^*$ and $x \in B$. Range $Q^* = F(T^*)$, and $T^*Q^* = Q^*T^* = Q^*$. Moreover, the compactness argument of the proof yields the following: if $\{A_{n(a)}(T): a \in A\}$ is any net with $n(a) \rightarrow \infty$, then there exists a subnet $\{A_{n(b)}(T^*): b \in B\}$ converging to a projection Q^* as above.

1.2. Remark. If Q^* is as above, then range $Q^* = F(T^*)$, and it is easy to see that ker Q^* is a norm closed subspace of B^* containing $(I - T)^* (B^*)$. More generally, we have

(*) norm-closure $(I-T)^*(B^*) \subset ker \ Q^* \subset weak-*$ closure $(I-T)^*(B^*) = F(T)^{\perp}$. Note that if T is strongly ergodic, then Q^* is given uniquely as P^* , where P is a projection on B, and $ker \ Q^* = F(T)^{\perp}$, by weak-* continuity of Q^* .

1.3. PROPOSITION. (a) $F(T)^*$ is a homomorphic image of $F(T^*)$, (b) the homomorphism is an isomorphism iff T is strongly ergodic.

Proof. (a) Since $F(T)^*$ is isomorphic to $B^*/F(T)^{\perp}$ [R_1 , page 91], we can deal with the quotient space. Let $\pi: B^* \to B^*/F(T)^{\perp}$ be the natural map. We shall show that the restriction $\pi | F(T^*)$ is onto, i.e., for each $m \in B^*$ there exists $n \in F(T^*)$ with $m-n \in F(T)^{\perp}$. In fact, let $n = Q^*m$. Then if $x \in F(T)$.

 $(m-n)(x) = m(x) - \lim A_{n(a)}(T^*)m(x) = m(x) - \lim m(A_{n(a)}(T)(x)) = m(x) - m(x) = 0.$

(b) By 1.1 (a), T fails to be strongly ergodic iff there exist m and n in $F(T^*)$ with $m-n \in F(T)^{\perp}$, or $\pi(m) = \pi(n)$.

1.4. COROLLARY. If dim $F(T^*) \leq \infty$, then dim $F(T) \leq \dim F(T^*)$, and equality bolds iff T is strongly ergodic.

(For the case B = C(X), this result is due to Sine, $\{S_2\}$ and $\{S_3\}$. He also relates ergodicity to the number of extreme points in the unit hall of $F(T^*)$.)

§ 2. Grothendieck spaces. In [Li], Lin proves that if $n^{-1} || T^n || \to 0$, then $|| A_n(T) - P || \to 0$, for some projection P iff (I-T)(B) is closed in B. By Banach's theorem $[R_1$, page 96], this last condition is equivalent to either of the assertions: $(I-T)^*(B^*)$ is norm-closed, or is weak-*closed. In view of 1.2,

we may expect an analogous result for strong ergodicity, if only we can locate ker Q^* with more precision. This turns out to be possible if B is a Grothendieck space. (B is a G-space if weak -* sequential convergence in B^* is equivalent to weak sequential convergence. A reflexive space is a G-space, and C(X) is a G-space whenever X is a compact F-space [see. Theorem 2.5].)

2.1. LEMMA. If B is a G-space, then norm-closure $(I-T)^{\bullet}(B^{\bullet}) = \bigcap \{ \ker Q^{\bullet} : Q^{\bullet} \in S \}$, where S is the set of projections on B^{\bullet} given as in 1.1 (b).

Proof. Suppose $m \in B^*$ and $m \notin$ norm-closure $(I - T)^*(B^*)$. By Hahn-Banach there exists $F \in B^{**}$ such that F(m) = 1 and $F(n - T^*n) = 0$ for all $n \in B^*$, or $F(n) = F(T^*n)$ for all $n \in B^*$. This implies that it is not true that $A_n(T^*)m \to 0$ weakly, because $F(A_n(T^*)m) = F(m) = 1$. Since B is a G-space, it is not true that $A_n(T^*)m \to 0$ weak-*, and hence there exist $x \in B, \epsilon > 0$, and $n(1) \le n(2) \le \cdots$ such that $|A_n(k)(T^*)m(x)| > \epsilon$. By 1.1 (b) there exists a subnet $\{A_{n(a)}(T^*): a \in A\}$ of the sequence $\{A_{n(k)}(T^*)\}$ converging in the specified sense to some $Q^* \in S$. Clearly $|Q^*m(x)| \ge \epsilon$, so $m \notin \ker Q^*$.

2.2. THEOREM. If B is a G-space, then T is strongly ergodic iff norm - closure $(I-T)^*(B^*) = weak^{-*}$ closure $(I-T)^*(B^*)$.

Proof. If T is strongly ergodic, then (as noted in 1.2) Q^* is given uniquely, and ker Q^* = weak-* closure. By 2.1 it follows that norm-closure = weak-* closure. Conversely, if norm-closure = weak-* closure, then any $Q^* \in S$ must satisfy ker $Q^* = F(T)^{\perp}$, and range $Q^* = F(T^*)$; whence $F(T)^{\perp} \cap F(T^*) = (0)$. But this set is the kernel of the map $\pi:F(T^*) \to B^*/F(T)^{\perp}$, so that 1.3 (b) implies that T is strongly ergodic.

