A CORRECTION TO MY PAPER: "SOME TOPOLOGICAL EXTENSIONS OF PLANE GEOMETRY"

by

Harold BELL

THEOREM 4.4 and its proof, in my paper: Some topological extensions of plane geometry, Rev. Colombiana Mat., 1975, IX, 125 - 153, should appear as follows: Let B be a compact set for which the interior of $T_K(B)$ contains A. Let $\mathcal{G} = \{J: J \in \mathcal{G}_A(e) \text{ for some } e \in B\}$, and let $M = \bigcup \{J: J \in \mathcal{G}_A(e) \} \bigcup A$. Then the boundary of $T_K(M)$ is a simple closed curve provided that $e(K) \notin \overline{M}$.

Proof: Let D_1, D_2, D_3, \ldots be a sequence of simple closed curves such that $M \subset T_K(D_{n+1}) \subset T_K(D_n)$ for $n=1,2,3,\ldots$, and each component of D_n-M has diameter <1/n. Since A is compact there is a d>0 such that

$$\{z:d(z,A)\leq d\}\subset T_K(B) \text{ and } d(e(K),A)\geq d.$$

If $e \in E(A)$ and $d(e,A) \le d/3$ then there is an $f \in L_e \cap B$. It follows that $\bigcup_e (A) \subset T_K(I \cup M)$ for some $I \in \mathcal{G}_f(A)$. It follows that for each $\varepsilon > 0$ there is a positive integer N such that if $m \ge N$ and C is a component of $D_m - M$ then the diameter of $(T_K(C \cup M) - T_K(M))$ is less than ε . A standard uniform convergence argument together with the fact that $T_K(M)$ has no cut points then yields that the boundary of $T_K(M)$ is a simple closed curve.