2.3. Examples. These results can fail for non-G spaces. Before giving examples, we need a Lemma, the proof of which was kindly supplied by Michael Lin.

LEMMA. Let X be compact, S: $X \rightarrow X$ a bomeomorphism such that for some $x \in X$, the orbit $\{S^n x\}$ is infinite, and T the Markov operator T f(x) = f(Sx) ($f \in C(X)$). Then there exist x and y in X such that

 $\delta_x - \delta_y \in F(T)^{\perp} \setminus norm - closure (I - T)^* (C(X)^*).$

Proof. If $\{z^n x\}$ is infinite, then by compactness there exists $y \in \text{closure}$ $\{s^n x\}$ such that $\{s^n x\} \cap \{s^n y\} = \phi$. Since each element of F(T) is constant on closure $\{s^n x\}$, we have $\delta_x - \delta_y \in F(T)^{\perp}$. Now for each *n*, choose $f_n \in C(X)$ such that $||f_n|| \le 1$, $f_n(s^i x) = 1$ (i = 1, ..., n), and $f_n(s^i y) = -1$ (i = 1, ..., n). Then $A_n(T^*) (\delta_x - \delta_y) f_n = 2$, so $||A_n(T^*)(\delta_x - \delta_y)|| \ne 0$. It follows that $\delta_x - \delta_y \notin \text{norm-closure} (I - T)^*(C(X)^*)$.

Now for our first example (from $[S_3]$), let X = [0,1], $Sx = x^2$, and Tf(x) = f(Sx). T is not strongly ergodic, since $T^n f(x) \to f(0)$ if $x \neq 1$, and $T^n f(1) \to f(1)$. However the sequence $\{T^{*n}\}$ is convergent in the sense of 1.1 (b), since $T^{*n}m \to m[0,1) \delta_0 + m\{1\} \delta_1$ for each $m \in C(X)^*$ Thus Q^* is unique, and $m \in ker Q^*$ iff $m[0,1) = m\{1\} = 0$. Clearly, $\delta_0 - \delta_1 \in F(T)^{\perp} \setminus ker Q^*$. If 0 < x < y < 1 and $\{S^n x\}$ is disjoint from $\{S^n y\}$, then the Lemma implies $\delta_x - \delta_y \in ker Q^* \setminus norm$ -closure $(1-T)^*(C(X)^*)$ Thus 2.1 fails.

For a second example, let X be the unit circle, $S:X \to X$ the map Sz = az, where a is not a root of unity, and Tf(z) = f(Sz). In this case, T is strongly ergodic, with $A_n(T) f(x) \to \int f dm$, where m is normalized Lebesgue measure, and hence ker $Q^* = F(T)^{\perp}$. Since F(T) = constant functions, $F(T)^{\perp} = \{n \in C(X)^* :$ $n(X) = 0\}$, and by the Lemma there exist x and y such that $\delta_x - \delta_y \in F(T)^{\perp} \setminus$ norm-closure. Thus, 2.1 and 2.2 both fail.

2.4. Remark. If S and T are as in the Lemma, and C(X) is a G-space, then it follows easily form 2.2 and the Lemma that T is not strongly ergodic, an essentially known result [Sem]. However, we can prove a stronger result.

2.5. DEFINITION. If B is a Banach space, a sequence $\{\rho_n\} \in B^*$ is said to have disjoint supports if $|| \sum_{1}^{R} t_n \rho_n || = \sum_{1}^{R} |t_n| \cdot || \rho_n ||$ for any finite set of scalars $\{t_1, \ldots, t_p\}$.

2.6. THEOREM. Suppose T is a contraction on a G-space B such that for some $\rho \in B^*$, $\{T^{*n}\rho\}$ have disjoint supports, and inf $||T^{*n}\rho|| > 0$. Then T is not strongly ergodic.

This Theorem follows from the following Lemma. For point functionals in a compact F-space, the Lemma was proved in $[R_2]$ and [G-K], and more ge-

nerally for compact spaces such that C(X) is a G-space in [Sem]. (I owe^{FISI} this last reference to W.D. Stangl, who proved in his 1974 Lehigh thesis the more general result that such a compact space contains no 'heavy points' in the sense of A. K. Snyder.)

ESTADISTIC

2.7. LEMMA. Let B a G-space, $\{\rho_n\} \in B^*$ with disjoint supports, $||\rho_n|| \leq M$, and inf $||\rho_n|| > 0$. Then there exists $x \in B$ such that the sequence $\{\rho_n(x)\}$ is not Cèsaro summable.

Proof. Let $\{c_n\}$ be a bounded real sequence which is not Cesaro summable. It follows from page 86 of [D-S] that there exists $F \in B^{**}$ such that $F(\dot{\rho}) = c_n$ for all n. Let $m_n = (1/n) (\rho_1 + \cdots + \rho_n)$. Then $\{F(m_n)\}$ is a divergent sequence, so that $\{m_n\}$ is not a weakly convergent sequence in B^* . Since B is a G-space, the sequence is not weak-* convergent, so there exists $x \in B$ such that $\{m_n(x)\}$ diverges, i.e., $\{\rho_n(x)\}$ is not Cesaro summable. (We note that in these results Cesaro summability may be replaced by any regular matrix method.)

3. Ergodicity of T^* . If T is strongly ergodic, then T^* is weak-* ergodic, but may not be strongly ergodic. (For example, let B = C[0, 1/2] and $Tf(x) = f(x^2)$.) In G-spaces we can again do better.

3.1. THEOREM. Let T be a contraction on the G-space B. Then (a) implies (b) implies (c), where

- (a) T is strongly ergodic,
- (b) T^{*} is weak-* ergodic,
- (c) T^{*} is strongly ergodic.

Proof. That (a) implies (b) is obvious. Assume (b) holds, i.e., there exists a projection P on B^{*} such that for each $\rho \in B^*$, $A_n(T^*) \rho \to P \rho$ weak-*. To prove T^* is strongly ergodic, it is enough to show that if $G \in F(T^{**}) \cap F(T^*)^{\perp}$, then G=0. (Cf. 1.3 and the proof of 2.2.) If $G \neq 0$, then there exists $\rho \in B^*$ with $G(\rho) \neq 0$. Then $A_n(T^*) \rho \to P \rho$ weak-*, where $P \rho \in F(T^*)$. Since B is a G-space, convergence is weak as well, so $0 \neq G(\rho) = A_n(T^{**})G(\rho) =$ $G(A_n(T^*)\rho) \to G(P \neq) = 0$, since $G \in F(T^*)^{\perp}$ and $P \rho \in F(T^*)$. Thus we have a contradiction. 3.2. COROLLARY. Let T be a contradiction on a Banach space B, and assume that B^* is a G-space. Then (c) implies (a).

Proof. If T^* is strongly ergodic, then 3.1 implies that T^{**} is strongly ergodic. Since *B* is a norm-closed subspace of B^{**} , it follows that *T* is strongly ergodic.

3.3. Example. To show that the hypothesis in 3.2 is really needed, we give an example where T^* is strongly ergodic while T is not. Define T on c_o (= null sequences) by $(Tx)_1 = x_1$ and $(Tx)_n = x_{n-1}$ for $n \ge 1$. For each $x \in c_o$, the sequence $\{(T^kx) : k \ge 1\}$ converges to (x_1, x_1, x_1, \dots) , which is not in c_o if $x_1 \ne 0$. It is easy to check that the adjoint $S = T^*$ is given for $y \in \ell^1$ by

$$Sy = (y_1 + y_2, y_3, y_4, \dots).$$

The iterates $s^k y$ converge pointwise and in ℓ^1 -norm to $(\Sigma_i y_i, 0, 0, ...)$. (Note that the projection so defined is norm but not weak-* continuous on ℓ^1 .)

It is apparently not known whether there exist non-reflexive spaces such that both B and B^* are G-spaces [D, page 105], so it is not clear whether 3.1 and 3.2 have non-trivial joint applications.

4. Final Remark. Corollary 1.4 has been proved independently by Michael Lin, for a semigroup of contractions. His proof embeds the π -invariant vectors in the dual of the π *-invariant vectors. I am grateful to Lin, as well as to Robert Sine, for correspondence on this and other matters.

References

- [D] J. Diestel, Grothendieck spaces and vector measures, in Vector and operator valued measures and applications (editors: D. Tucker and H. Maynard), Academic Press, New York, 1973, 97-108.
- [D-S] N. Dunford and J. Schwartz, Linear operators I, Interscience Pub. Inc., New York, 1957.
- [G-K] J. Gait and S. Koo, Averages of functions and ergodic measures on F-spaces, Math. Systems Theory 6 (1972), 23-25.

- [Li] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340.
- [L1] S. Lloyd, An adjoint ergodic theorem, in Ergodic Theory (editor: F. Wright), Academic Press, New York, 1963, 195-201.
- [R1] W. Rudin, Functional analysis, McGrow-Hill, New York, 1973.
- [R2] W. Rudin, Averages of continuous functions on compact spaces, Duke Moth.
 J. 25 (1958), 107-204.
- [Se] G. Seever, Measures on F-spaces, Trans. Amer. Math. Soc. 133 (1968), 267-280.
- [Sem] Z. Semadeni, On weak convergence of measures and σ-complete Boolean algebras. Collog. Math. 12(1964), 229-232.
- [S₁] R. Sine, A mean ergodic theorem, Proc. Amer. Math. Soc. 24(1970), 438-439.
- [S₂] R. Sine, Geometric theory of a single Markov operator, Pac. J. Math. 27(1968), 155-166.
- [S3] R. Sine, Geometric theory of a single Markov operator II, to appear.
- [St] W. Stangl, Weak-star convergence of measures and matrix summability, Lehigh University dissertation, 1974.

Department of Mathematics Obio University Athens, Obio 45701 U.S.A

(Recibido en noviembre de 1975).